

Legged Robots Locomotion Control and Motion Planning

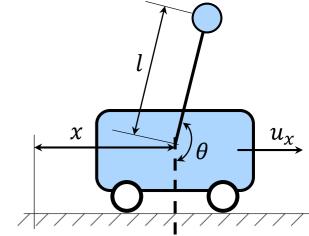
Maren Bennewitz, Shahram Khorshidi Humanoid Robots Lab, University of Bonn

Goals of This Lecture

- Learn how to **linearize** the robot's dynamics
- Understand the principle of **optimality** in the linear case
- Apply linear control techniques to underactuated robots
- Understand a simple model of humanoids for walking
- Learn dynamically stable control for humanoid walking

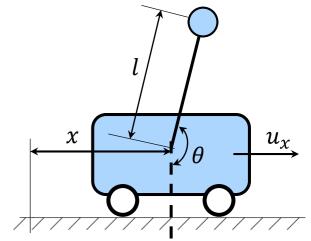
Control of Underactuated Robots

- Cart-pole system is a classic example in control theory and robotics to study and develop control strategies for underactuated systems
- It consists of:
 - 1. A cart that can move horizontally on a track
 - 2. A rigid pole (pendulum) that can rotate freely in the vertical plane is attached to the cart



- Cart-pole has two equilibriums (fixed points):
 1. The pole is in the upright position (unstable)
 2. The pole hangs straight down (stable)
- Fixed point definition:

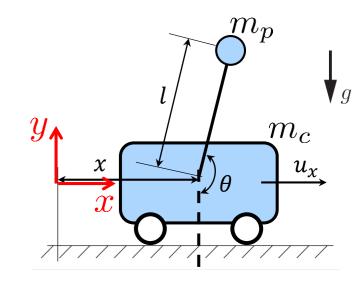
$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}^*, \ \boldsymbol{u}^*) = 0$$



• **Goal**: Keep the pendulum in the upright position, $\theta = \pi$, by applying force to the cart u_x

Generalized coordinates

$$\boldsymbol{q} = \begin{pmatrix} x \\ \theta \end{pmatrix}, \quad \dot{\boldsymbol{q}} = \begin{pmatrix} \dot{x} \\ \dot{\theta} \end{pmatrix}, \quad \ddot{\boldsymbol{q}} = \begin{pmatrix} \ddot{x} \\ \ddot{\theta} \end{pmatrix}$$



• Control input: force on the cart

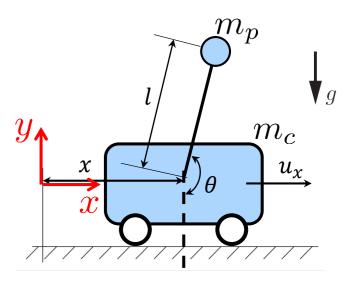
$$oldsymbol{u} = \begin{pmatrix} u_x \\ 0 \end{pmatrix}$$

- **Kinematics** of the system in the Cartesian coordinate system
- Position of the cart

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$$

Position of the pole

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x + lsin(\theta) \\ -lcos(\theta) \end{bmatrix}$$



• **Kinetic** and **potential** energy of the system [*]

• Use the Lagrangian, write the equation in general form

$$\mathcal{L}(\theta, \dot{\theta}) = \sum_{i=1}^{2} (\mathcal{K}_{i} - \mathcal{P}_{i}) \qquad \longrightarrow \qquad \tau_{i} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\theta}_{i}} - \frac{\partial \mathcal{L}}{\partial \theta_{i}}, \qquad i = 1, 2$$

[*] Herbert Goldstein, "Classical mechanics," Addison-Wesley Press, 1950.

• **Underactuated** system with **nonlinear** dynamics [*]

$$M(\boldsymbol{q})\ddot{\boldsymbol{q}} + \boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}}) + \boldsymbol{g}(\boldsymbol{q}) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \boldsymbol{u}$$

