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Humanoid Motion Planning

Different approaches based on the task

* Motion planning and trajectory generation for
manipulation (upper limbs)

* Navigation and gait planning for locomotion (lower limbs)
* Whole-body controller ensures balancing during both tasks



Goal of This Chapter

* Introduction to basic concepts: path, trajectory,
configuration space, task space

* Understanding of important components: configuration
space obstacles, collision detection, sampling-based
planning

* Next lecture (Tue June 3!): trajectory generation



Motivation

HOME LAB




Motivation

* How to reach a target object such
that the arm can manipulate it?

* How to reach such that the arm
motion is collision-free in a
cluttered environment?

* How to reach such that the arm
motion is smooth smooth?

* How to reach such that the path
obeys temporal constraints?




Motion Phases for Grasping Tasks

Initial
Pose

Place &
Release

Post-Grasp Gripper
Pose Close



Steps in Manipulation Motion Planning

* Define start and goal end-effector poses
* Define intermediate poses if needed

* Add constraints if necessary

* Generate a collision-free arm motion path

* Parameterize a trajectory from the path
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Concepts Needed for Motion Planning
°* What is a path?

* What is a trajectory?

* What different kinds of robot spaces exist?

* How to plan a path?

* Ho to perform collision checking?

* How to generate a trajectory?



Path

* Defines geometric sequence of positions
* Lacks timing and dynamic information
° Can be

—Point to point

—Multi-point G

P1

P2

P3



Trajectory

* Adds time parameterization to path
—Initial and final times
—Time optimality
* Specifies velocity, acceleration, jerk or torque along path
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Robot Spaces

* Robots operate in multi-dimensional spaces

—Configuration space (joint space): Space formed by
the combination of robot joint angles

—Task space (Cartesian space): Space described by end-
effector position (R3) and orientation (SO(3)), both (SE(3))

—Workspace: Actual physical region that the end-effector
can reach (R? for mobile robot base, R3 for arms)

* Real-world tasks are specified in task spaces
* However, robots are controlled in configuration space
* Obstacle regions are typically given workspace



Task Space

* More intuitive than joint space for manipulation planning
* Controls end-effector pose (position, orientation)
° Enables direct control of robot's environmental interaction

* Crucial for grasping, tool use, and human-robot
collaboration



Task Space Motion: Pre-Grasp to Grasp

* End-effector must linearly approach the object

* Interpolate in task space from p, to p; keeping the gripper
orientation fixed

* Compute inverse kinematics
[g1 = IK(p1), q2 = IK(p2), .., qc = IK(pg )]

Task Space
Motion

Pre-Grasp Pose Grasp Pose



Configuration Space (C-Space)
* Represents the space of the robot’s joint angle
configurations

* For a robot with n joints, its configuration space is an
n-dimensional space

* High-dimensional, capturing all possible configurations
* Essential for collision checking and motion planning



Example: Initial to Pre-Grasp

e Start and goal poses (p,,p;) defined in task space
* Compute inverse kinematics q, = IK(p1),q; = IK(pg )
°* Then, compute a path from g, to g, in joint space

* In case of obstacles, generate a collision-free path
91,95, ..., ¢ | INn joint space




C-Space of a Two-Joint Planar Arm

* Consider a 2-joint planar arm with no joint limits

* Each joint angle 0, corresponds to a point on circle S*

* C-Space is S'x St = T?corresponding to a 2D torus

* Configuration g in C-space consists of 2 angles g = (64,6,)

End effector




Workspace of a Two-Joint Planar Arm

* For the 2-joint planar arm, the workspace is a 2D torus,
i.e., a subset of R?

* All points in the 2D torus are reachable with two different
configurations: elbow-up or elbow-down

End effector ‘




C-Space Obstacles and Free Space

* Typically, complete description of the robot’s geometry and
of its workspace W is provided

* Let O c W represent the workspace obstacle region

* Let A(q) € W denote set of points occupied by the robot
when in configuration g € C

* C-space obstacle: C,,; ={q € C|A(q) N 0 # @}
* Free C-space: (¢ = C\Cpps



Workspace Obstacles to C-Space Obstacles

* Consider circular mobile robot with single
polygonal obstacle as shown

* “"Slide” the robot around the obstacle to find
the constraints the obstacle places on the
configuration of the robot

* Resulting obstacle in C-space

* Motion planning for circular robot in top figure
Is equivalent to motion planning for point in
C-space

)
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Workspace and C-Spaces for Different
Mobile Robots

Workspace @ :

