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Language-Grounded Dynamic Scene Graphs for
Interactive Object Search with Mobile Manipulation

Daniel Honerkamp1∗, Martin Büchner1∗, Fabien Despinoy2, Tim Welschehold1, Abhinav Valada1

Abstract—To fully leverage the capabilities of mobile manipu-
lation robots, it is imperative that they are able to autonomously
execute long-horizon tasks in large unexplored environments.
While large language models (LLMs) have shown emergent
reasoning skills on arbitrary tasks, existing work primarily
concentrates on explored environments, typically focusing on
either navigation or manipulation tasks in isolation. In this work,
we propose MoMa-LLM, a novel approach that grounds language
models within structured representations derived from open-
vocabulary scene graphs, dynamically updated as the environment
is explored. We tightly interleave these representations with an
object-centric action space. Given object detections, the resulting
approach is zero-shot, open-vocabulary, and readily extendable
to a spectrum of mobile manipulation and household robotic
tasks. We demonstrate the effectiveness of MoMa-LLM in a novel
semantic interactive search task in large realistic indoor environ-
ments. In extensive experiments in both simulation and the real
world, we show substantially improved search efficiency compared
to conventional baselines and state-of-the-art approaches, as well
as its applicability to more abstract tasks. We make the code
publicly available at http://moma-llm.cs.uni-freiburg.de.

Index Terms—Scene graphs, decision making, object search.

I. INTRODUCTION

INTERACTIVE embodied AI tasks in large, unexplored,
human-centered environments require reasoning over long

horizons and a multitude of objects. In many cases, the
considered environments are a priori unknown or continuously
rearranged. Recent advancements have demonstrated the
potential of large language models (LLMs) in generating high-
level plans [1]–[4]. However, these efforts have predominantly
focused on fully observed environments such as table-top
manipulation, or a priori explored scenes, struggling to
generate executable and grounded plans suitable for real-world
robotic execution. This problem is strongly exacerbated in large
scenes with numerous objects and long time horizons. In turn,
this increases the risk of generating impractical sequences or
hallucinations [5], [6]. Furthermore, the presence of interactive
scenes and articulated objects introduces a multitude of
potential states and failure cases. To address these challenges,
we propose grounding LLMs in dynamically built scene graphs.
Our approach incorporates a scene understanding module
that, given object detections, constructs open-vocabulary scene
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Fig. 1. MoMa-LLM performs long-horizon interactive object search in house-
hold environments from language queries using dynamically built scene graphs.

graphs from dense maps and Voronoi graphs. These diverse rep-
resentations are then tightly interweaved with an object-centric
action space. Leveraging the current scene representation, we
extract structured and compact textual representations of the
scene to facilitate efficient planning with pre-trained LLMs.

To evaluate the efficacy of our approach, we formulate
an interactive semantic search task, extending previous non-
semantic interactive tasks [7] to more complex scenarios.
In this task, an agent has to find a target object within an
indoor environment, encapsulating real-world challenges such
as opening doors to navigate through the environment, and
searching inside cabinets and drawers to find the desired
object. This task is challenging as it requires reasoning about
manipulation and navigation skills, operating in unexplored
environments, spanning large apartments with numerous rooms
and objects. Consequently, it is representative of more complex
mobile manipulation tasks while retaining the specificity
required for thorough evaluations and comparisons against
conventional methods. Furthermore, we introduce a novel evalu-
ation paradigm for object search tasks, employing full efficiency
curves to remove the dependency on arbitrary time budgets
inherent in existing methods. Additionally, we propose the AUC-
E metric to distill these curves into a single metric for coherent
evaluation. We perform extensive experimental evaluations in
both simulation and the real-world, and demonstrate that given
appropriately structured representations, LLMs can leverage
their accumulated knowledge about the human world to achieve
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exceptional results, outperforming state-of-the-art approaches
across diverse fields. Our approach is zero-shot, with open-
vocabulary reasoning, and inherently scalable to various mobile
manipulation and household robotic tasks, as we demonstrate
on a set of abstract search tasks.

To summarize, our main contributions are
• A scalable scene representation centered around a dynamic

scene graph with open-vocabulary room clustering and
classification.

• Structured compact knowledge extraction to ground LLMs
in scene graphs for large unexplored environments.

• Semantic interactive search task for large scenes with
numerous objects and receptacles.

• Novel evaluation paradigm for object search tasks through
full efficiency curves, instead of a single time budget.

• We release the code at http://moma-llm.cs.uni-freiburg.de.

II. RELATED WORK

3D Scene Graphs serve as sparse environment representations
that abstract from dense semantic maps [8]. The disassembly
of large scenes into objects, regions, etc., and their represen-
tation as nodes thus provides hierarchical and object-centric
representations. In addition, nodes and edges may contain
semantic attributes [9]–[12]. Despite the lower geometric fi-
delity compared to dense maps, scene graphs prove particularly
successful in the realm of high-level reasoning and planning,
while providing a powerful interface with mapping [5], [11].
Orthogonally, Hydra [9] focuses on representing dynamically
changing scenes. Multiple works have explored the use of
scene graphs for reasoning in mobile robotics. Most build a
hierarchical scene graph of the form (building, floors, rooms,
objects). Different variants add edges among objects [13], add
a Voronoi graph [14] for storing observations, or separate the
set of objects into static and potentially moving objects [15].
While ConceptGraphs [13] and VoroNav [14] investigate the
use of zero-shot perception inputs for task planning, others
such as SayPlan [5], SayNav [15], and Taskography [6] focus
on the reasoning task itself by utilizing ground truth semantic
scene graphs [16], [17].

Realizing object navigation using both dynamic and in-
teractive scene graphs has not been tackled thus far in the
aforementioned works.
Language Models for Planning: Several recent works have
investigated language models’ abilities to generate task plans
for robotic manipulation. These largely focus either on static
table-top scenes of limited size and a limited number of
objects [1], [3], [4], or a fully observable scene. On the other
side of the spectrum, vision-language-navigation investigates
pure navigation tasks in large apartments to either navigate
along a described path or towards a specific instance of an
object [18], [19]. A smaller number of works have investigated
apartment-wide mobile manipulation tasks. LLM-Planner [19]
uses information retrieval of the closest matching known task.
Chalvatzaki et al. [17] finetune an LLM to encode object-
object relations extracted from a scene graph. SayCan [20]
combines affordance values with language scores. However,
all of these methods focus on tasks restricted to single rooms.
SayPlan [5] focuses on identifying relevant subgraphs in large

known scene graphs by iteratively extracting or collapsing
nodes. Ni et al. [16] learn a transformer-based model on top
of a frozen LLM to predict subtasks from fully known scene
graphs. In contrast, we focus on interactive search in large
fully unexplored environments. As a result, simple prompting
strategies, such as lists of observed objects [13], [16], [19] or
raw JSON input [5] of a full scene graph to a language model
becomes insufficient, as we demonstrate in our experiments.
Object Search has been tackled via a wide range of methods,
including classical methods such as frontier exploration [21],
vision-based reinforcement learning [22], or auditory sig-
nals [23]. Graph Neural networks (GNNs) have been used with
scene graphs to find specific object instances with hierarchical
and relational constraints [24] or in frequently changing,
dynamic scenes [25], [26]. Schmalstieg et al. [7] introduced
the interactive search task, in which an agent has to open doors
and search through cabinets and drawers. While they focus on
random target placements and a restricted number of objects
and receptacles, we introduce a semantic single-object search
variation of this task, which uses all objects in the scene and
keeps the semantic co-occurrences in the scene intact.

