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Goals of This Lecture

• Learn how to linearize the robot’s dynamics

• Understand the principle of optimality in the linear case

• Apply linear control techniques to underactuated robots

• Understand a simple model of humanoids for walking

• Learn dynamically stable control for humanoid walking



Control of Underactuated Robots



• Cart-pole system is a classic example in control theory and 
robotics to study and develop control strategies for 
underactuated systems

• It consists of:

1. A cart that can move horizontally 
on a track

2. A rigid pole (pendulum) that can 
rotate freely in the vertical plane 
is attached to the cart

• Goal: Keep the pole upright by moving the cart left and 
right (2 DoF and only one control input)

Cart-Pole Model
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• Cart-pole has two equilibriums (fixed points):

1. The pole is in the upright position (unstable)

2. The pole hangs straight down (stable) 

• Fixed point definition: 

• Goal: Keep the pendulum in the upright position, 𝜃 = 𝜋, 

by applying force to the cart 𝑢𝑥

Cart-Pole Model
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• Generalized coordinates

• Control input: force on the cart

Cart-Pole Model
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• Kinematics of the system in the Cartesian 
coordinate system

• Position of the cart

• Position of the pole

Cart-Pole Model
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Cart-Pole Model

• Kinetic and potential energy of the system [*]

• Use the Lagrangian, write the equation in general form 

[*] Herbert Goldstein, “Classical mechanics,” Addison-Wesley Press, 1950.



• Underactuated system with nonlinear dynamics [*]

• With:

Cart-Pole Model

forces due to inertia

forces due to rotation

forces due to gravity 

[*] Russ Tedrake, "Underactuated robotics," Course notes for MIT 6.832, 2023.



Cart-Pole Model

• Actual dynamics are nonlinear 

• Near an equilibrium point (e.g., upright position), the 
system behaves almost linearly

• This linear model captures the local behavior of the 
system accurately enough for control purposes

• Linear control techniques (e.g., LQR) are well-studied, 
efficient, and easier to implement than nonlinear 
controllers



Taylor Expansion

• The first order Taylor series of a function f 𝑥 in 𝑥0 is a 
linear approximation that is tangential in 𝑥0



Linearization of Dynamics - Balancing

• Linearize the nonlinear equations about a fixed point

• By defining a new coordinate system

• We get linear dynamical system



Linear Quadratic Regulator (LQR)

• Motivation: the goal is to keep the pole upright by 
moving the cart left and right

• Challenges: 

• Underactuated dynamics

• Trade-off in control

1. Accuracy: how well we balance the pole
(minimizing deviation from the upright position)

2. Control effort: how much force we apply to the 
cart
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LQR as an Optimal Solution

• LQR systematically finds the optimal control policy

• What do we mean by optimal?

• Trade-off between:

1. Minimizing the deviation of the pole from the upright 
position

2. Minimizing the amount of force applied to the cart



• Linear time-invariant system in state-space form

• Minimize a quadratic cost function

• 𝑄 and 𝑅 are cost matrices

LQR Formulation



LQR Formulation

• Why quadratic terms?

• Q penalizes the pole’s deviation from vertical and cart 
displacement 

• R penalizes the force applied (control effort)



LQR Formulation

• How to choose 𝑄 and 𝑅, and how do they affect the LQR 

performance?

• 𝑸 is usually positive semi-definite and 𝑹 must be positive 

definite

• Most common form is positive diagonal matrices

• 𝑄𝑖𝑖 penalize the relative errors in state variable 𝑥𝑖

• 𝑅𝑖𝑖 penalize control effort 𝑢𝑖



• LQR finds an optimal feedback control law [*]

• K is the feedback gain matrix, and is calculated by solving 
the Riccati equation

• LQR is a feedback controller, it naturally reacts to 
disturbances and model uncertainties

LQR Formulation

[*] Anderson, Brian D.O., John B. Moore. “Optimal control: linear quadratic methods,” Prentice Hall, 1990.