- | [T T




What about Transforming Workspace
Obstacles to C-Space for n-Joint Arms?
* For circular mobile robots, converting workspace obstacles
to C-space is relatively trivial due to
—Symmetry of the robot
—Workspace and C-space being low dimensional R?
* Robot arms have workspace in R3® and task space in SE(3)
* C-space is T" with n number of joints

* Hence, conversion of workspace obstacles to C-space is
computationally infeasible



Geometric Path Planning Problem

Given

* Robot’s configuration space C
* Robot’s workspace W

* Obstacle region 0 c W

* Initial configuration q; € C¢yee

* Goal configuration qg € Cyee

Goal
For the query (qy,q¢), compute a collision-free path
(91,91, 92,.,q9¢] in the configuration space



Motion Planning Complexity

* Not easy to compute C,ps and Cyree
* Exponential dependence on C-space dimensionality
* Two approaches: Combinatorial and Sampling

* Combinatorial algorithms

—Complete, i.e., either find a solution or will correctly
report that no solution exists

—Exact, i.e., find paths through C-space w/o resorting to
approximations

—However, NP-hard



Motion Planning Complexity

e Sampling-based approach

—Weaker guarantee: Will find a solution eventually if one
exists, but no guarantee on failure report in finite time in
case none exists

—Approximate: Uses approximation of C-space for
collision checking



Sampling-Based Motion Planning

* Avoid explicit construction of the obstacle configuration
space C,ps

* Instead, perform search that probes C-space with sampling
* Collision checking without exact geometric models
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Geometric Models

* Representations for known objects, i.e., robot and known
obstacles

—Primitives (rectangle, cylinder, box, sphere)
—Meshes
* Representations for unknown objects, i.e., sensed obstacles
—Point clouds
—(QOccupancy maps
* See Chapter 3 for more details on 3D world representations



Collision Avoidance

3

WABC: Self collision avoidance




Collision Detection

For a particular configuration q € T", check if q € Csyee
Oorqe Cobs

Collision detection can be a continuous or Boolean function

Boolean function ¢:C - {TRUE, FALSE}
q €C,,c & $(q) = TRUE,else FALSE

Boolean functions typically used in sampling-based
planners for accepting or rejecting a g sampled from T"

Distance function d: C — [0, «)

Distance function used for optimization-based planning
where d is used to assign a cost for g



Two-Phase Collision Detection

* For n-joint robots like arms collision detection is a two-
phase process

°* Broad Phase:

—Avoid expensive computation for links far away from
each other

—Place simple bounding boxes around each links

—Perform simple overlap test to determine whether costly
checking is needed



Two-Phase Collision Detection

* Narrow Phase:

—Further process individual pairs of bodies that overlap in
broad-phase check

—Perform more expensive checking for collision



Sampling-Based Motion Planning

Different types of sampling-based planners
* Multi-query (e.g., probabilistic roadmap approach)
—Constructs a "roadmap” once to map the (s,

—Multiple queries in same environment using the roadmap

* Single-query (e.g., RRTs)
—Build tree data structures on the fly for a given query

—EXxplore part of C-space to solve specific query as fast as
possible



Rapidly Exploring Random Trees (RRTSs)

* Explore the configuration space by expanding incrementally
from an initial configuration

* Explored space corresponds to a tree rooted at the initial
configuration

* Basic principle: Sample configuration and compute local
connection to nearest neighbor

Goal Goal




RRTs: General Algorithm

Given: Configuration space C and initial configuration g

G.init(qo)
repeat

sample random
Grand — RANDOM_CONFIG(C) < configuration
Gnear <— NEAREST(G, qmnd)

G.add_edge(gnear; Grand)
until condition

q0 drand

tree constructed so far



RRTs: General Algorithm

Given: Configuration space C and initial configuration g

G.init(qo)

repeat

Qrand — RANDOM—CONFIG(C) Find closest vertex in G
Inear < NEAREST(G, ¢rana) €= using a distance

G.add_edge(qnears Qrand) function
until condition p: CxC—10,00)
Qnear
@

q0 drand



RRTs: General Algorithm

Given: Configuration space C and initial configuration g

G.init(qo)

repeat

Grand — RANDOM_CONFIG(C)
Anear < NEAREST(Ga Q'ra,nd)

G-add edge(gnear; Grana) e SOOI Tncar WIED Grand

until condition

Qnear

q0 drand



Extension of the Tree: Constraints

« Need to consider obstacles: Check local connection for
collisions and add edge only if path collision-free

« Use fixed incremental step size so that the likelihood of a
collision-free path is increased

« Terminate when ¢,,.,, is close to the desired g,

b
—
—
—
—
—



Bias Towards the Goal

- During tree expansion, pick the goal instead of a random
node with some probability (5-10%)

« Why not picking the goal at each iteration?