• With:

$$M(\boldsymbol{q}) = \begin{bmatrix} m_c + m_p & m_p l cos(\theta) \\ m_p l cos(\theta) & m_p l^2 \end{bmatrix}$$
$$\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}}) = \begin{bmatrix} -m_p l \dot{\theta}^2 sin(\theta) \\ 0 \end{bmatrix}$$
$$\boldsymbol{g}(\boldsymbol{q}) = \begin{bmatrix} 0 \\ -m_p g l sin(\theta) \end{bmatrix}$$

forces due to inertia

forces due to rotation

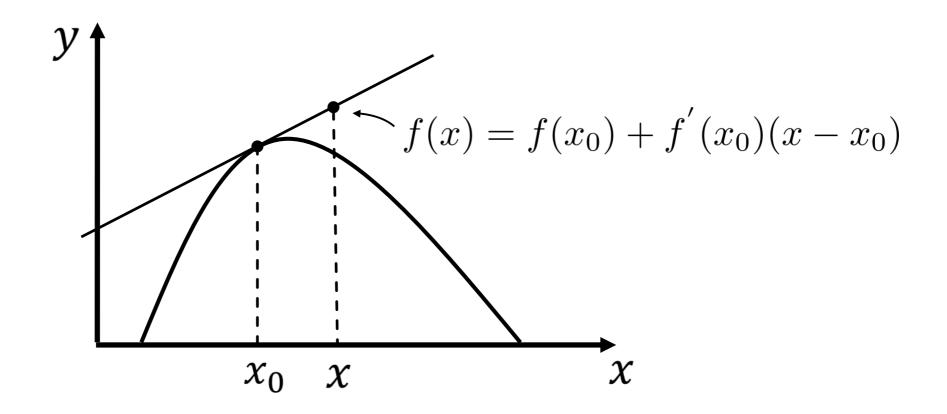
forces due to gravity

[*] Russ Tedrake, "Underactuated robotics," Course notes for MIT 6.832, 2023.

- Actual dynamics are **nonlinear**
- Near an equilibrium point (e.g., upright position), the system behaves almost linearly
- This linear model captures the local behavior of the system accurately enough for control purposes
- Linear control techniques (e.g., LQR) are well-studied, efficient, and easier to implement than nonlinear controllers

Taylor Expansion

 The first order Taylor series of a function f(x) in x₀ is a linear approximation that is tangential in x₀



Linearization of Dynamics - Balancing

Linearize the nonlinear equations about a fixed point

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}) \approx \mathbf{f}(\mathbf{x}^*, \mathbf{u}^*) + \left[\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right]_{\mathbf{x} = \mathbf{x}^*, \, \mathbf{u} = \mathbf{u}^*} (\mathbf{x} - \mathbf{x}^*) + \left[\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right]_{\mathbf{x} = \mathbf{x}^*, \, \mathbf{u} = \mathbf{u}^*} (\mathbf{u} - \mathbf{u}^*)$$

• By defining a new coordinate system

$$\bar{\mathbf{x}} = \mathbf{x} - \mathbf{x}^*, \ \bar{\mathbf{u}} = \mathbf{u} - \mathbf{u}^*$$

• We get linear dynamical system

$$\dot{\bar{\mathbf{x}}} = A\bar{\mathbf{x}} + B\bar{\mathbf{u}}$$

Linear Quadratic Regulator (LQR)

 Motivation: the goal is to keep the pole upright by moving the cart left and right

• Challenges:

- Underactuated dynamics
- Trade-off in control

- Accuracy: how well we balance the pole (minimizing deviation from the upright position)
- 2. Control effort: how much force we apply to the cart

LQR as an Optimal Solution

- LQR systematically finds the **optimal** control policy
- What do we mean by optimal?
- **Trade-off** between:
 - 1. Minimizing the deviation of the pole from the upright position
 - 2. Minimizing the amount of force applied to the cart

• Linear time-invariant system in state-space form

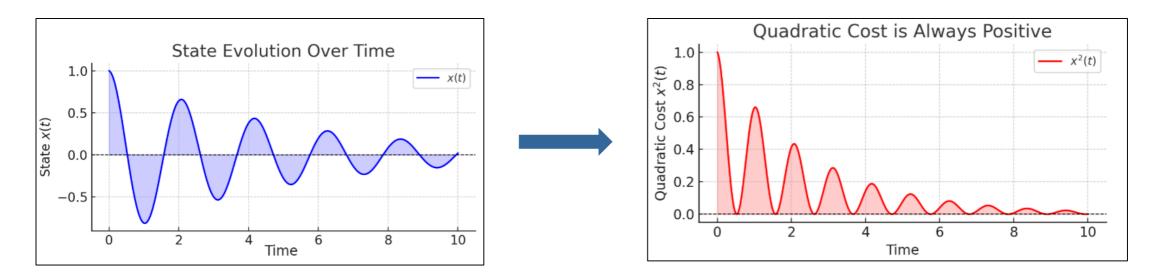
$$\dot{x}(t) = Ax(t) + Bu(t)$$

• Minimize a quadratic cost function

$$J = \int_0^\infty \left(x^T Q x + u^T R u
ight) dt \qquad Q = Q^T, \,\, Q \succeq 0 \qquad R = R^T, \,\, R \succ 0$$