LQR Limitations

• LQR assumes linear dynamics

• Requires full-state feedback

• Assumes an infinite time horizon

• Basic LQR does not explicitly handle state or input 
constraints



LQR on Cart-Pole

YouTube: Cart-Pole Swing-Up Experiments using 
Simulation-Based LQR-Trees



Legged Robots Modeling
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Legged Robot Motion

• To control complex systems like humanoids, first derive a 
simplified model that captures essential balance dynamics 
and are amenable to linear control methods

• Walking motion can be decomposed into orthogonal 
projections in the sagittal (forward) and lateral (sideways) 
directions



• A pose is statically stable if the vertical 
projection of the robot’s Center of Mass 
(CoM) lies within the support polygon on the 
floor

• Support polygon: convex hull of all 
contact points of the robot on the floor

Posture Stability



Statically Stable Walking

• The robot will stay in a stable pose whenever the motion is 
stopped 

• At any time, the projection of the robot’s COM on the 
ground must be contained within the support polygon

• Support polygon:

1.Either the foot surface in case of one supporting leg, or 

2.The minimum convex area containing both foot surfaces 
when both feet are on the ground



• Leads to robust but slow walking performance

source: T. Asfour

Statically Stable Walking



Human Walking

ankle joint

center of 
pressure

(COP)

center of
mass
(COM)

source: T. Asfour

• Body as an inverted pendulum pivoting around the 
ankle joint

• Represented as a point mass 

• Body weight around at the COM creates a torque 
about the ankle, leading to motion

• Ground reaction force acts at the Center of 
Pressure (CoP)



Dynamically Stable Walking

CoM

Support Polygon

ZMP

source: S. Kajita

In dynamic walking, stopping the motion may result in falling



Zero Moment Point



Zero-Moment-Point (ZMP)

Zero Moment Point



Ground Reaction Force

• The ground acts on the whole contact area, but it can be 
substituted by a single force acting at the CoP

image source: clinical gait analysis 



Zero Moment Point

• Stability is achieved if the Zero Moment Point (ZMP) is in 
the support area

• A robot standing on the ground applies a force and moment 
to the ground

• At the same time, the ground applies a force and a moment 
to the robot (ground reaction force)

• ZMP is the point on the ground where the total moment 
generated due to gravity and inertia equals zero



• For stable walking, the support foot must rest on the ground

• Forces and torques acting on support foot must sum up to 0

• ZMP must remain inside the footprint of the support foot

• Then, the ZMP coincides with the CoP

• ZMP should not approach the edge of the support polygon, 
as this increases the risk of instability

• During the movement, the projection of the CoM can 
leave the support polygon

Zero Moment Point



• General form of EoM

• The base does not have any actuation

Legged Robots Model



• Newton equation for CoM

• Euler equation for the angular momentum

• Where 𝒑𝑖 is the contact location

Robot’s Center of Mass (CoM)
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• Consider a reference frame oriented along the 
ground, with the z-axis orthogonal to it

• Assume the robot base is not tilted 
𝑔𝑥 = 0, 𝑔𝑦 = 0, 𝑔𝑧 = 𝑔

• Assume that the height of COM stays constant 
during walking ሷ𝑐𝑧 = 0

• Suppose that for 𝒑𝑖, points of contact with the 
ground, 𝑝𝑖

𝑧 = 0 and f = 0, 0, 𝑓𝑖
𝑧 𝑇

• With the assumption that the angular 

momentum is constant for walking, ሶ𝐿 = 0

In Contact with a Flat Ground
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• With the assumptions of in contact with a flat ground

• With CoP definition as 

• For full derivation look at [*]

How ZMP/CoP Appear

[*] Pierre-Brice Wieber, Russ Tedrake, Scott Kuindersma, “Modeling and control of legged robots,” Springer Handbook of Robotics, 2016.

• 𝑐𝑥: CoM position in the x-direction

• ሷ𝑐𝑥: CoM acceleration in the x-direction

• 𝑓𝑖
𝑧
: the vertical force at contact point

• 𝑝𝑖
𝑥
: the x-coordinate of contact point



• Finally, we get simplified dynamics for the robot motion, 
known as Linear Inverted Pendulum Model (LIPM)

• CoM equation: • ZMP equation:

Dynamics of Linear Inverted Pendulum

ZMP

CoM

𝑐𝑧 = ℎ

𝑐𝑥

Source: Omar et.al.: “Study of Bipedal Robot Walking 
Motion in Low Gravity: Investigation and Analysis,” 

International Journal of Advanced Robotic Systems, 2014.



A Cart-on-Pedestal Model for ZMP Intuition

Source: Kajita et al., “Biped walking pattern generation by 
using preview control of zero-moment point,” ICRA, 2003.