Non-interactive semantic search has been previously tack-
led. Most recent methods used language models to extract
similarities or co-occurrences with the target object to score
frontiers [27]–[29] or predict potential functions towards a
target object with supervised learning [30]. While these works
focus on pairwise score calculations, we treat it as a planning
problem in which the full scene is encoded jointly. In contrast to
these works, we consider objects that are not freely accessible
and require interaction with the environment and thereby
reasoning over multiple steps such as opening doors and
receptacles instead of pure directional reasoning.

Lastly, given object detections, our representation and
reasoning is fully open-vocabulary - both in terms of room
and object categories. Conceptually most similar to our work,
SayNav [15] utilizes a scene graph together with an LLM.
However, it focuses on non-interactive search, restricting the
LLM’s access to a room subgraph, assumes restrictions such as
knowledge about scene graph edges, and relies on a hardcoded
heuristic of when to go to the next (already open) door.

III. PROBLEM STATEMENT: EMBODIED REASONING

In our setting, an embodied, robotic agent is situated in a
large, unexplored environment and has to complete a given
task, described by a language goal g. The agent is acting in a
Partially Observable Markov Decision Process (POMDP) M =
(S,A,O, T (s′|s, a), P (o|s), r(s, a)) where S,A and O are the
state, action and observation spaces, T and P describe the
transition and observation probabilities, s, s′ are the underlying
current and next state, o is the agent’s current observation
consisting of posed RGB-D frame It, a is the current action
and r is the reward. To succeed in these tasks, the agent has
to perceive the environment and create a representation while
reasoning about how to complete the tasks through exploration
and interaction with the environment.

We introduce the task of semantic interactive object search.
In contrast to most existing works [22], [27], [28], [31], inter-
active object search requires manipulation of the environment
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You are currently in the bathroom. 
You are standing next to TV, picture ..

.. seen the folllowing rooms and objects so far:
bathroom-1: [mirror, shower, sink, toilet]
bedroom: [bed, nightstand, picture, pillow, shelf]
hallway: [carpet, flower, door]
....

Your 5 previous actions were: 
explore(bathroom) - success
go_to_and_open(hallway, door) - success
...
Rooms w/ unexplored space: [bathroom, bedroom]
Rooms with closed doors: [hallway, bathroom]
...

BtOccupancy Map GVR GSVoronoi Graph

Separation at 
Doors

Room
Classification
{carpet, door, towel-rack, sink}
             bathroom

Structured Knowledge 
Representation

Task

Find a desk.

go_to_and_open(room, object)

navigate(room, object)

explore(room)

close(room, object)

done()

LLM

Fig. 2. MoMa-LLM: From posed RGB-D images and semantics, we construct a semantic 3D map from which we extract a various occupancy maps in the
BEV space and construct a navigational Voronoi graph. Through room clustering and room-object assigments we then build up a hierarchical scene graph.
From this scalable scene representation, we extract the task-relevant knowledge and encode it into a structured language representation. A large language model
then produces high-level commands which are executed by low-level subpolicies. These in turn draw on and update the scene representations.

to navigate and explore it. As in realistic, human-centric
environments, doors may block pathways and objects are not
openly visible but may be stored away in receptacles like
drawers or cabinets. We extend the interactive task introduced
in [7] to a much larger number of objects and receptacles and
a prior distribution of realistic room-object and object-object
relations. As a result, other objects in the scene can provide
valuable information about the position of the target. While
existing tasks such as the Habitat challenge and Robothor
use semantic placements, they do not support any physical
interactions or objects placed within receptacles.

We implement the task in the iGibson scenes [32], consisting
of 15 interactive apartments based on scans of real houses.
At the beginning of an episode, all doors are closed and the
agent is given a task description in natural language. The task
is deemed successful if the agent has observed an instance of
the target category and calls done().

The iGibson scenes contain realistic furniture and room
distributions, but few other objects are placed in relation to
this. We enrich the scenes with realistic object placements,
both within receptacles and on top of furniture, by extending
and matching previously introduced prior distributions P prior

over room and object relations [25], by aligning room names
manually and matching object names via SBERT cosine
similarities. We then assume that all objects that can be found
on top of an object and that fit in size, can also be found
inside it and vice-versa. Given a valid scene instantiation, we
then draw a target category g ∼ U(scene) from all categories
in the scene. This results in the procedural generation of a
wide range of tasks over 84 possible target classes. Further
details can be found in the Supplementary Sec. S.1.

IV. MOMA-LLM
To address the challenges of interactive open-vocabulary

household tasks, we propose MoMa-LLM, which intertwines
high-level reasoning with scalable dynamic scene representa-
tions. We ground large-language models in hierarchical 3D
scene graphs GS that hold object- and room-level entities as
well as a more fine-grained Voronoi graph for navigation. The
LLM provides high-level actions that are executed through
low-level skills as shown in Fig. 2. In general, we assume

access to ground truth perception for semantic masks, depth,
localization and handle detection as the focus of this work is
on the reasoning aspect.

A. Hierarchical 3D Scene Graph

To provide an LLM with structured input, we craft a hierar-
chical scene graph that includes a navigational Voronoi graph.

1) Dynamic RGB-D Mapping: The agent perceives posed
RGB-D frames {I0, . . . , It} including semantics from the
environment. The contained points are transformed into the
global coordinate frame and arranged on a 3D voxel grid Mt.
As we tackle an interactive problem, our map is dynamically
updated based on novel explored areas or the occurrence of
object dynamics in the scene. To infer obstacle positions, walls
and explored free space, we first obtain the highest occupied
entry per stixel in Mt. These entries are then turned into a
two-dimensional bird’s-eye-view (BEV) occupancy map Bt by
inferring all occupied positions except for those classified as
free space Ft. The latter in turn represents the navigable area
that is used for robot exploration.

2) Voronoi Graph: Similar to Hydra [9], we abstract from
the created dense maps by computing a navigational graph
GV . We first inflate Bt using an Euclidean signed distance
field (ESDF) formulation for robustness, but overwrite free
space coordinates as given in Ft as zero. Based on this, we
compute a Generalized Voronoi Diagram (GVD) that holds a
set of points V with the same clearance to the closest obstacles
drawn from Bt.

We exclude all nodes that lie in the immediate vicinity of
obstacles or do not reside within Bt. Given the GVD boundaries,
we construct edges E among V and obtain our navigational
Voronoi graph GV = (V, E). Throughout our experiments, we
found that extracting the largest connected component of the
graph provides the robot-centric Voronoi graph while other
components commonly lie outside the explored area. Lastly,
we sparsify GV to obtain fewer navigational nodes.