- Avoiding running into local minima (due to obstacles or
other constraints) instead of exploring the space



Bidirectional RRTs

« High-dimensional, complex motion planning problems
require more effective methods: bidirectional search

- Grow two RRTs, one from gy and one from q¢

« In every other step, try to extend each tree
towards q,,.,, Of the other tree



RRT-Connect: Basic Concept

Grow two trees: from start and end node (start and goal
configurations of the robot)

Pick a random configuration: ¢rqnd
Find the nearest node in one tree: qnear

Extend the tree from the nearest node by taking a step
towards the random node to get Gnew

Extend the other tree towards that ¢,y from nearest node
in the tree

Return the solution path when the distance between ¢ ew
and the nearest node in the second tree is close enough




Extend Function

Returns

« Trapped: Not possible to extend the tree due to collisions
or constraints

- Extended: Performed a step from @neqr towards Qrand,
generated Gnew

- Reached: Trees connected, path found



RRT-Connect

RRT_CONNECT (qmiz‘, ngal) {
T, init(q,,); Ty init(qg,.);
fork= 1toK do K=max number of iterations
¢ =RANDOM CONFIG();
if not (EXTEND(T, q,,,.) = Trapped) then
q,.,) = Reached) then
Return PATH(T a T7,); Success: trees connected
SWAP(T,, Tp);
Return Failure; Max number of iterations reached

j

First tree has been

extended, try to if (EXTEND(T},

extend second tree

[Kuffner&Lavalle, ICRA 2000]



RRTs - Properties (1)

Good balance between greedy search and exploration
Effective for high-dimensional configuration spaces

Produce non-optimal paths: solutions are typically jagged
and may be overly long

Post-processing such as smoothing is necessary
Generated paths are not repeatable and unpredictable
Rely on a distance metric (e.g., Euclidean)



RRTs - Properties (2)

- Probability of finding a solution if one exists approaches 1
(probabilistic completeness)

- Unknown rate of convergence

« When there is no solution (path is blocked due to obstacles
or other constraints), the planner may run forever

- To avoid endless runtime, the search is stopped after a
certain number of iterations



Considering Constraints for Humanoid
Motion Planning

 When randomly sampling configurations, most of them will
not be valid since they cause the robot to lose its balance

« Use a set of predetermined statically stable double support
configurations from which to sample Qrand

* In the extend function: Check Gnew for joint limits, self-
collision, collision with obstacles, and whether it is
statically stable



RRT-Connect: Considering Constraints

« Check for constraint violation in configuration space
« Smooth path after a solution is found

o Grand from DS-Database

_________ , found solution path
. smoothed path

-
-
-

Qnew / LA, 6=
Sl e’

/ ——
qstart [/ === dgoal

y configurations with NN gl T o 1
violated constraints




Path Execution: Pick and Place




Past Execution: Grabbing Into a Cabinet




Goal Configuration

 How to actually determine the robot’s goal configuration for
a given manipulation task?

« Use inverse reachability maps (see previous chapter)

all valid goal configurations
for the same desired end effector pose



Literature Motion Planning
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Mirabel, Tonneau, Fernbach, Seppala, Campana, Mansard, and Lamiraux,
IEEE/ RSJ] Int. Conf. on Int. Robots and Systems (IROS), 2016

* RRT-Connect: An Efficient Approach to Single-Query Path Planning
Kuffner and LaValle , IEEE International Conference on Robotics & Automation (ICRA), 2000

* Whole-Body Motion Planning for Manipulation of Articulated Objects
Burget, Hornung, and Bennewitz,
IEEE International Conference on Robotics & Automation (ICRA), 2013



Trajectory Generation



Motivation

* Sampling-based planning typically produces only paths

* Assumes static obstacles and finds a collision-free path

* However, robots exist in the spatial and temporal world
* Paths need to be parameterized with time

* The optimal trajectory depends on the constraints on the
velocities, torques, etc. of the robot joints



Trajectory

* Adds time parameterization to path
—Initial and final times
—Time optimality
* Specifies velocity, acceleration, jerk or torque along path

P3
G ——G

P1

; o o

t0 tf 0 t1 2 3 tf
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Main Trajectory Categories

Trajectory
|
| |
One- Multi-
dimensional dimensional
| |
| | | |
Point to Point Multi-Point Point to Point Multi-Point

— Interpolation

—Approximation

— Interpolation

—Approximation




General Objectives of Trajectory
Parameterization in Joint Space

* Joint positions (gq) and velocities (¢) should be differentiable

* Joint accelerations (g) should be at least continuous, or
preferably differentiable for minimum jerk

