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Goal of This Chapter
• Get an overview of common robotic grasping tools
• Learn the fundamentals of grasp planning 
• Understand different approaches to object pushing 



How To Manipulate?
• Robots are not limited to only one way of manipulating 

objects
• Objects can be grasped, sucked, or pushed
• The decision which action to use depends on the type of 

object (e.g., rigid, deformable, or delicate) and the 
situation (e.g., cluttered or free space) 

• Different end-effectors enable robots to perform various 
types of object interaction



Different Types of End-Effectors
• Parallel-jaw gripper
• Antipodal grasp
• Standard in robotics, many variants

      Robotiq               OnRobot  Franka Robotics



Different Types of End-Effectors
• Parallel-jaw gripper

Zhu et al., RSS, 2022



End-Effector Overview
• Multi-finger gripper
• Good for in-hand manipulation or not uniformly shaped 

obstacles (better enclosing)

 Robotiq      SoftGripping   Alegro



End-Effector Overview
• Multi-finger gripper
• Good for in-hand manipulation or not uniformly shaped 

obstacles (better enclosing)

Patel et al., ICRA, 2025



End-Effector Overview
• Human-like 5-finger gripper
• Helps mimicking human dexterity

     Psyonic           Shadow      QB-Robotics
6 DOF 19 DOF 1 DOF



End-Effector Overview
• Human-like 5-finger gripper
• Helps mimicking human dexterity

Courtesy:  
Psyonic 



End-Effector Overview
• Vacuum Gripper
• Simplifies grasping, enables grasping objects in high clutter 

or difficult shapes

   OnRobot           https://www.youtube.com/watch?v=3OFPGEmf5IA



Unconventional End-Effectors
• ROSE-Gripper: ROtation-based Squeezing grippEr

[Bui et al., RSS, 2023]

ROSE: Rotation-based Squeezing Robotic Gripper toward Universal Handling of Objects



Grasp Planning
• Fundamental component of robotic manipulation is 

obtaining complete control of an object’s motion

• General idea: Using end-effectors (fingers) to hold an 
object relative to the hand

• Definition: The application of forces at a set of contact 
points to restrain an object’s motion



Grasp Planning
• Where to grasp an object in order to 

perform a particular task?
• In the context of the video: Where to 

place my contacts to immobilize the 
object while being able to spray 

• Grasp analysis: Given the contact 
points on an object, how stable is the 
resulting grasp (i.e., can the object slip?)

Courtesy: Psyonic 



What Makes a Good Grasp in General?
1. Lifts the object

2. Ensures minimal unexpected shifts of the object’s pose 
(slipping)

3. Keeps the object grasped during transfer

4. Leads minimal contact with nearby objects 

5. Enables successful placing of the object

6. Within the robot’s reach (reachability map)



Why is Grasp Planning Hard?
• High-dimensional gripper configuration (hand + wrist)

• Contact-point selection: Ideal contacts yield robust 
grasps, but feasible contacts are constrained by geometry

• Robustness evaluation: Assess grasps to ensure robust 
grasping under uncertainty or deviations

• Relevant factors: friction, object gravity, external forces

• Collision avoidance: During execution, the entire robot 
body must avoid unintended collisions



Grasp Planning
• Parameterizations:
– Approach vector or wrist pose 
– Initial finger configuration 
– Contact-point specification

• Regardless of the parameterization, the contact points 
define the quality of a grasp



Grasp Modeling
• Point-on-plane contact models: 

Commonly used for grasping since the possible contact 
points for most objects are almost always on surfaces



Basics: Force and Torque
• Newton’s definition of force: 𝑓 = 𝑚 ∗ 𝑎 with mass m and 

acceleration a
• Total force f = sum of forces on a rigid body
• Torque: 𝜏 = 𝑟	×	𝑓  

r f

𝜏



Basics: Force and Torque = Wrench
• Wrench 𝑤 = (𝑓, 𝜏)
• 6D vector 

r f

𝜏



Point-on-Plane Contact Models
• Frictionless point contact: 

Forces can only be applied along the surface normal

• Point contact with friction (hard-finger): 
Forces can be applied in directions other than just the 
surface normal, defined by a friction cone

• Soft-finger contact: 
Allows for torque around the surface normal axis and 
includes a friction cone for the forces

Point Contact Hard-Finger Soft-Finger



Parallel-Jaw (2-Finger) Grasping in 2D
• How to counter gravity force to lift an object?

Gravity

Robotiq 



Gravity

Normal Forces

Parallel-Jaw (2-Finger) Grasping in 2D
• How to counter gravity force to lift an object?