• Q and R are cost matrices

- Why quadratic terms?
- Q penalizes the pole's deviation from vertical and cart displacement



• *R* penalizes the force applied (control effort)

- How to choose Q and R, and how do they affect the LQR performance?
- Q is usually positive semi-definite and R must be positive definite
- Most common form is positive diagonal matrices
- Q_{ii} penalize the **relative errors** in state variable x_i
- *R_{ii}* penalize **control effort** *u_i*

• LQR finds an **optimal feedback** control law [*]

u = -Kx

• *K* is the feedback gain matrix, and is calculated by solving the **Riccati equation**

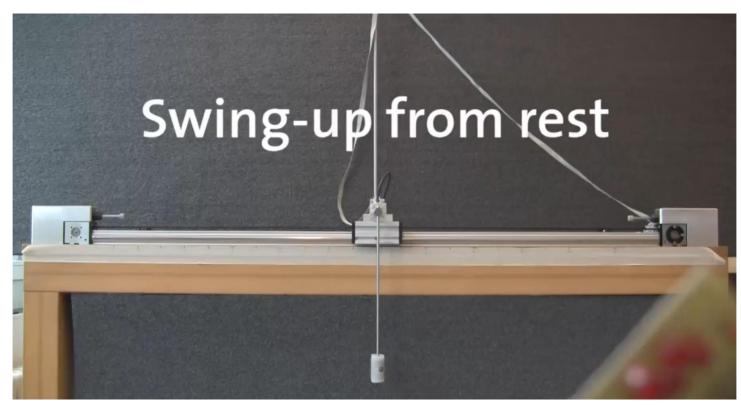
 LQR is a feedback controller, it naturally reacts to disturbances and model uncertainties

[*] Anderson, Brian D.O., John B. Moore. "Optimal control: linear quadratic methods," Prentice Hall, 1990.

LQR Limitations

- LQR assumes **linear** dynamics
- Requires **full-state feedback**
- Assumes an **infinite time** horizon
- Basic LQR does **not** explicitly handle state or input constraints

LQR on Cart-Pole

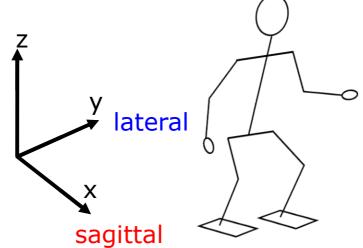


YouTube: Cart-Pole Swing-Up Experiments using Simulation-Based LQR-Trees

Legged Robots Modeling

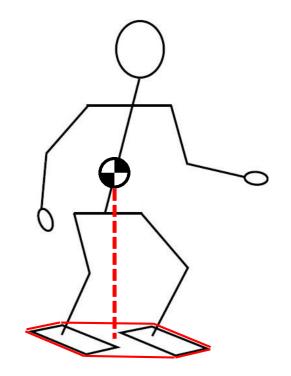
Legged Robot Motion

- To control complex systems like humanoids, first derive a simplified model that captures essential balance dynamics and are amenable to linear control methods
- Walking motion can be decomposed into orthogonal projections in the sagittal (forward) and lateral (sideways) directions



Posture Stability

- A pose is statically stable if the vertical projection of the robot's Center of Mass (CoM) lies within the support polygon on the floor
- **Support polygon**: convex hull of all contact points of the robot on the floor

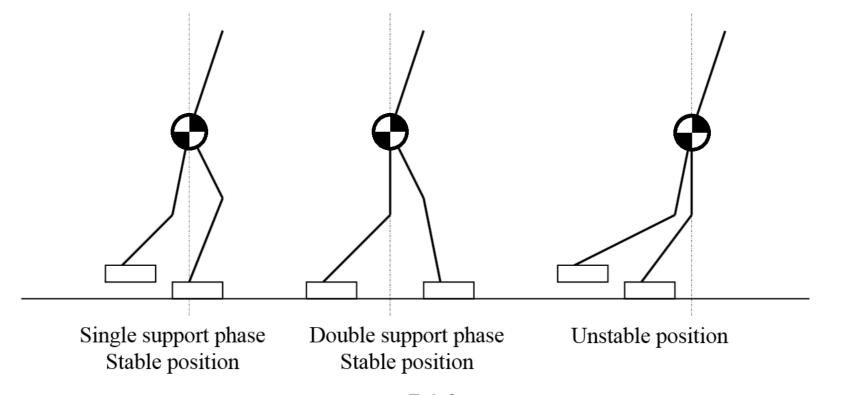


Statically Stable Walking

- The robot will stay in a stable pose whenever the motion is stopped
- At any time, the projection of the robot's COM on the ground must be contained within the support polygon
- Support polygon:
 - 1. Either the foot surface in case of one supporting leg, or
 - 2. The minimum convex area containing both foot surfaces when both feet are on the ground