3) 3D Scene Graph: The MoMa-LLM-policy operates on
an attributed 3D scene graph GS that holds different abstraction
levels, namely rooms and objects. We first separate the global
Voronoi graph GV into multiple regions. To do so, we eliminate
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assistant: The first room seems to be a living room, and the second room
appears to be a bedroom. Output Response Format:
- room-0: living room
- room-1: bedroom

system: You are a helpful assistant, visiting a new apartment.

user: You observe 2 rooms, they contain the following objects:
- room-0 contains [4 armchairs, closed bottom-cabinet, carpet, closed door,
picture, 4 shelves, 2 tables, table-lamp, closed window, opened door].
- room-1 contains [basket, bed, closed bottom-cabinet, document,
     2 closed doors, 2 shelves, closed window, opened door].
Please classify the rooms. If you are unsure, classify them as other room.
Output Response Format: A list with bullet points of the form
- room-X: room type

Fig. 3. Room Classification Prompt: based on the objects and room clusters
of the scene graph, an LLM performs open-vocabulary classification.

edges and nodes of GV near doors instead of separating graphs
at geometrical constrictions [9]. Using a mixture of Gaussians,
we generate a two-dimensional probability distribution over all
observed door positions in the environment:

ρN (x,H) =
1

ND

ND∑
i=1

KH(x− xi), (1)

where xi = (xi, yi) are the door center coordinates, KH is the
scaled Gaussian kernel of observed doors and H the bandwidth
matrix, which we set to 2.0 based on manual tuning on the
training scenes. Edges that fall into high-probability regions
and exceed an empirically tuned probability threshold are
disregarded along with isolated nodes. Following this principle,
we obtain the separated Voronoi graph GR

V covering distinct
rooms. In the next step, we infer the high-level connectivity
among rooms by calculating the shortest paths between nodes
of GV that belong to disjoint components of GR

V . Whenever
a path traverses just two distinct rooms as given by GR

V , the
two rooms count as immediate neighbors. Finally, we map
objects to rooms. For each object o ∈ GS , we identify the node
that minimizes the distance dvo to the closest viewpoint vp
from which the object was seen. To this end, we calculate the
shortest path from the object o to this viewpoint. It consists of
the path on the Voronoi graph GV , and the Euclidean distances
d from the Voronoi nodes no and nvp to the object o and
viewpoint vp, respectively. By weighting the distance to the
object with an exponent of λ = 1.3, we ensure to prefer nodes
close to the object. Objects are then assigned to the room
label R of the node no that minimizes Eq. (2). This prohibits
the erroneous assignments of objects to a neighboring room
through walls. Doors may be connected to multiple rooms.

dvo = min
no,nvp∈GR

V

path(no, nvp) + d(o, no)
λ + d(vp, nvp

) (2)

4) Room Classification: Similar to Chen et al. [33], we
perform room classification by providing an LLM with the set
of object categories contained in each room. We perform this
as open-set classification, in which we let the LLM freely pick
the room categories deemed most appropriate.

The resulting LLM prompts are detailed in Fig. 3. Room
classification is performed in each high-level policy step, as the
explored scene and scene graph evolve. We provide a concise
overview of all scene graph layers in Tab. S.1.

B. High-Level Action Space

We design an object-centric action space, which is tightly
intertwined with the different granularities of the scene repre-
sentation. It consists of the following high-level actions:

navigate(room_name, object_name): Navigation to an
object in a room via an A∗ planner in the explored BEV-map
Bt, inflated by 0.1m. It first navigates to the Voronoi node
associated with the object, then to the most central, free point
on an arc around the object. This enables robust navigation to
objects in partially explored space and ensures navigation to
the correct room through the Voronoi assignment detailed in
Sec. IV-A3. Navigation is considered successful if the agent
reaches within 1.5m of the object.
go to and open(room_name, object_name): Navigate to
a specific object, then open it. For doors, continue to navigate
into the opened door frame.
close(room_name, object_name): Equivalent to opening.
explore(room_name): Move to an unexplored frontier within
this room. Deemed successful if within 0.5m of the frontier.
done(): Terminate the episode and evaluate if the target object
has been found.

Ambiguities of multiple instances of the specified class in
a room are resolved by selecting the closest instance. The
subpolicies then generate actions in the low-level action
space and return once they succeed or encounter a failure.
Throughout their execution, they continuously update the scene
representations. Refer to the Supplementary Sec. S.1 for details.

C. Grounded High-Level Planning

We encode the accumulated knowledge of the scene graph
into natural language by extracting the relevant components
and embedding them in a problem-specific structured manner.
Our method fulfills three properties: (i) grounding - guiding the
LLM to adhere to the physical realities of the scene, (ii) speci-
ficity - avoiding long or irrelevant context queries that increase
hallucinations and the difficulty of the planning problem [5],
[6], and (iii) open-set - our reasoning is open-vocabulary and
performs in a zero-shot manner, enabling direct deployment
with unknown semantics and perception models. The resulting
prompt for the language model is shown in Fig. 4. In the follow-
ing, we describe the main components of structured encoding.
We demonstrate the importance of this structure in Sec. V.

1) Scene Structure: We encode the main room-object
structure from the scene graph into a structured list of rooms
and their containing objects and encode path distances (based
on an A∗-planner) by binning them and mapping them to
adjectives [17], as detailed in Supplementary Sec. S.4. We
then employ the following filtering to allow for compact
text encodings: we summarize matching nodes within a room
with a counter, we filter out open doors that provide no new
connectivity, and we encode object states directly within the
object name, e.g. as ”opened” or ”closed [object-name]”.

2) Partial Observability: As the environment is initially
unknown, it requires explicit reasoning about exploration-
exploitation trade-offs. We identify frontiers to explorable
areas [21], then leverage the scene graph to provide them
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system: You are a robot in an unexplored house. Your task is to find a stove.
You have the following actions available that you can use to achieve this task:
1. navigate(room_name, object_name): navigate to this object in this room.
2. go_to_and_open(room_name, object_name): go to this articulated object, door or container and open it.
3. close(room_name, object_name): close this articulated object, door or container.
4. explore(room_name): explore the unknown space near one of the rooms that is not fully explored yet.
5. done(): call when the task is completed or if you are unable to take any further actions.
Output Response Format:
Analysis: describe where you could find the objects of interest and what actions you need to execute to get there.
Reasoning: justify why the next action is important to solve the task.
Command: function call

user: You are currently in the living room. You are standing next to the following objects: [bottom-cabinet, carpet, coffee-table, console-table,
picture, plate, sofa]. Furthermore, you have found the following rooms and objects in the house so far:
- bathroom-1: [mirror, shower, sink, toilet, towel-rack, wine-bottle]
- bathroom-2: [candle, mirror, picture, sink, soap, toilet, towel-rack, unexplored area]
- bedroom: [alarm, 2 balls, bed, 2 closed bottom-cabinets, candle, [..], picture, pot-plant, sofa, 3 table-lamps, 5 closed windows, opened window]
- living room: [armchair, closed bottom-cabinet, 2 carpets, [..], pot-plant, sofa, table, 2 opened windows, closed window, unexplored area]
- other room: []
Your 5 previous actions were: explore(living room) - success, explore(bathroom-2) - success, explore(living room) - success, explore(living room) -
success, explore(living room) - success.
These rooms have unexplored space leading out of the room: [living room (near)].
These rooms contain closed doors that might open up new space: [].
What is the best next action to complete the task as efficiently as possible? If you don't think that the object can be found in a known room,
prioritize opening doors over exploring a room.
Remember: 1. Respond with a function call. 2. You can only use the objects and rooms that you have already found. Object names have to match the
description exactly. 3. You can only explore rooms that are listed as having unexplored space. 4. If you have found the object you are looking for,
directly call done(). You do not need to navigate to it or interact with it. 5. If some actions failed repeatedly, they may not be possible.

assistant: Analysis: The stove is typically located in the kitchen, which has not been listed among the discovered rooms so far. Since the living room has an unexplored
area, it is possible that this area could lead to the kitchen or another room that might contain the stove. Prioritizing the exploration of unexplored areas over opening
doors is the most efficient way to find new rooms, as it may reveal the kitchen or a path leading to it.
Reasoning: Exploring the unexplored area in the living room is the next logical step because it could reveal new rooms or areas, such as the kitchen, where a stove is
likely to be found. Since the task is to find a stove and the current known rooms do not contain one, exploring is the best option to potentially discover the kitchen.
Command: explore("living room")

Task

Skill API

Scene
Structure

Partial
Observability

Dynamic
History

Chain-Of-
Thought

Fig. 4. High-level Reasoning Prompt: We encode the extracted scene representation to natural language, providing structured information to a language model.

with semantic meaning. Firstly, we associate each frontier with
a room through matching with GR

V . Secondly, we apply hole-
filling to the BEV map to differentiate whether a frontier is
an encapsulated area within a room, such as occluded space
behind furniture, or whether the frontier is leading out to new
areas. Correspondingly, we then represent them as ”unexplored
area” within a room, while frontiers that lead to other areas
are listed separately, see Fig. 4. The second type of unexplored
space is receptacles that may contain target objects. Together
with the encoded object states, we find that the language model
is capable of inferring affordances from the object descriptions,
removing the need to explicitly encode them. If trying to open
objects that cannot be opened, the according subpolicy will
fail and the LLM has to reason about an appropriate response.