Gravity

Friction Cones

Normal Forces

Parallel-Jaw (2-Finger) Grasping in 2D
• How to counter gravity force to lift an object?



Friction Cones

Gravity

Counter Forces

Parallel-Jaw (2-Finger) Grasping in 2D
• How to counter gravity force to lift an object?
• In the friction cone, there are forces that counteract a 

given gravitational force

Force has to be greater 
than or equal to 
the gravitational force 
acting on the object



Friction Cones

Gravity

Counter ForcesGiven grip force 𝐹 and 
friction 𝜇, maximum 
mass of load: 2𝜇𝐹/𝑔

• How to counter gravity force to lift an object?
• In the friction cone, there are forces that counteract a 

given gravitational force

Parallel-Jaw (2-Finger) Grasping in 2D



Parallel-Jaw (2-Finger) Grasping in 3D

Desired Grasp

Slipped Object

Courtesy: K. Hauser

• With only two contact points, unable to resist torque 
about the axis

• This may be also true for more contact points



Parallel-Jaw (2-Finger) Grasping in 3D
• One possible solution: Consider the support polygon



Grasp Quality Evaluation
• Ideal grasps show closure
• Grasp closure: Grasp can be maintained for every 

possible disturbance load
• Firm closure allows the robot to maintain its grasp, e.g., 

even if someone tries to hit it out of the hand
• Two common types of closures: form and force closure



Form Closure
• Fixed grasp that locks the object between the fingers
• Geometric constraints alone prevent the object from 

moving
• No wrench (force + torque) can move the object
• Guaranteed immobilization
• But extremely sensitive to shape, 

requires many contacts
• Often not feasible to compute Object

Finger

Kim et al., ROBOMECH, 2019



Force Closure
• Applies sufficient counter forces at the contact points in 

order to resist any external wrench
• Relies on friction and generally requires fewer contact 

points than required for form closure
• However, there might not be a solution for every object 

and gripper

Force

Finger

Kim et al., ROBOMECH, 2019



Form Closure vs. Force Closure
• Form closure: 
–Relies solely on the geometry of contact to lock the 

object
–Friction-independent, but impractical for most robot 

hands due to the required precision of contact
• Force closure: 
–Uses forces at contacts to resist external disturbances
–More widely applicable, but sensitive to friction and 

contact stability



• Two approaches, both apply sampling and evaluate possible 
grasps

• Sample candidate contacts directly on object surface
• Use predefined hand models that come into contact 

when fingers close
–Sample the location where the hand 

base will be placed
–Simulate where the contacts happen 

after closing fingers

Sampling-Based Grasp Planning



Sampling-Based Grasp Planning
• Optimal grasps: Combination of optimal contact points 

and optimal hand configuration
• Selection of optimal contact points on the object surface 

ignoring the actual hand geometry, can lead to contact 
locations unreachable for the real hand

• Feasible hand configuration can generate a weak grasp 
in the presence of small perturbations

• Grasp planning approaches try to satisfy both metrics



Offline Grasp Database Generation Using 
Known Hand and CAD Models
• Graspability map: offline generated 

grasps for known objects for given hand
• Multi-finger kinematics precomputed 

offline
• Store full hand-pose in database
• Requires precise object model and 

pose
• Fast database retrieval during execution
• Similar to reachability map concept (Ch.5)

[Roa et al., IROS 2011]



Perception for Grasping
• Real scenes: unknown, deformable, cluttered objects
• Analytical methods (force/form-closure) need precise 

models
• Database methods only cover known objects
• Perception-driven methods rely only on sensor data
–Heuristic approaches
–Learning-based methods



Heuristic Grasp Detection
• Sample antipodal grasps
–Two opposing contact normals 

on object 
–Center 𝑐, axis 𝑎, width 𝑤
–Sampling: top-down based on 

point cloud data
–Scoring metrics based on 

normality, fit, clearance 

• Sampling and scoring can become 
challenging for complex objects 
and without top-down restriction Hauser et al., Advanced Topics in Planning



Learning-Based Grasping Approaches
• Sample & score: synthetic grasps, analytic labels 

(DexNet, GPD)
• Pixel regression: real RGB-D, per-pixel labels (AnyGrasp)
• Volumetric CNN: TSDF volumes, voxel-wise labels (VGN)



Learning to Grasp
• To reduce data collection time of real objects for deep 

learning of robust robotic grasping, synthetic datasets can 
be used 

• Example Dex-Net 2.0: Consists of 6.7 million point clouds, 
grasps, and analytic grasp metrics generated from 
thousands of 3D models