Statically Stable Walking

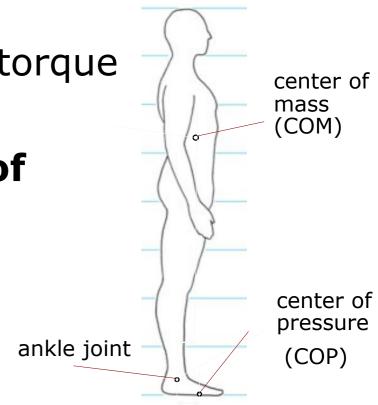
• Leads to robust but **slow** walking performance



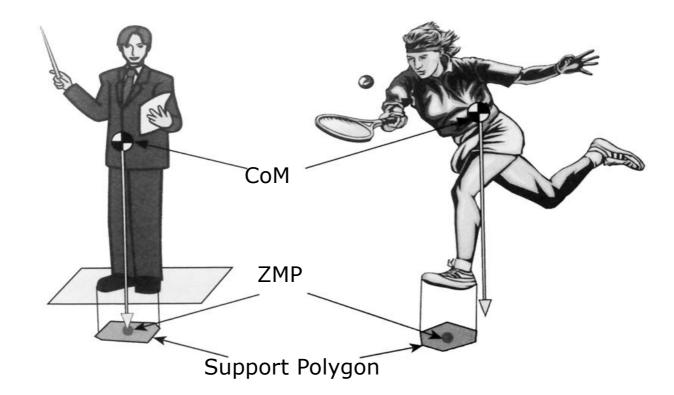
source: T. Asfour

Human Walking

- Body as an inverted pendulum pivoting around the ankle joint
- Represented as a point mass
- Body weight around at the COM creates a torque about the ankle, leading to motion
- Ground reaction force acts at the Center of Pressure (CoP)



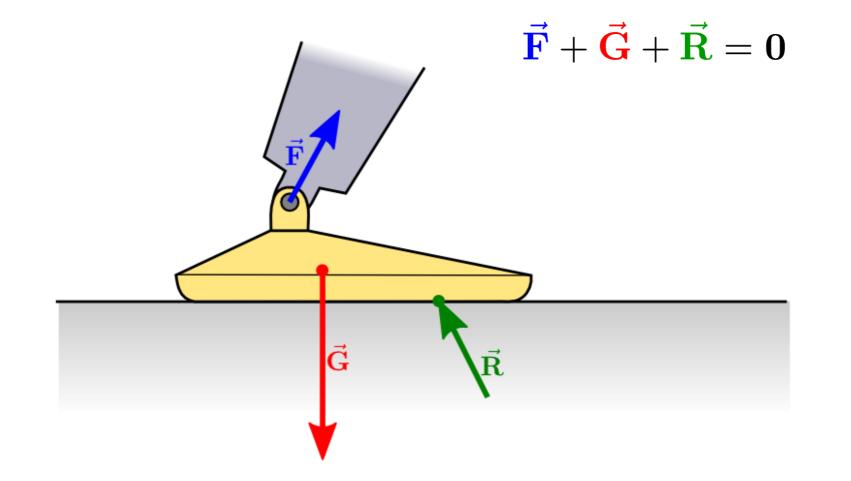
Dynamically Stable Walking



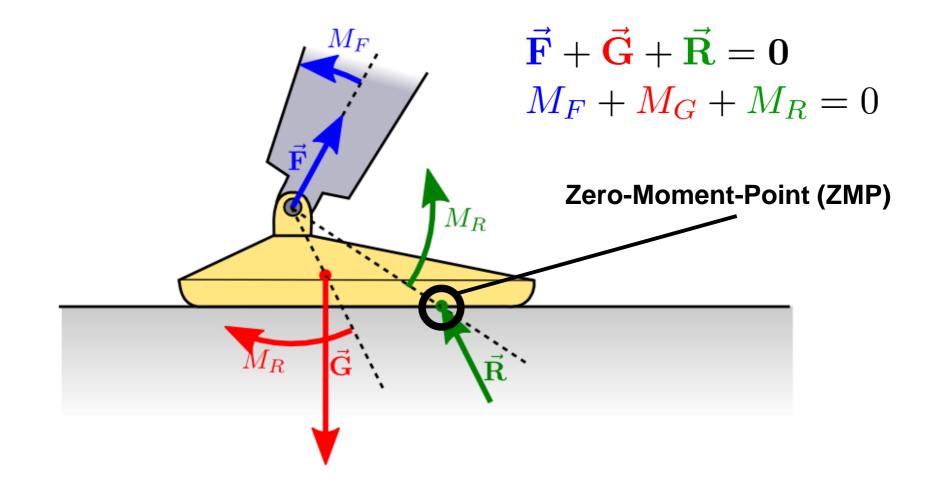
In dynamic walking, stopping the motion may result in falling