3) History in Dynamic Scenes: Given the size of the scenes,
the conversation history quickly grows too large to provide
to a language model directly. Instead, we aim to find the most
compact representation of previous actions to fulfill the Markov
property. For each high-level decision, we encode the latest
scene representation and start a new query to the LLM. As the
scene representation is dynamically updated, this automatically
encodes all newly acquired knowledge. To account for previous
interactions, we provide the LLM with a history of the last
h actions. But as the scene graph changes dynamically, the
previous room- and object-centric function calls may no longer
match the current scene. Instead, we keep track of interaction
positions, and then re-align the previous actions by matching
the positions to their closest Voronoi nodes and associated
room labels. We then provide the LLM with a list of the
re-aligned function calls, as shown in Fig. 4. E.g., the agent
executes explore(living room). But revealing a fridge,
later classifies the same room as kitchen. The realigned history
will then correctly reflect this action as explore(kitchen).

4) Re-trial and Re-planning: Extracting meaningful feed-
back for failure reasons for robots in the real world remains
an open problem [2], as the number of possible failure reasons

is almost unlimited. Instead, we provide very limited feedback
about subpolicy success, which can be readily generated in
the real world. We rely on a simple success state to the action
history, stating ”success”, ”failure”, or ”invalid argument” in
case the output of the LLM could not be matched to the scene
graph. We differentiate two cases of replanning: if the agent
attempted interactions or commands that cannot be parsed
or are deemed infeasible without attempting execution, we
have not gained any new information about the scene, and we
continue the conversation with the message ”The last action
<function-call> failed. Please try another command.”. In case
of more than five failures without state change, we terminate
the episode as unsuccessful. If a subpolicy attempted execution
but failed to complete its task, we re-encode the latest scene,
update the action history, and let the LLM make a normal next
decision with the updated state.

V. EXPERIMENTS

As language models, we use gpt-4-1106-preview for the
high-level reasoning and gpt-3.5-turbo-1106 for the room
classification task [34]. For simplicity, we recompute the scene
graph each time step. More advanced implementations would
reduce costs through incremental updates.

Baselines: We compare our approach against heuristic-based,
recent learning-based, and language-based methods. We
provide all baselines except Unstructured LLM with a ground
truth done() decision when the object has been observed.
Random: uniform random choice among all available actions
(detected frontiers and closed objects).
Greedy: greedily triggers the closest available action based on
the shortest path calculated by an A∗-planner.

ESC-Interactive: ESC is a recent approach for semantic object
search [27] which scores frontiers based on object-object
and object-room co-occurrences as well as their distance. We
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extend the approach to interactive search by using the same
rules to score openable objects and then select the action with
the highest value. Co-occurrences are based on similarities
of a finetuned Deberta-v3 language model [35], following
the authors’ instructions. To isolate the impact of the decision
making, we use the same scene graph and low-level policies
as for our method.
HIMOS: A hierarchical reinforcement learning approach [7]
which learns to combine frozen low-level policies for interactive
object search, based on a semantic map memory. We adapt it
by giving it the same subpolicies as our approach and scale it to
the much larger number of objects in our scenes by restricting
the instance navigation to target and articulated objects.
Unstructured LLM: This baseline provides the scene graph in a
JSON format without any additional structure to the language
model. The prompt structure is derived from SayPlan [5],
adapted to the instructions and scene graph of our method.
See Supplementary Sec. S.5 for a prompt example.
MoMa-LLM w/ Hydra: We incorporate the room segmentation
approach introduced by Hydra [9] into our scene graph
construction pipeline to measure the impact of our proposed
door-wise room separation mechanism.

Metrics: We use three types of metrics to evaluate methods.
Success rate (SR): the share of episodes in which the agent
finds the target object. We terminate an episode if the agent
reaches 50 high-level steps, indicating being stuck.
Success weighted by Path Length (SPL) [36] calculates the
fraction of distance traveled to the shortest possible path and
weights it by whether the episode was successful. This metric
does not take into account the costs of object interactions.
Search efficiency curve and AUC-E: While the commonly used
success and SPL metrics allow for reducing the evaluation to a
single number, they rely on an arbitrarily set maximum allowed
time budget or number of environment steps. As a result,
these metrics do not differentiate between methods that search
thoroughly but on average take more steps versus methods
that search large areas very quickly, but that might fail to
search every corner for small objects. Instead, we reason that
the desired time budget depends heavily on the use case and
propose a new metric that evaluates the full efficiency curve.
For each possible budget (number of steps), we calculate the
share of episodes that succeeded with this or fewer number
of steps. This results in an efficiency curve, in which the
best policies are located in the top left corner, enabling the
comparison of success rates for arbitrary budgets. We can still
reduce this to a single number by calculating the area under
the efficiency curve (AUC-E). A perfect (but unachievable)
policy, that finds all objects in a single step will have a value
of one, a policy that does not find any objects will have a value
of zero. We calculate the integral up to 5,000 low-level steps,
at which points almost all methods make no further progress.

A. Simulation Experiments

We instantiate the task in the iGibson simulator [32] with a
Fetch robot. In contrast to previous LLM-based works [5], [15],
we evaluate all approaches in completely unseen apartments,
following the data split of the iGibson challenge into eight

TABLE I
INTERACTIVE OBJECT SEARCH RESULTS IN SIMULATION

Model SR SPL AUC-E Object Distance Infeasible
Interactions Traveled Actions

Random 93.1 50.2 77.0 5.7 32.9 –
Greedy 85.7 50.9 72.9 8.1 22.3 –

ESC-Interactive 95.4 62.7 84.5 4.1 19.6 –
HIMOS 93.7 48.5 77.4 4.8 35.9 –

Unstructured LLM 86.3 59.4 77.6 3.6 18.5 0.41
MoMa-LLM w/ Hydra 92.0 61.9 84.3 2.7 12.9 0.06
MoMa-LLM (ours) 97.7 63.6 87.2 3.9 18.2 0.19

Ours w/o frontiers 79.4 55.0 72.2 4.3 15.6 0.91
Ours w/o history 94.9 63.0 84.1 3.6 17.1 0.26
Ours w/ room-history 97.1 63.0 86.6 3.8 17.8 0.28
Ours w/o distances 97.1 61.5 86.4 3.8 18.9 0.24

Top two in bold and underline. Object interactions, distance travelled and
infeasible actions averaged over all episodes, including early terminated failures.
Infeasible: avg. number of steps the LLM produced an action that could not be
executed, resulting in re-planning with continued conversation (cf. Sec. IV-C.4).
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Fig. 5. Interactive search efficiency curve in simulation. Each point depicts
the success rate for a given maximum time budget (x-axis).

training scenes for the development of all modules and
prompt engineering and seven test scenes. For each scene, we
evaluate the agent over 25 procedurally generated episodes with
randomized start poses, target objects, and object distributions.