Mahler et al., Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics, RSS 2017



Learning to Grasp
• Grasp Quality Convolutional Neural Network (GQ-CNN)
• Grasp candidates 𝑢	 = 	 (𝑖, 𝑗, 𝜙, 𝑧)	are generated from a depth 

image and transformed to align the image with the grasp 
center pixel (𝑖, 𝑗) and orientation 𝜙

Mahler et al., Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics, RSS 2017



Learning to Grasp
• Grasp Quality Convolutional Neural Network (GQ-CNN)
• Grasp candidates 𝑢	 = 	 (𝑖, 𝑗, 𝜙, 𝑧)	are generated from a depth 

image and transformed to align the image with the grasp 
center pixel (𝑖, 𝑗) and orientation 𝜙

Mahler et al., Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics, RSS 2017



Learning to Grasp
• Depth edges as features for learning 
• Network estimates the probability of grasp success
𝑄! ∈ 	 [0, 1] to rank grasp candidates

• Note: only top-down grasps

Mahler et al., Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics, RSS 2017



Example

Mahler et al., Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics, RSS 2017



Grasp Pose Detection (GPD)
• Input: Raw point clouds
• Pipeline:
–Generate candidate two-finger grasps by 

sampling surface point pairs
–Encode local geometry into heightmap 

descriptors
–Score each candidate with network

• Output: Ranked 6-DoF grasp poses
• Relies on analytic force-closure labels 

during training on sampled candidates

Ten Pas et al., “Grasp Pose Detection in Point Clouds”, IJRR 2018



GPD Demonstration

Ten Pas et al., “Grasp Pose Detection in Point Clouds”, IJRR 2018



AnyGrasp
• Dense per-pixel 7-DoF grasp regression from a single 

RGB-D view (pixel is assumed center point of grasp)

• Input: single-view RGB-D image 

• Output: dense per-pixel 7-DoF grasp poses 
(𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾, 𝑤𝑖𝑑𝑡ℎ) plus quality score

• Evaluates grasps at each pixel in one pass

• Relies on dense per-pixel quality labels during training

Fang et al., “AnyGrasp: Robust and Efficient Grasp Perception in Spatial and Temporal Domains”, TRO 2023



Volumetric Grasping Network (VGN)
• Real-time volumetric grasp 

detection via TSDF fusion
• Input: fused TSDF voxel grid
• Output: per-voxel 7-DoF grasp 

poses (𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾, 𝑤𝑖𝑑𝑡ℎ) plus 
quality score 

• Evaluates grasps at each voxel 
in one pass

• Relies on sparse voxel-wise 
ground truth for training

Breyer et al., “Volumetric Grasping Network: Real-time 6-DoF Grasp Detection in Clutter”, CoRL 2020



GPD vs. AnyGrasp vs. VGN
Aspect GPD AnyGrasp VGN

Runtime ≈0.5–1 s per cloud ≈100 ms per frame ≈10 ms per volume

Success Rate ~93 % on novel objects 93.3 % bin-clear on 300 
unseen objects

~92 % clearance in 
clutter

Temporal Tracking No (single snapshot) Yes (frame-to-frame 
tracking)

No (requires re-fusion 
per frame)

Closed-Loop Suitable No Yes Yes

Multi-Finger Support parallel-jaw only parallel-jaw only parallel-jaw only

Collision Checking explicit during select implicit via 
depth/collision test

Uses 3D scene to 
directly learn collision-
free grasps

Approach Direction 
Filtering Yes (axis constraints) No No

Object-Selective Yes (specify point 
indices) Yes (pixel-region masks) No

Pros • Interpretable
• Modular

• Full 7-DoF
• Dynamic tracking

• Ultra-fast
• Leverages full 3D

Cons • Slow
• Static only

• Complex
• Heavier than VGN and 
GPD

• Needs TSDF fusion
• Black-box



Real-Time Grasp Correction with 
Perception
• Conventional approach: Plan once and go blind (open loop)
• Robust approach: Continuously update grasp pose during 

approach to correct for errors and disturbances
• Sense: Stream point cloud or RGB-D at each control cycle, 

fuse into TSDF if necessary (VGN)
• Re-compute grasp: Quickly re-evaluate grasp hypotheses 

for current RGB-D (AnyGrasp) or TSDF volume (VGN)
• Adjust motion: Send incremental velocity commands to 

align gripper to updated pose



From Parallel-Jaw to Multi-Finger Grasping
• GPD, AnyGrasp, VGN: 2-finger grasp prediction
• However, humanoids typically have multi-finger hands
• 3–5 fingertips leads to combinatorial increase in 

candidate poses
• Must coordinate finger trajectories and contact sequence

        [Winkelbauer et al., IROS 2022]