source: S. Kajita

Zero Moment Point



Zero Moment Point



Ground Reaction Force

 The ground acts on the whole contact area, but it can be substituted by a single force acting at the CoP

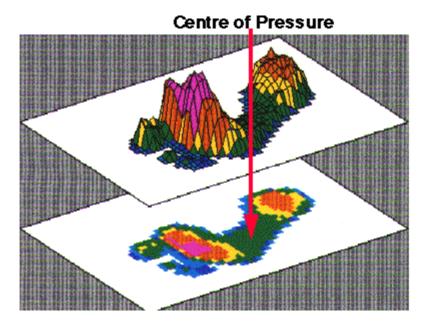


image source: clinical gait analysis

Zero Moment Point

- Stability is achieved if the Zero Moment Point (ZMP) is in the support area
- A robot standing on the ground applies a force and moment to the ground
- At the same time, the ground applies a force and a moment to the robot (ground reaction force)
- ZMP is the point on the ground where the total moment generated due to gravity and inertia equals zero

Zero Moment Point

- For stable walking, the support foot must rest on the ground
- Forces and torques acting on support foot must sum up to 0
- ZMP must remain **inside the footprint** of the support foot
- Then, the ZMP coincides with the CoP
- ZMP should not approach the edge of the support polygon, as this increases the risk of instability
- During the movement, the projection of the CoM can leave the support polygon

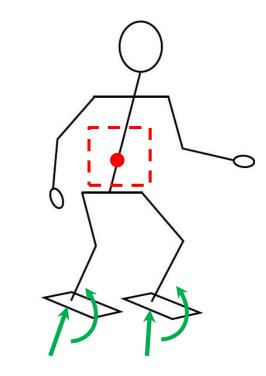
Legged Robots Model

General form of EoM

$$M(\boldsymbol{q})\dot{\boldsymbol{v}} + \boldsymbol{c}(\boldsymbol{q},\boldsymbol{v}) + \boldsymbol{g}(\boldsymbol{q}) = S^{\top}\boldsymbol{\tau} + \sum_{i} J_{i}^{T}\boldsymbol{f}_{i}$$

• The base does not have any actuation

$$S = \begin{bmatrix} 0_{n_j \times 6} & I_{n_j \times n_j} \end{bmatrix}$$



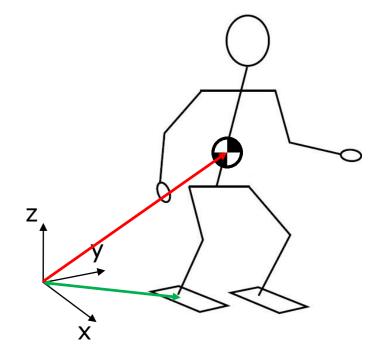
Robot's Center of Mass (CoM)

• **Newton** equation for CoM

$$m(\ddot{\boldsymbol{c}}+\boldsymbol{g})=\sum_{i}f_{i}$$

• Euler equation for the angular momentum

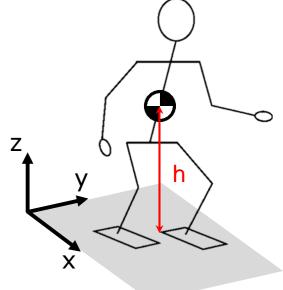
$$\dot{\mathbf{L}} = \sum_{i} (\mathbf{p}_{i} - \mathbf{c}) \times f_{i}$$



• Where p_i is the contact location

In Contact with a Flat Ground

- Consider a reference frame oriented along the ground, with the z-axis orthogonal to it
- **Assume** the robot base is not tilted $g_x = 0, g_y = 0, g_z = g$
- **Assume** that the height of COM stays constant during walking $\ddot{c}_z = 0$
- **Suppose** that for p_i , points of contact with the ground, $p_i^z = 0$ and $f = [0, 0, f_i^z]^T$
- With the **assumption** that the angular momentum is constant for walking, $\dot{L} = 0$