Scene Understanding: We compare our door-based room
separation algorithm against Hydra [9], which separates a
Voronoi graph of places based on dilating obstacles. We
evaluate the room segmentation precision and recall as defined
by Hughes et al. [9] and the separated Voronoi graph purity at
all high-level policy steps to account for robustness throughout
exploration. As depicted in Tab. II, we observe greater average
precision and recall of MoMa-LLM in terms of dense region
segmentation as well as a lower variance across time. The
sparsely evaluated graph purity shows that the separated
Voronoi graphs of MoMa-LLM cover fewer ground-truth rooms
per predicted room than graphs produced by Hydra, which may
produce inferior results when facing non-apparent constrictions
or object clutter. We found that real-world scenes contained
in iGibson regularly feature constant-diameter corridors and
narrow passages due to furniture placements, which impede
detecting rooms based on geometrical constrictions. This
demonstrates that room separation algorithms benefit from
semantic cues such as detected doors, door frames, archways,
or changing floor materials at room boundaries. We found our
policy to be robust to under-segmented rooms even though
objects from multiple rooms were, e.g., considered part of a
single room. By relying on the camera pose from which an
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TABLE II
ENVIRONMENT PARTITIONING THROUGHOUT EXPLORATION

Approach Precision Recall Purity ↑
µ ↑ σ ↓ µ ↑ σ ↓

Hydra 0.621 0.081 0.943 0.044 0.562
MoMa-LLM 0.666 0.064 0.948 0.032 0.615

Dense room segmentation precision and recall as defined in Hughes et al. [9]
in terms of mean and standard deviation throughout exploration. The purity
(Supplementary Sec. S.6.1.A) measures the number of ground-truth rooms
erroneously captured per predicted room given sparse Voronoi graphs. Evalu-
ated across 10 episodes and all test scenes with 2D grid resolution of 0.05m
to account for thin walls. Best values are written in bold.

object is observed we reduce the number of wrong object-room
assignments through walls. Following the door-wise separation
of rooms, our approach however is prone to open room concepts
such as combined kitchen and living rooms. For more informa-
tion and graph depictions, refer to the Supplementary Sec. S.1.

Policies: The results and efficiency curves for the search task
are shown in Tab. I and Fig. 5. We find that, given appropriate
subpolicies, heuristics can complete a significant share of
episodes. However, they are not sufficient for an efficient search
strategy, resulting in low SPL and AUC-E. Similarly, while
HIMOS achieves a high success rate, it is unable to explore
efficiently. We found that the RL agent struggled with the
much larger action space that resulted from the many more
interactable instances in our scenes. ESC in contrast, is able to
exploit the co-occurrences to improve over the other baselines.
However, given its pair-wise comparisons, it is unable to
optimize over longer action sequences. In contrast, MoMa-LLM
achieves similar success rates as HIMOS with a much higher
search efficiency, both in terms of SPL and AUC-E. We find
that the structured prompt representation is essential for this,
with the Unstructured LLM performing much worse. We then
perform a number of ablations of the language encodings. We
find that encoding the frontiers is very important. Removing the
history also leads to a, although smaller, drop in performance.
Even a coarser representation of the history, consisting of only
a list of visited rooms similar to [5], is already beneficial, but
slightly worse than the full action history. Lastly, we evaluate
the impact of not encoding distances nor nearby objects and
also find a small drop in performance.

This picture is fortified by the full efficiency curves in Fig. 5,
which show that the MoMa-LLM-based approaches achieve
the highest performance for all given time budgets, with only
MoMa-LLM w/ Hydra being more efficient for some of the
small budgets, but not overall. In contrast, random heuristics
achieve very high coverage, resulting in good success rates,
but often take very long to find specific objects. Further
examining the different models, we find that MoMa-LLM
both travel much shorter distances and open fewer objects
on average, indicating efficient and target-driven behavior. In
contrast, Unstructured LLM produces almost 50% more invalid
actions. Qualitatively, we find that MoMa-LLM is robust to
various room layouts, such as ”combined kitchen and living
rooms” that result in large room clusterings and can handle
the open-vocabulary room classification well. In contrast,
Hydra tends to predict a larger number of small rooms. For
reasoning examples, refer to Supplementary Sec. S.6.

TABLE III
INTERACTIVE OBJECT SEARCH RESULTS IN THE REAL WORLD

Model Success Navig Manip Distance Object
Rate Fails Fails Traveled Interact.

ESC-Inter. 80% 2 0 33.9 3.5
MoMa-LLM 80% 1 1 17.9 2.2

Dist. travelled is the average distance travelled per episode in meters. Object
interactions are the average number of object interactions per episode.

B. Real-World Experiments

We create a real-world apartment, consisting of four rooms:
a combined kitchen and dining room, a living room, a long h
allway, and a bathroom. We use a Toyota HSR robot, equipped
with an RGB-D camera and a 270◦ LiDAR. We replace
the navigation policies with the ROS Nav Stack and the
manipulation actions with the N2M2 manipulation policies [37].
We rely on the same assumptions as in simulation and assume
access to localization, accurate semantic perception, and
handle detection. We implement this by pre-recording a map
with the robot’s LiDAR and annotating it with semantic
labels. At test time, we create an occupancy map from the
robot’s RGBD camera and reveal the corresponding part of the
semantic map to the agent. The pre-recorded map is also used
for localization. To detect handles, we use AR-Markers placed
on each object. For details refer to the Supplementary Sec. S.2.

We evaluate both MoMa-LLM and the most efficient
baseline, ESC, on identical start positions and targets. The
results are shown in Tab. III, Fig. 6, and the video. Both
methods succeeded in 8/10 episodes, demonstrating the
successful transfer of the system to the real world. We find
that the Voronoi- and scene graph construction transfer directly
to the quite different, unseen layout. Similarly, the system
directly transfers to the change in subpolicies, where the
mobile manipulation policies ensure a the transition between
all subpolicies. The two failures stemmed from irrecoverable
failures of the subpolicies, in particular, collisions of the
base during navigation or of the arm while opening the door.
Comparing the methods, we find confirmation of the simulation
results, with MoMa-LLM moving and opening objects more
target-driven and efficiently. Furthermore, the agent was able
to react to the (unseen) subpolicy failures, such as re-trying
to open a drawer when the gripper slipped off the handle.

C. Towards General Household Tasks

As we move to more abstract and complex tasks, it
becomes increasingly difficult to define problem-specific rules
or heuristics. In contrast, our approach is readily expandable
to a wide range of household and mobile manipulation tasks.
Representative of this, we introduce a fuzzy search task. In this
task, the robot does not receive a specific object class to find,
but rather a fuzzy description, such as ”I am hungry. Find me
something for breakfast”. The full set of queries are shown in
Tab. S.4. We find that the agent is capable of finding objects that
satisfy respective queries, and correctly reasoning about task
completion by calling done(). We further test this capability
with three tasks that cannot be solved with the given subpolicies
(bottom part of Tab. S.4). For these cases, the agent terminated
the episode after finding the relevant objects, reasoning that
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Fig. 6. We construct a real-world apartment covering four rooms and 54
objects and transfer the model to a Toyota HSR robot.

these objects would now be sufficient for further completion
of the tasks. This demonstrates the flexibility of our approach.
We leave the extension to arbitrary tasks to future work.

