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Goals of This Lecture

°* Learn how to linearize the robot’s dynamics

* Understand the principle of optimality in the linear case
* Apply linear control techniques to underactuated robots
* Understand a simple model of humanoids for walking

° Learn dynamically stable control for humanoid walking



Control of Underactuated Robots



Cart-Pole Model

* Cart-pole system is a classic example in control theory and
robotics to study and develop control strategies for
underactuated systems

* It consists of: lff
1. A cart that can move horizontally

on a track — r| J\{)H 3—ux
2. A rigid pole (pendulum) that can !

rotate freely in the vertical plane
IS attached to the cart

* Goal: Keep the pole upright by moving the cart left and
right (2 DoF and only one control input)




Cart-Pole Model

* Cart-pole has two equilibriums (fixed points):
1. The pole is in the upright position (unstable)

2. The pole hangs straight down (stable) Tf
[

* Fixed point definition:
: x(J\{)H ]ux
r=f(x", u")=0 |

° Goal: Keep the pendulum in the upright position, 6 = m,
by applying force to the cart u,



Cart-Pole Model Tf"p *
[ g

* Generalized coordinates YA m..
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* Control input: force on the cart
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Cart-Pole Model T At *
[ g

* Kinematics of the system in the Cartesian v,
coordinate system x g |
X

* Position of the cart

=1

* Position of the pole

i = it

y2| | —lcos(0)



Cart-Pole Model

* Kinetic and potential energy of the system [*]
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U=—mpglcoso.

* Use the Lagrangian, write the equation in general form
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Cart-Pole Model

* Underactuated system with nonlinear dynamics [*]

. . 1 O
M(q)q+c(q:q) +9(a) = |, v
* With:
| me+my,  mylcos(0) : :
M(q) = {mplcos(g) pmpﬂ ] forces due to inertia
. —m,l62sin (6
c(q,q) = { e Osm( )] forces due to rotation

g(q) = [mpg(l)sin(é’)] forces due to gravity



Cart-Pole Model

* Actual dynamics are nonlinear

° Near an equilibrium point (e.g., upright position), the
system behaves almost linearly

* This linear model captures the local behavior of the
system accurately enough for control purposes

° Linear control techniques (e.g., LQR) are well-studied,
efficient, and easier to implement than nonlinear
controllers



Taylor Expansion

* The first order Taylor series of a function f(x) in x, is a
linear approximation that is tangential in x,




Linearization of Dynamics - Balancing

° Linearize the nonlinear equations about a fixed point

of of

x = f(x,u) = f(x*,u*) + [a_X}X_X*?u_u* (x —x™) + la_uL_x*?u_u* (u—u")
* By defining a new coordinate system

X=X—X,u=u—1u

* We get linear dynamical system

X = Ax + Bu



Linear Quadratic Regulator (LQR)

°* Motivation: the goal is to keep the pole upright by
moving the cart left and right

° Challenges.:
| : x(J\:IH Uy
* Underactuated dynamics | - | - I

* Trade-off in control !
1. Accuracy: how well we balance the pole
(minimizing deviation from the upright position)
2. Control effort: how much force we apply to the
cart



LQR as an Optimal Solution

* LQR systematically finds the optimal control policy
* What do we mean by optimal?

* Trade-off between:

1. Minimizing the deviation of the pole from the upright
position

2. Minimizing the amount of force applied to the cart



LQR Formulation

° Linear time-invariant system in state-space form

2(t) = Az(t) + Bu(t)

°* Minimize a quadratic cost function

J:/ (SBTQLB—|—UTRU)dt Q=0 Q-0 R=R' R-0
0

° () and R are cost matrices



LQR Formulation

* Why quadratic terms?

* Q penalizes the pole’s deviation from vertical and cart
displacement

Quadratic Cost is Always Positive
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* R penalizes the force applied (control effort)



LQR Formulation

* How to choose () and R, and how do they affect the LQR
performance”?