• The foot of the table is too small to let the cart stay in 
balance

• If the cart accelerates with a proper rate, the table can 
keep upright for a while
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ZMP, z

2D Linear Inverted Pendulum Model

• x-direction: • y-direction :



Legged Robots Motion Planning



• Decomposition approach

Footsteps
Joint 

Commands

Overview

Desired ZMP
Trajectory

CoM
Trajectory

This Lecture



ZMP-Based Walking Pattern Generator

• Stable walking requires contact forces, which are strictly 
constrained by physics

• On flat ground, the ZMP (CoP) must stay within the 
convex hull of the foot contact points

• Key walking parameters:

1. COM height

2. Step duration (single/double support)

3. Step speed

• Foot trajectories are often predefined using polynomial 
curves with zero velocity and acceleration at the start 
and end of each step



ZMP Preview Control – Key Idea

• ZMP preview control computes a CoM trajectory given:

1. Fixed sequence of footsteps

2. Reference ZMP trajectory

• Assumptions:

1. Footsteps are fixed and cannot be changed during 
execution

2. COM height remains constant throughout the motion

• Main constraint: Resulting ZMP trajectory must always 
stay inside the support polygon



Reference ZMP, CoM Trajectory Generation

• Reference ZMP is defined based on support phase:

1. In single support: located at the center of the foot

2. In double support: quick transition from the previous foot 
to the next

• Using the LIPM, compute the CoM trajectory that follows the 
reference ZMP

• Once CoM and feet positions are known, compute joint 
angles via inverse kinematics 



CoM trajectory

reference ZMP 

resulting ZMP 

footstep positions

feet trajectory
source: T. Asfour

ZMP-Based Walking Pattern Generator



• Model Predictive Control (MPC, aka receding horizon 
control)

• Solves a sequence of optimal control problems online to 
generate motion for constrained dynamical systems

• Enables real-time adaptation to changing conditions

ZMP Preview Control



• ZMP reference is given (from fixed footsteps)

• Use LIPM dynamics to predict CoM motion

• Goal: Compute CoM trajectory such that the resulting ZMP 
stays inside the support polygon

• At each time step, MPC uses Quadratic Programming (QP) 
to compute optimal CoM accelerations (or jerks) that track 
the reference ZMP [*]

ZMP Preview Control

[*] Pierre-Brice Wieber, “Trajectory Free Linear Model Predictive Control for Stable Walking in the Presence of Strong Perturbations,” 
Humanoids, 2006



• The robot's state (CoM position, velocity, acceleration)

• The reference ZMP trajectory 𝑧𝑘
𝑟𝑒𝑓

• The actual (predicted) ZMP 𝑧𝑘 based on current/future 

CoM motion

• Goal: Track 𝑧𝑘
𝑟𝑒𝑓

while ensuring dynamic feasibility (LIPM)

ZMP Preview Control



• Let’s only consider the motion along the x-direction
(sampled with time step T)

• State: , where 

• Input: jerk

• Discrete-time dynamics:  

ZMP Preview Control



• ZMP reference trajectory: from footsteps (fixed in 
advance), a piecewise reference ZMP trajectory is 
computed:

1. In single support: center of foot

2. In double support: fast linear transition from one foot to 
the next

• ZMP output equation

ZMP Preview Control



• At every control step, solve a QP to minimize the cost over 
a time horizon N

• The MPC cost:

• ZMP tracking is penalized

• Smoothness of motion via jerk minimization

• Constraints: optional bounds on ZMP (stability)

ZMP Preview Control



Limitations of ZMP

• ZMP works effectively only on flat surfaces

• CoM has to move on a fixed plane, not possible to run, 
jump, and climb stairs, without modification

• Not capable of dealing with external forces (e.g., leaning 
on a wall)

• ZMP has to remain in the support polygon for all time 
instances



Summary

• Control of humanoid walking

• Linearize nonlinear dynamics with Taylor expansion

• Principle of optimality in linear case

• Linear Quadratic Regulator (LQR) for underactuated robots

• Modeling a humanoid with simple Linear Inverted 
Pendulum Model (LIPM)

• ZMP-based control for LIPM

• Motion planning for ZMP and CoM trajectory for humanoid 
walking
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