VI. CONCLUSION

We developed a method to ground language models for
high-level reasoning with scalable, dynamic scene graphs and
efficient low-level policies for interactive tasks that require
combined reasoning about manipulation, navigation and explo-
ration. We demonstrated the importance of extracting structured
knowledge for large and unexplored scenes to enable LLMs
to reason about efficient search strategies, outperforming fully
learned or co-occurrence-based methods. We then transferred
our method to a real-world apartment, achieving consistent
performance over many episodes. Lastly, we demonstrate the
extendability of our approach to abstract tasks, opening the
door towards general household tasks.
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Language-Grounded Dynamic Scene Graphs for
Interactive Object Search with Mobile Manipulation

- Supplementary Material -

Daniel Honerkamp1∗, Martin Büchner1∗, Fabien Despinoy2, Tim Welschehold1, Abhinav Valada1

In this supplementary material, we provide additional details
on the simulation and real-world environments, the subpolicies,
and the baselines. Moreover, we provide additional results from
the experiments. Further examples of real-world experiments
are also demonstrated in the video material.

S.1. SIMULATION ENVIRONMENT

A. Modifications

We make the following modifications to the iGibson scenes:

• We close all exterior doors and filter them out of the scene
graph as they lead out to empty space.

• We scale the size of the Fetch robot by a factor of 0.85 as
otherwise it is too large to navigate a significant number
of areas.

• We remove six doors that block the robot’s pathway
when opening (door 52 in Pomaria 0 int, door 75 in
scene Beechwood 1 int and door 106 in Ihlen 1 int,
door 90 in Merom 1 int, door 138 and door 139 in
Wainscott 0 int).

• We rename four object categories, with misleading asset
names, such as renaming breakfast table (which can be
found e.g. in bedrooms) to table.

B. Task Generation

We first align the rooms and objects with the prior dis-
tribution. We manually match room labels and use cosine
similarities of object name embeddings to match objects. We
embed the object names from the scene and from the prior
distribution with SBERT [1]. We then define a match as a
cosine similarity ≤ 0.7 and being in the top 50 matched
categories. As P prior only contains two ”inside” relationships,
we enrich these relationships by assuming that all objects
that can be found on top of an object and that fit in size,
can also be found inside it and vice-versa. This results in
an extended distribution P prior,ext. We then procedurally
enrich each episode by drawing additional objects from the set
of admissible room-object-relations for all existing furniture
in the iGibson scenes. We keep drawing until the physical
placement of a relation succeeds or the distribution is exhausted.
Given a valid scene instantiation, we draw a target category

∗These authors contributed equally.
1Department of Computer Science, University of Freiburg, Germany.
2Toyota Motor Europe (TME)
Project page: http://moma-llm.cs.uni-freiburg.de

g ∼ U(scene) from all categories in the scene. We reject
targets as infeasible if no target instance is reachable from the
agent’s random start position. We also reject all episodes in
which the target object is immediately visible.

C. Perception

The robot in simulation is equipped with a differential drive
and an RGB-D camera with a resolution of 256 × 256 pixels
and a vertical field of view of 120◦. As the focus of this work
is on decision making, we abstract from imperfect perception
and assume access to ground truth instances and semantic
segmentation from the simulator. For a realistic detection range,
we restrict all sensors (depth, semantics) to a maximum range
of 5m and set a threshold of 50 segmented pixels before an
object is considered detected - except for objects with a volume
below 0.01m3. We furthermore assume accurate detection of
whether an articulated object is open or closed and assume
that objects within receptacles are detected after opening the
object. We construct all maps at a resolution of 0.075m and
detect the floor and carpet categories as free space.

D. Execution

All methods start by fully turning around in-place to initialize
the scene graph.

Low-level action space: The subpolicies act in a low-level
action space consisting of the following actions:

• move forward by 7.5 cm
• turn-left by up to 35 rad
• turn-right by up to 35 rad
• open articulated object
• close articulated object
• done: end the episode and evaluate the success

Navigation: To reduce run-time, navigation actions are executed
without physical simulation, but rather by directly setting the
state of the robot sequentially to each waypoint the resulting
path from the A∗-planner (matching the map resolution of
0.075m), collecting the observations along the whole path. If
no complete path in free space exists, the navigation policy
will consider unexplored areas as traversable and replan with
newly revealed free space. It will return ’failed’ if it cannot
find a path or reaches too many replanning attempts.

Object interactions: We follow previous work [2], [7] and
execute articulated object manipulations as ”magic actions”.
These actions directly set the joint values of the object to their

http://moma-llm.cs.uni-freiburg.de
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Fig. S.1. Map of the real-world environment. Different intensities represent
different object instances in the environment. Room annotations are for
illustration and not used by our model. Object labels denote approximate
object positions.

minimum or maximum. In the calculation of the efficiency
curves and AUC-E, we weigh these actions by a time factor of
30 to make their time cost comparable to an execution duration
of roughly 30 seconds.

The go to and open() action is implemented as follows:

1) Navigate to the Voronoi node closest to the object
2) Navigate to the most central free space in front of the

object and turn toward it
3) Trigger the magic open action

S.2. REAL-WORLD ENVIRONMENT

A. Map

Fig. S.1 shows the map of the real-world environment.
Different object instances are indicated in different intensities.
The environment covers five different room types and 54
different object categories, including furniture such as tables,
chairs, and a coat hanger, as well as small and less common
objects such as soap, gamepad, or scotch tape. We set start
positions for the robot in the kitchen, living room, and hallway.
We ensure the same initial positions and targets for all methods.
The target categories given to the agents were shoes, milk
(inside fridge), knife (inside kitchen drawer), book (inside
living room cabinet), toilet paper, toaster, tea (inside kitchen
cabinet), pencil (inside living room drawer), soap and lemon.

B. Execution

Navigation: We use the default manufacturer versions of the
ROS NavStack as developed by Toyota for navigation. It uses

the robot’s LiDAR and depth cameras for dynamic obstacle
detection and navigates in a map inflated by 0.25m.

Mobile manipulation: Articulated object interactions are exe-
cuted with pretrained N2M2 manipulation policies [37]. The
policy receives the handle pose, detected through AR-Markers,
and uses a local occupancy map constructed from the LiDAR
of the robot for obstacle avoidance. For each articulated object,
we collect a single demonstration of opening the object. This
demonstration consists of a set of poses of the robot’s wrist link
during the opening motion. These poses are then interpolated
with splines to generate an end-effector motion. This agent’s
aim is to follow this end-effector motion to complete the object
interaction. We evaluate whether the motion was successful
based on whether the marker on the object changed its position
after the execution of the subpolicy. For doors, we do not lock
the spring-loaded door latch, as the robot is not strong enough
to press the handle down.

The only exception to this is the door between the kitchen
and living room. We found that the robot was unable to
localize itself during the opening motion, as the moving door
occupies the overwhelming majority of the robot’s LiDAR
measurements. As a result, it was not possible to follow the
opening demonstration whenever the marker moved out of the
robot’s view. Instead, we use a simpler pushing motion from
the inside and abstain from opening it in the other direction.

S.3. HIERACHICAL SCENE GRAPH STRUCTURE

In order to provide a concise overview a complete picture
of the employed scene graph hierarchy we provide a detailed
overview of it in Tab. S.1.