* @ is usually positive semi-definite and R must be positive
definite

* Most common form is positive diagonal matrices

* (J;; penalize the relative errors in state variable x;

°* R;; penalize control effort u;



LQR Formulation

* LQR finds an optimal feedback control law [*]

u=—Kuzx

* K is the feedback gain matrix, and is calculated by solving
the Riccati equation

°* LQR is a feedback controller, it naturally reacts to
disturbances and model uncertainties



LQR Limitations

°* LQR assumes linear dynamics
* Requires full-state feedback
* Assumes an infinite time horizon

* Basic LQR does not explicitly handle state or input
constraints



LQR on Cart-Pole

Swing-up from rest

YouTube: Cart-Pole Swing-Up Experiments using
Simulation-Based LQR-Trees



Legged Robots Modeling



Legged Robot Motion

* To control complex systems like humanoids, first derive a

simplified model that captures essential balance dynamics
and are amenable to linear control methods

* Walking motion can be decomposed into orthogonal

projections in the sagittal (forward) and lateral (sideways)
directions

lateral

X

sagittal



Posture Stability

°* A pose is statically stable if the vertical
projection of the robot’s Center of Mass

(CoM) lies within the support polygon on the
floor

* Support polygon: convex hull of all
contact points of the robot on the floor




Statically Stable Walking

* The robot will stay in a stable pose whenever the motion is
stopped

° At any time, the projection of the robot's COM on the
ground must be contained within the support polygon

°* Support polygon:
1. Either the foot surface in case of one supporting leg, or

2.The minimum convex area containing both foot surfaces
when both feet are on the ground



Statically Stable Walking

* Leads to robust but slow walking performance

— 1

Single support phase Double support phase Unstable position
Stable position Stable position



Human Walking

Body as an inverted pendulum pivoting around the
ankle joint

Represented as a point mass —

Body weight around at the COM creates a torque ) ¢
about the ankle, leading to motion | )} mass

) (com)
Ground reaction force acts at the Center of AN
Pressure (CoP)

‘ | center of

| pressure

ankle joint \ | (COP)

—_J 1
70 o
\



Dynamically Stable Walking

oM

ZMP

Support Polygon

In dynamic walking, stopping the motion may result in falling

source: S. Kajita



Zero Moment Point

=5/l




Zero Moment Point

Mr, F+G+R=0

Mp+ Mg+ Mp =0

Zero-Moment-Point (ZMP)




Ground Reaction Force

* The ground acts on the whole contact area, but it can be
substituted by a single force acting at the CoP

image source: clinical gait analysis



Zero Moment Point
* Stability is achieved if the Zero Moment Point (ZMP) is in
the support area

* A robot standing on the ground applies a force and moment
to the ground

* At the same time, the ground applies a force and a moment
to the robot (ground reaction force)

* ZMP is the point on the ground where the total moment
generated due to gravity and inertia equals zero



Zero Moment Point

* For stable walking, the support foot must rest on the ground
* Forces and torques acting on support foot must sum up to O
* ZMP must remain inside the footprint of the support foot
* Then, the ZMP coincides with the CoP

* ZMP should not approach the edge of the support polygon,
as this increases the risk of instability

° During the movement, the projection of the CoM can
leave the support polygon



Legged Robots Model

* General form of EoM

M(q)v + c(q,v) +g(g) =S Z

* The base does not have any actuation

S: |:0an6 Iannj]



Robot’s Center of Mass (CoM)

° Newton equation for CoM

m(5+g)=Zfi

* Euler equation for the angular momentum

y4

°* Where p; is the contact location



In Contact with a Flat Ground

* Consider a reference frame oriented along the
ground, with the z-axis orthogonal to it

* Assume the robot base is not tilted

9x=0,9y,=0,9,-=g 2
* Assume that the height of COM stays constant Q
during walking ¢, = 0 .

°* Suppose that for p;, points of contact with the
ground, p? =0 and f=10, 0, f*]"

* With the assumption that the angular
momentum is constant for walking, L =0



How ZMP/CoP Appear

* With the assumptions of in contact with a flat ground

Cz .. ® ¢,: CoM position in the x-direction
Cx — — Cx = 2¢ ..
g ® C,: CoM acceleration in the x-direction

* With CoP definition as

Z T
L Zz fz P; ° fiz: the vertical force at contact point
r Z e nX. _ : ,
E ; fz p; : the x-coordinate of contact point

* For full derivation look at [*]



Dynamics of Linear Inverted Pendulum

* Finally, we get simplified dynamics for the robot motion,
known as Linear Inverted Pendulum Model (LIPM)

°* CoM equation: * ZMP equation:

. g ZZ fzzpfz,c
Cpo = > (Cyp — 2y 2y = -
p (G 2) S f




A Cart-on-Pedestal Model for ZMP Intuition

°* The foot of the table is too small to let the cart stay in
balance

* If the cart accelerates with a proper rate, the table can
keep upright for a while Co
A ‘ m —>—p
© O
7
mg(c, — 24) — mézh =0 0| __Q
| -



2D Linear Inverted Pendulum Model

Co CoM
c= 1" & .
Cy \\ ,,'
Cy | N
e, B ——
support foot
* X-direction: * y-direction :

. g . g
Cp = E(Cx — Zz) Cy = E(Cy — 2y)



Legged Robots Motion Planning



Overview

° Decomposition approach

Desired ZMP CoM Joint ‘
Footsteps » Trajectory » Trajectory * Commands

This Lecture




ZMP-Based Walking Pattern Generator

* Stable walking requires contact forces, which are strictly
constrained by physics

* On flat ground, the ZMP (CoP) must stay within the
convex hull of the foot contact points

* Key walking parameters:
1. COM height
2. Step duration (single/double support)
3. Step speed

°* Foot trajectories are often predefined using polynomial
curves with zero velocity and acceleration at the start
and end of each step




ZMP Preview Control — Key Idea

* ZMP preview control computes a CoM trajectory given:
1. Fixed sequence of footsteps
2. Reference ZMP trajectory

°* Assumptions:
1. Footsteps are fixed and cannot be changed during
execution
2. COM height remains constant throughout the motion

° Main constraint: Resulting ZMP trajectory must always
stay inside the support polygon



Reference ZMP, CoM Trajectory Generation

* Reference ZMP is defined based on support phase:
1.In single support: located at the center of the foot

2.In double support: quick transition from the previous foot
to the next

* Using the LIPM, compute the CoM trajectory that follows the
reference ZMP

°* Once CoM and feet positions are known, compute joint
angles via inverse kinematics



ZMP-Based Walking Pattern Generator

source: T. Asfour reSUIt|ng ZMP feet traJeCtory



ZMP Preview Control

* Model Predictive Control (MPC, aka receding horizon
control)

* Solves a sequence of optimal control problems online to
generate motion for constrained dynamical systems

°* Enables real-time adaptation to changing conditions



ZMP Preview Control

* Z/MP reference is given (from fixed footsteps)
°* Use LIPM dynamics to predict CoM motion

° Goal: Compute CoM trajectory such that the resulting ZMP
stays inside the support polygon

* At each time step, MPC uses Quadratic Programming (QP)
to compute optimal CoM accelerations (or jerks) that track
the reference ZMP [*]



ZMP Preview Control

°* The robot's state (CoM position, velocity, acceleration)

* The reference ZMP trajectory z,”

°* The actual (predicted) ZMP z;, based on current/future
CoM motion

* Goal: Track z,* while ensuring dynamic feasibility (LIPM)




ZMP Preview Control

* Let’s only consider the motion along the x-direction
(sampled with time step T)

* State: xr = |¢k| , where x, = x(kT)

* Input: jerk ur = cg

* Discrete-time dynamics: i1 = Axy + Buyg



ZMP Preview Control

* Z/MP reference trajectory: from footsteps (fixed in
advance), a piecewise reference ZMP trajectory is
computed:

1. In single support: center of foot

2. In double support: fast linear transition from one foot to
the next

* ZMP output equation
h .
Rk = CL — —CL = DZC]C
g



ZMP Preview Control

* At every control step, solve a QP to minimize the cost over
a time horizon N

N-1
2 2
* The MPC cost: J = > |[zkti — zrefitillo + llurtilln
i=0
e ZMP tracking is penalized
* Smoothness of motion via jerk minimization

* Constraints: optional bounds on ZMP (stability)



Limitations of ZMP

* ZMP works effectively only on flat surfaces

°* CoM has to move on a fixed plane, not possible to run,
jump, and climb stairs, without modification

* Not capable of dealing with external forces (e.g., leaning
on a wall)

* ZMP has to remain in the support polygon for all time
Instances



Summary

Control of humanoid walking

Linearize nonlinear dynamics with Taylor expansion
Principle of optimality in linear case

Linear Quadratic Regulator (LQR) for underactuated robots

Modeling a humanoid with simple Linear Inverted
Pendulum Model (LIPM)

ZMP-based control for LIPM

Motion planning for ZMP and CoM trajectory for humanoid
walking
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