How ZMP/CoP Appear

With the assumptions of in contact with a flat ground

$$c_x - \frac{c_z}{g}\ddot{c}_x = z_x$$

 $z_x = \frac{\sum_i f_i^z p_i^x}{\sum_i f_i^z}$

With CoP definition as

•
$$C_{\chi}$$
: CoM position in the x-direction

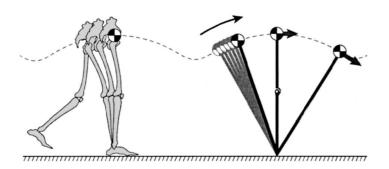
• \ddot{c}_{γ} : CoM acceleration in the x-direction

- *f*_i^z: the vertical force at contact point
 *p*_i^x: the x-coordinate of contact point
- For full derivation look at [*]

Pierre-Brice Wieber, Russ Tedrake, Scott Kuindersma, "Modeling and control of legged robots," Springer Handbook of Robotics, 2016.

Dynamics of Linear Inverted Pendulum

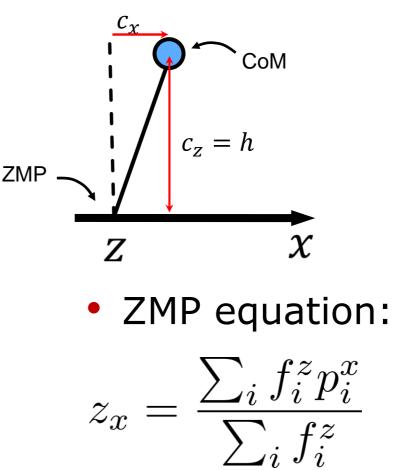
 Finally, we get simplified dynamics for the robot motion, known as Linear Inverted Pendulum Model (LIPM)



Source: Omar et.al.: "Study of Bipedal Robot Walking Motion in Low Gravity: Investigation and Analysis," International Journal of Advanced Robotic Systems, 2014.

CoM equation:

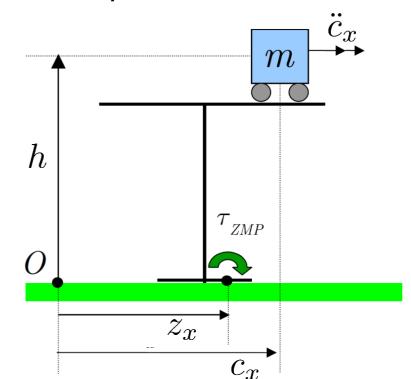
$$\ddot{c}_x = \frac{g}{h}(c_x - z_x)$$



A Cart-on-Pedestal Model for ZMP Intuition

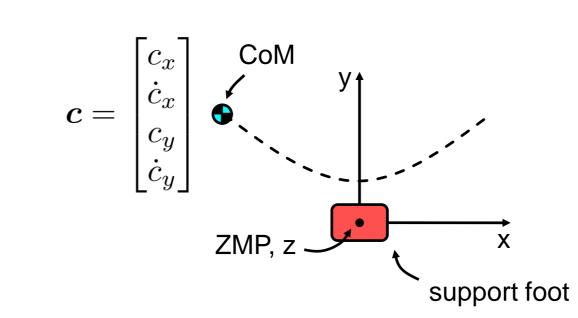
- The foot of the table is too small to let the cart stay in balance
- If the cart **accelerates** with a proper rate, the table can **keep upright for a while** \vec{c}_x

$$mg(c_x - z_x) - m\ddot{c}_x h = 0$$



Source: Kajita et al., "Biped walking pattern generation by using preview control of zero-moment point," ICRA, 2003.