In addition, we outline the construction of the navigational
Voronoi graph used for navigation and associating objects to
regions in the following. The Generalized Voronoi Diagram
(GVD) [5] comprises two-equidistant faces that each represent
the set of points equidistant to two obstacles Ci and Cj . Each
point in this set is closer to Ci and Cj than any other obstacle:

Fij = {x ∈ Rm : 0 ≤ di(x) = dj(x)∀k ̸= i, j,∇di(x) ̸= dj(x)}.
(1)

The union of all two-equidistant faces generated by the obstacle
positions defined by Bt is called the 2-Voronoi set F2 or the
two-dimensional GVD of the space of obstacles Ci ∈ Bt:

F2 =
n−1
∪
i=1

n
∪

j=i+1
Fij . (2)

The set of points contained in F2 constitutes the initial set of
edges of the generalized Voronoi graph (GVG). We extract the
corresponding nodes by computing the 3-Voronoi sets, which
constitute the joints of the GVD:

F3 =
n−2
∪
i=1

n−1
∪

j=i+1

n
∪

k=j+1
Fijk. (3)

Given this, the generalized Voronoi graph GVG = {F2,F3}
undergoes sparsification by eliminating edges of degree 2 to
form GV .
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TABLE S.1
SCENE GRAPH STRUCTURE

Component Description

GV = (V, E) Navigational Voronoi graph that undergoes sparsification and covers traversable map areas

↓

GR
V = (V ′, E ′) with V ′ = {V1,V2, . . . ,Vk} Deletion of edges with sufficient edge integrals computed over ρN (Eq. 2) results

where Vi ∩ Vj = ∅ for all i, j ∈ {1, . . . , k} with i ̸= j in pair-wise edge-disjoint sets Vi with each set covering a room ri.

↓

We define the actual scene graph GS over all object nodes VO and room supernodes VR.
Each room ri ∈ VR holds edges its corresponding Voronoi nodes Vi ∈ V ′.

GS = (VO ∪ VR , EOR ∪ ERR) Each room ri ∈ VR (and its Voronoi nodes Vi) undergoes semantic classification (Fig. 3).
The edges of EOR connect objects o ∈ GS with their associated room ri ∈ VR via Eq. 3.
ERR are the edges connecting neighboring rooms ri ∈ VR to one another.

TABLE S.2
MAPPING OF DISTANCES TO NATURAL LANGUAGE.

≤ Distance Encoding

3.0 very close
10.0 near
20.0 far
∞ distant

S.4. LANGUAGE ENCODING

We encode distance to natural language based on a discrete
mapping, following the principle of [17]. We bin the distance
to the object, then apply the mapping reported in Tab. S.2.
This results in a consistent relative language encoding.

S.5. BASELINES

The Unstructured LLM baseline receives the same instruc-
tions and ”remember” notes as our approach. The full JSON-
formatted prompt of this baseline is depicted in Fig. S.2. We
find that the much less structured and longer prompt leads
to more frequent invalid actions or hallucinations (cf. Tab. I),
such as trying to open objects that do not exist or are already
opened. If stuck for repeated steps, this can result in failed
episodes. A second source of failures are wrong terminations,
in which the LLM calls done() while it has not found the
correct object of interest.

S.6. ADDITIONAL RESULTS

A. Hierarchical Scene Graph

1) Metrics: In the following, we list the metrics used for
evaluating the accuracy of the scene graph.

Room Segmentation Precision / Recall: In order to compare
our method of room segmentation against the approach used
by Hydra [9] we make use of the same metrics they evaluated:

Pt =
1

|Re|
∑

re∈Re

max
rg∈Rg

|rg ∩ re|
|re|

, (4)

Rt =
1

|Rg|
∑

rg∈Rg

max
re∈Re

|re ∩ rg|
|rg|

, (5)

where Re is the set of estimated rooms and Rg is the set of
ground-truth rooms. The cardinality of a set is given by | · |.
Each room re or rg is defined by its set of covered pixels on
a 2D grid. In order to reflect instabilities throughout exploring
the environment we report the means and standard deviations
of the precision and recall, respectively:

P̄ =
1

T

T∑
t=1

Pt σP =

√∑T
t=1(Pt − P̄ )2

T
(6)

R̄ =
1

T

T∑
t=1

Rt σR =

√∑T
t=1(Rt − R̄)2

T
(7)

The metrics are evaluated on a dense 2D grid with a resolution
of 0.05m, which is increased compared to the normal resolution
of 0.075m used in all other evaluations. This is done to account
for thin walls contained in iGibson. In order to evaluate the
separated Voronoi graphs covering distinct rooms on a dense
manifold we employ room-specific wavefronts initialized at
each node of the separated Voronoi graph bounded by the
extracted obstacles.

Room Segmentation Purity: In addition to the dense evaluation
outlined above we also evaluate the purity of each of the
generated components of the separated Voronoi graphs. Being
a criterion used for measuring clustering quality [8] it penalizes
the effect of covering multiple ground truth rooms per classified
room.

purity(Ω,C) =
1

N

∑
k

maxj |ωk ∩ cj | (8)
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Fig. S.2. Prompt of the Unstructured-LLM baseline. It receives the same instructions and notes as our approach, but instead of a structured knowledge
encoding, it receives a pure JSON encoding of the scene-graph.

where Ω = {ω1, ω2, . . . , ωK} is the set of components of GR
V

and C = {c1, c2, . . . , cJ} is the set of ground-truth rooms.
Each ωk holds the predicted room types of all nodes of the
respective component. In our case, the purity measures the
extent to which a set of Voronoi nodes covers a room that
contains a single class. Thus, the graph purity describes the
degree of room under-segmentation apparent in the scene and
thus measures how well the door-wise Voronoi graph separation
performs. Similar to the room segmentation precision and recall
we average the purity throughout exploring the environment.

2) Room Segmentation and Classification: Our proposed
room separation scheme relies on separating Voronoi graphs
at door positions. Thus, it is prone to under-segmentation
whenever faced with open room layouts or, e.g., missing doors
to hallways. We visualize the scene graphs produced by Hydra
as well as MoMa-LLM in Fig. S.3. Regarding the approach of
Hydra, we observe that maps containing a many corridors with

TABLE S.3
CLOSED-SET ROOM CATEGORY EVALUATION

Environment Open-Set Purity GR
V

Room Category
Accuracy

iGibson × 0.615 0.276
Real-World ✓ - 0.901

similar diameters produce either a very large number or a very
small number of graph components when applying a range
of various obstacle dilation values. As Hydra selects the final
environment partitioning based on the median of the number of
graph components obtained through various obstacle dilation
values, it is faced with a bi-modal distribution. This ultimately
renders a median-based selection of the segmentation difficult.

In addition to evaluation in Tab. II, we observe an average
purity for MoMa-LLM of 0.615 throughout the exploration over
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Fig. S.3. Visualization of the scene graphs produced by Hydra compared to MoMa-LLM. The left column represents the abstracted scene graphs GS while the
right column depicts the separated Voronoi graphs GR

V as defined in Tab. S.1. The red crosses represent extracted door positions of MoMa-LLM. The depicted
scene is Merom 1 int contained in the iGibson test scenes.

10 episodes across all of the iGibson test scenes. Compared with
that, the room segmentation approach introduced by Hydra [9]
reaches a purity of 0.562 as listed in Tab. II. While both Hydra
and MoMa-LLM tend to under-segment the given room layout,
Hydra is specifically affected by narrow constrictions induced
by obstacle placements and non-varying door widths, which
creates a significant number of isolated graphs covering small
corridors that do not represent full ground-truth regions. In
general, we infer that long and narrow corridors as well as
cluttered scenes are challenging to segment using classical
morphological segmentation algorithms (see Fig. S.3).

We found our downstream policy to be robust to under-
segmented rooms even though objects from multiple rooms
were, e.g., considered part of a single room. By relying on
the camera pose from which an object is observed we reduce
the number of false object-room assignments (through walls)
to a minimum. We show multiple resulting Voronoi graphs in
Fig. S.4.