Pushing



Planar Pushing
• Goal: Control the pose of an object in 2D using only 

“pushing” contacts
• Interaction between the object and surface must also 

be considered
• Similar to physics-based contact models for grasping, such 

models can also be developed to predict the sliding 
interactions between objects and surface



Analytical Planar Pushing
• Pushing modeled using an analytical model
• Only approximate and far from perfectly modeling the 

process of planar pushing
• Predicts the object movement given the pusher velocity, 

the contact point as well as mass, force, and friction-
related parameters

pusher velocity

object 
center

object 
movement

[Kloss et al., IJRR 2020]



Analytical Planar Pushing
• Predicting the effect of a push
– Is the push stable (“sticking contact”) 
– Or will the pusher slide on object (“sliding contact”)? 

• Sticking: Velocity of the object at the contact point will be 
the same as the velocity of the pusher

• Sliding: Movement of pusher can be almost orthogonal to 
the resulting motion at the contact point

P P

Sticking Sliding



Analytical Planar Pushing
• Find the left and right boundary forces of the friction 

cone, i.e., the forces for which the pusher is sticking 
• Opening angle of the friction cone is defined by the friction 

coefficient between the pusher and object

pusher friction cone

[Kloss et al., IJRR 2020]



Analytical Planar Pushing
• Motion cone: Set of all object motions that keep the 

pushing contact constant
• If the push velocity is outside of the motion cone, the 

contact will slide but the object is still moved to some 
extend

• Otherwise, the contact is sticking and the pusher velocity 
is the effective object velocity of the at the contact 
point



Analytical Planar Pushing: Discussion
• Analytical model uses three simplifying assumptions: 

1. The force applied to the object is big enough to move 
the object, but not to accelerate it

2. The pressure distribution of the object on the surface is 
uniform

3. The friction between surface and object is constant

• Typically, Assumptions 2 and 3 are violated in the real 
world



Example

Data collection Execution

[Bauza et al., CORL 2019]



Learning to Push
• As for grasping, novel approaches do not rely on only 

analytical approaches anymore
• Different aspects of pushing can be learned (e.g., 

execution, world representation, touch sensing, etc.)
• Here: focus on learning the push execution, i.e., the action 

generation



Reinforcement Learning (RL): Overview
• Reward hypothesis: Any goal can be formalized as the 

outcome of maximizing a cumulative reward
• Goal: pick the best action for any given state
• Deep RL introduces deep neural networks to solve RL 

problems 



RL for Push Generation in Cluttered Scenes
• Considered problem:
– Goal-oriented 2D pushing in cluttered environments
– Avoiding contact with other objects

• Approach: 
–Reinforcement learning for obstacle avoiding pushing
–Attention mechanism to select and focus on relevant 

features 



RL for Push Generation in Cluttered Scenes

Dengler et al., Learning Goal-Directed Object Pushing in Cluttered Scenes with Location-Based Attention, IROS 2025

network



RL for Push Generation in Cluttered Scenes
• Action: push velocity in x and y direction for the next step
• Observation: 
– 2D occupancy grid map of environment
– Current and target object pose
– Pusher pose

• Reward based on:
–Euclidean and angular distance between current and 

target pose
–Collisions



Learned Object Pushing

Dengler et al., Learning Goal-Directed Object Pushing in Cluttered Scenes with Location-Based Attention, IROS 2025



New Research Direction: Diffusion Policies
• Learns multiple valid pushing trajectories instead of a 

single solution from demonstrations
• Can handle uncertainty and contact-rich interactions
• Models a distribution over action sequences using a 

denoising process

https://diffusion-policy.cs.columbia.edu/



Summary (1)
• End-effector diversity: From 2-finger to multi-finger and 

vacuum grippers 
• Grasp planning: involves complex kinematics, robust 

contact selection, collision avoidance, and iterative 
re-planning under uncertainty

• Leverages analytical force- and form-closure analyses, 
sampling-based planning, large synthetic datasets with 
analytic metrics, and deep learning models for 
predicting grasp success



Summary (2)
• Planar pushing controls 2D object pose through surface 

contacts
• Purely analytical models often break down when real-

world conditions violate assumptions
• Learning-based pushing: 
–Reinforcement learning using occupancy grids
–Diffusion policies iteratively denoise trajectory 

distributions to handle multimodality and contact 
uncertainty
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