2D Linear Inverted Pendulum Model



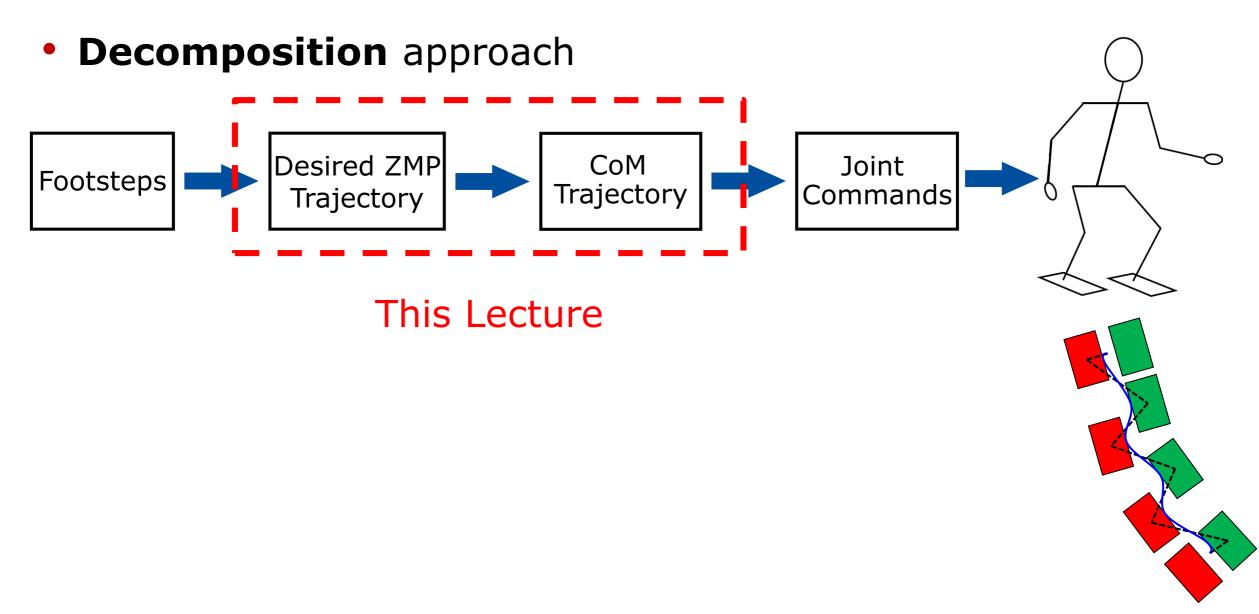
• x-direction:

• y-direction :

$$\ddot{c}_x = \frac{g}{h}(c_x - z_x)$$

$$\ddot{c}_y = \frac{g}{h}(c_y - z_y)$$

Legged Robots Motion Planning



ZMP-Based Walking Pattern Generator

- Stable walking requires contact forces, which are strictly constrained by physics
- On flat ground, the ZMP (CoP) must stay within the convex hull of the foot contact points
- Key walking parameters:
 - 1. COM height
 - 2. Step duration (single/double support)
 - 3. Step speed
- Foot trajectories are often predefined using polynomial curves with zero velocity and acceleration at the start and end of each step

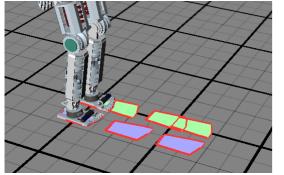
ZMP Preview Control – Key Idea

- ZMP preview control computes a CoM trajectory given:
 - **1.** Fixed sequence of footsteps
 - **2.** Reference ZMP trajectory
- Assumptions:
 - Footsteps are fixed and cannot be changed during execution
 - 2. COM height remains constant throughout the motion
- Main constraint: Resulting ZMP trajectory must always stay inside the support polygon

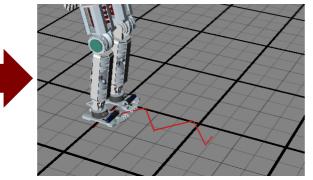
Reference ZMP, CoM Trajectory Generation

- Reference ZMP is defined based on **support phase**:
 - 1. In single support: located at the center of the foot
 - 2. In double support: quick transition from the previous foot to the next
- Using the LIPM, compute the CoM trajectory that follows the reference ZMP
- Once CoM and feet positions are known, compute joint angles via inverse kinematics