In addition to the time-wise averaged room segmentation
results reported in Tab. II, we evaluate the semantic room

categories predicted by GPT-3.5. in Tab. S.3. Even though
MoMa-LLM normally uses open-set room categories, we
evaluate the performance on a closed-set of room categories
to report reproducible results. To do so, we provided GPT-3.5
with all room categories contained in the iGibson dataset with
the task to pick the most suitable given the objects assigned to
each particular Voronoi component representing a room. Similar
to the segmentation evaluation, we report numbers that are
averaged over 10 episodes per scene as well as across all high-
level policy steps per episode. We compare the predicted room
category of each Voronoi node with the underlying ground-
truth room layout maps. Following this, we arrive at an average
predicted room category accuracy of 27.6% This number is
largely affected by open room layouts as mentioned above.

In addition to the closed-set evaluation, we also evaluated the
predicted room categories in an open-set manner on the real-
world map shown in Fig. S.1. Across the 10 trials executed
in the real world as given in Tab. III, we follow the same
evaluation protocol and obtain an average room category
accuracy of 90.1% as listed in Tab. S.3. Human-level assessment
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Fig. S.4. Examples of the reasoning of Voronoi graph and identified frontiers (left), scene graph (middle), MoMa-LLM (left). The green environment feedback
is not provided to the LLM. Black-white: agent trace, red crosses: closed doors, red rectangles: undiscovered target objects, green stars: next selected navigation
/ interaction points. The bottom figure illustrates a subpotimal room clustering, which results in a very large room. We find the model to be robust against
these clusterings.

allows evaluating errors such as entryway instead of hallway
positively, which drastically increases the metrics. Nonetheless,
the real-world map is less complex in terms of its topology
and object distribution compared to the iGibson environments,
which feature, e.g., rooms with no objects contained.

B. Reasoning

Tab. S.4 show the full set of fuzzy search queries (top)
and infeasible queries (bottom) that were evaluated in Sec. V,
together with the language model’s reasoning in response to
these tasks.

Fig. S.4 shows additional examples of the scene representa-
tions and the model reasoning. It depicts the Voronoi graph and
frontiers to unexplored areas (left), the BEV-map together with
the constructed scene graph (middle), and the input prompt
and answers of the LLM (right). Additional video material
with full prompt reasoning is shown on the project website.

C. Deployment with Full Perception Pipeline

While we focus on evaluation with ground-truth perception
in the main work to be able to focus on the representation and

decision making components, this section provides details on
the requirements of full deployment and guidance to facilitate
the deployment.

Our approach requires (i) an RGB-D sensor (ii) localization
and mapping (iii) semantic segmentation and (iv) grasp pose
detection. Modern RGB-D SLAM approaches such as RTAB-
Map [9] can provide (i) and (ii). As our approach supports open-
vocabulary representation and reasoning, it enables deployment
with any semantic segmentation model, irrespective of its
supported classes. This can be closed vocabulary methods [10],
[11] such as Mask R-CNN [12] or newer, transformer-based
methods [13], [14]. A further range of methods can provide
object detections and bounding boxes for a given list of open-
vocabulary query categories [15]–[18]. The best model should
be based on the use-case, available compute, required object
categories, and accuracy. Chen et al. [28] provide a possible
reference implementation: they deploy an RTAB-node for
localization and mapping. This can be extended to semantic
labels through an additional RTAB-node that listens to the
semantic masks, to then fuse the resulting point clouds. Finally
(iv), for handle detection and grasp-pose detection, [19] achieve
accurate results with a retrained YOLO model on a public
handle-specific dataset.
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TABLE S.4
RESULTS ON THE FUZZY SEARCH TASKS IN THE REAL WORLD.

Task Success Reasoning

I am hungry. Find me something for breakfast. ✓ Found cereals, toast, coffee. Then opened fridge to look for milk or eggs. Found milk in the fridge and decided
these are sufficient items.

Find me something to wash my hands. ✓ Searched kitchen for a sink. When not finding one, searches for storage room or bathroom until it finds the sink
in the bathroom.

I feel sleepy. Find me something to wake up. ✓ The teapot is associated with tea that contains caffeine and can help someone wake up.
Find things to set the kitchen table. ✓ Explored kitchen, opening cabinets. Found knife, glasses, plates. Continued to look for forks or spoons. When not

finding them, called done. (No forks or spoons existed).
Find me the book in the living room. ✓ Explored until finding living room, then opened cabinet looking for book, found it inside.

Pour me a glass of milk. ✓ Finds milk in fridge, glass on table. Navigates between the two, assuming to transport the last object. Then
terminates, reasoning that it has found and navigated to both.

Turn on the oven. ✓ Finds the oven and calls done(): ”Turning on oven is implied as completion of the task”.
What’s the time? ✓ Finds the clock and calls done(): ”The clock is the object that will provide the time”.

Notes: Top: fuzzy search queries. Bottom: infeasible task queries. Success in these tasks is evaluated by human judgment as a reasonable response. The
reasoning has been qualitatively paraphrased for brevity.

TABLE S.5
EVALUATION OF THE AVERAGE RUNTIME PER COMPONENT.

Component Time per
step (s)

Total time
(s)

Share (%)

R
ea

l-
W

or
ld Total 24.1 457 100

Low-level Execution 13.2 250 55
Navigation 7.0 139 30
Manipulation 13.9 111 24
High-level Reasoning 10.9 207 45

Si
m

ul
at

io
n High-level Reasoning 11.1 91.1 -

Scene Graph Construction 3.0 31.5 -
Room Classification 0.6 5.0 -
LLM Reasoning 7.5 64.6 -

Notes: Time per step is the average time for one high-level step or subpolicy
call. Total time is the average total time per episode. Real-world numbers
are averaged over three episodes of the fuzzy-search experiments. Simulation
numbers are averaged over 175 episodes in the iGibson simulator.

D. Runtime Analysis

Tab. S.5 decomposes the runtime of the system into indi-
vidual components. While the agent executes more navigation
subpolicy calls (this includes driving to objects to open), each
manipulation takes longer on average, resulting in similar total
times spent in each. We also find that the high-level reasoning
takes up a significant fraction of time. We extend this with data
from the simulation experiments to be able to break it down
into components. In particular the LLM queries for high-level
reasoning take up the majority of this time. This demonstrates
the importance of current work for compact and fast inference,
which is currently receiving a lot of attention [20], as well as
the importance of open-source models [21] that can be run
locally instead of purely through an API.

While the current implementation of the scene graph is not
optimized for speed, and the graph is fully recomputed at each
time step instead of only updating areas that received new
observations, we find its overall time impact to be reasonable,
as it is only required at high-level reasoning steps.

E. Extended Future Work Discussion

In this work, we introduce scene graphs as an efficient
and scalable representation for high-level, language model

based reasoning, by encoding the scene graphs in a structured
language representation and the incorporation of knowledge
about distances and unexplored areas.

In future work, we aim to relax the assumptions about
accurate perception, fully constructing scene graphs from
noisy sensor inputs, as e.g. done in Hydra [9] or the direct
incorporation of open-vocabulary representations [8]. While
we currently encoding distances and spatial arrangements as
adjectives and room-object relations, full maps provide much
more dense spatial and geometric information. Research for
more direct incorporation of such information, e.g. through
vision-language models is very promising. Furthermore, more
holistic approaches to incorporate spatial and semantic details
in room clustering and classifications will be important to
address non-standard layouts and designs. Lastly, methods to
incorporate more detailed visual feedback for the identification
of object states and failure reasons are an important are to
increase robustness and success over long tasks.
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