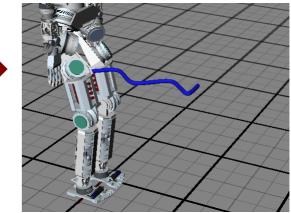
ZMP-Based Walking Pattern Generator



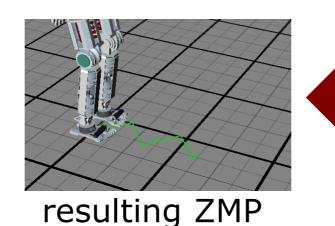
footstep positions

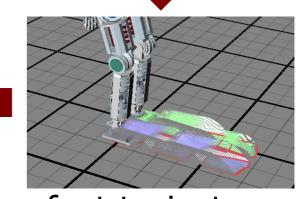


reference ZMP



CoM trajectory





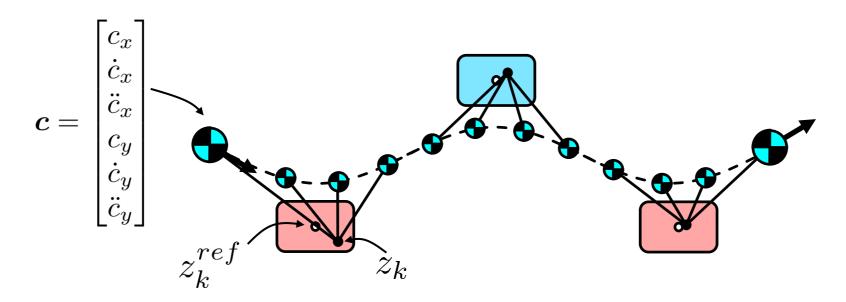
feet trajectory

- Model Predictive Control (MPC, aka receding horizon control)
- Solves a sequence of optimal control problems online to generate motion for constrained dynamical systems
- Enables real-time adaptation to changing conditions

- ZMP reference is given (from fixed footsteps)
- Use **LIPM** dynamics to predict CoM motion
- Goal: Compute CoM trajectory such that the resulting ZMP stays inside the support polygon
- At each time step, MPC uses Quadratic Programming (QP) to compute optimal CoM accelerations (or jerks) that track the reference ZMP [*]

^[*] Pierre-Brice Wieber, "Trajectory Free Linear Model Predictive Control for Stable Walking in the Presence of Strong Perturbations," Humanoids, 2006

- The robot's state (CoM position, velocity, acceleration)
- The reference ZMP trajectory z_k^{ref}
- The actual (predicted) ZMP z_k based on current/future CoM motion
- **Goal**: Track z_k^{ref} while ensuring dynamic feasibility (LIPM)



 Let's only consider the motion along the x-direction (sampled with time step T)

• State:
$$\boldsymbol{x}_k = \begin{bmatrix} c_k \\ \dot{c}_k \\ \ddot{c}_k \end{bmatrix}$$
 , where $\boldsymbol{x}_k = \boldsymbol{x}(kT)$

- Input: jerk $u_k = \ddot{c}_k$
- Discrete-time dynamics: $x_{k+1} = Ax_k + Bu_k$

- ZMP reference trajectory: from footsteps (fixed in advance), a piecewise reference ZMP trajectory is computed:
 - 1. In single support: center of foot
 - 2. In double support: fast linear transition from one foot to the next
- ZMP **output** equation

$$z_k = c_k - \frac{h}{g}\ddot{c}_k = D\boldsymbol{x}_k$$

 At every control step, solve a QP to minimize the cost over a time horizon N

• The MPC cost:
$$J = \sum_{i=0}^{N-1} \|z_{k+i} - z_{ref,k+i}\|_Q^2 + \|u_{k+i}\|_R^2$$

- **ZMP tracking** is penalized
- **Smoothness** of motion via jerk minimization
- **Constraints**: optional bounds on ZMP (stability)

Limitations of ZMP

- ZMP works effectively only on **flat surfaces**
- CoM has to move on a **fixed plane**, not possible to run, jump, and climb stairs, without modification
- Not capable of dealing with external forces (e.g., leaning on a wall)
- ZMP has to remain in the support polygon for all time instances

Summary

- Control of humanoid walking
- Linearize nonlinear dynamics with Taylor expansion
- Principle of **optimality** in linear case
- Linear Quadratic Regulator (LQR) for underactuated robots
- Modeling a humanoid with simple Linear Inverted Pendulum Model (LIPM)
- **ZMP-based** control for LIPM
- Motion planning for ZMP and CoM trajectory for humanoid walking

Literature

- M. W. Spong, "Underactuated mechanical systems," Control Problems in Robotics and Automation, 1997.
- Russ Tedrake, "Underactuated robotics (algorithms for walking, running, swimming, flying, and manipulation)," Course notes for MIT 6.832, 2023.
- J.P. Hespanha, "Linear system theory," Princeton University Press, 2018.
- Anderson, Brian D.O., John B. Moore. "Optimal control: linear quadratic methods," Prentice Hall, 1990.
- Pierre-Brice Wieber, Russ Tedrake, Scott Kuindersma, "Modeling and control of legged robots," Springer Handbook of Robotics, 2016.
- Kajita et al., "Biped walking pattern generation by using preview control of zero-moment point," IEEE International Conference on Robotics and Automation, 2003.
- Pierre-Brice Wieber, "Trajectory Free Linear Model Predictive Control for Stable Walking in the Presence of Strong Perturbations," Humanoids, 2006.
- Herdt et al., "Online Walking Motion Generation with Automatic Foot Step Placement," Advanced Robotics, 2010.