* At the same time, the trajectory should be time-optimal



Point-to-Point Motion

* Define initial and final positions: g, at t, and g, at t;
(position along computed path)

°* No intermediate waypoints

* Specify start and end constraints

* Consider acceleration boundaries for smooth motion

* Basis for more complex motion profiles



Constant Velocity Profile

Position Profile: g(t) from 0 to nt

* Most simple profile
¢ Linear ?’f
* q(t) = ap + ay (t — t) =" Position

* We can specify either time |
constraints or maximum velocity

q(t)

Velocity

Acceleration Profile: Zero Acceleration

q(t)

Acceleration

Time (s)



Constant Velocity Profile

Position Profile: g(t) from 0 to nt

°* q(t) =ag+a(t—ty)
* Consider time constraints P
* Position g, at initial time ¢, "~ Position

Velocity Profile: Constant Velocity

* Position g, at final time t;

q(t)

Velocity

Acceleration Profile: Zero Acceleration

q(t)

Acceleration

Time (s)



Constant Velocity Profile

q(t) = ag + a,(t —ty)
From position g, at initial time ¢,
q(to) = qo = ag

Ao = (o

q(t)

Position Profile: g(t) from 0 to nt

Position

Velocity Profile: Constant Velocity

Velocity

Acceleration Profile: Zero Acceleration

Acceleration

Time (s)




Constant Velocity Profile

q(t) = ag + a,(t —ty)
To position g, at final time t;

q(t;) =q, =ag+a,(t; —tp)

- A
a, = d1—q0 _ 294
t,—to At

q(t) = i—i’ = q, (constant velocity)

q(t)

Po

sition Profile: q(t) from 0 ton

Position

Velo:

city Profile: Constant Velocity

Velocity

Acce

le

ration Profile: Zero Acceleration

Acceleration

Time (s)




Constant Velocity Profile

q(t) = ap + a,(t —ty)
q(t) = i—z = a, (constant velocity)
Acceleration g(t) =0 for t, <t <t

However, ¢(t) is undefined for
t =ty t =1t

Leads to jerks at the start and end

Introduces heavy loads on the
actuators

Po

sition Profile: q(t) from 0 ton

Position

Velocity Profile: Constant Velocity

Velocity

Accele

ration Profile: Zero Acceleration

Acceleration

Time (s)




Trapezoidal Profile

Trapezoidal Profile: Position

* Fast, simple, and widely used
* Respects velocity and acceleration

limits " position
* Motion divided into 3 phases e ot ey

—Acceleration phase

—Constant velocity phase TEToR

—Deceleration phase i — W'mda'Pfﬁéﬁ:']eration

* If motion duration too low, then no @ =
constant velocity phase




Trapezoidal Profile — Acceleration Phase

Acceleration t € [0, T,]
qq(t) = ay + ast + a,t?
q,(t) = a; + 2a,t

4o (t) = 2a,

a,,a,, a, defined by the constraints
on initial position g, and velocity v,,
and the maximum velocity v,

_ _ — Um
Ay = qo,aqy = 0,a, = _ZTa

(
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Trapezoidal Profile — Const. Velocity Phase

* Constant velocity ¢t € [T,, t; — T,] -
LA =0t /
") =q . _ Position

oidal Profile: Veloc

Py

¢ éic(t) =0
* For velocity to be continuous,
CIC(Ta) — C.la(Ta) — € = Un VeIoci

* For position to be continuous ~ Accelerat
vaa : ;Z; cceleration

2

qc(Ty) = qa(Ty) = co = qo —

Time (s)



Trapezoidal Profile — Deceleration Phase

Braking/deceleration t € [t; — T, t;]
qy(t) = by + byt + b,t?

q,(t) = by + 2b,t

Gp () = 2b,

With dp (tl) =0, g (tl - Ta) — C.Ic(tl — Ta)l :
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Trapezoidal Profile

* Derived trajectory in position for all
3 phases

* Trapezoidal profile is commonly used

in many robotic systems
* T, determined in different ways
* Maximum velocity constraint
°* Maximum acceleration constraint

Trapezoidal Profile: Position

Position

Trapezoidal Profile: Velocity

Py

Veloci

Trapezoidal Profile: Acceleration
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Multi-Dimensional Trajectories

* Robotic manipulators have multiple degrees of freedom
* Typical robot trajectories span high-dimensional
coordinated motions

* All joint motions have to be coordinated for smooth and
collision-free motions



Time Synchronization of Multi-dimensional

Trajectories in Joint Space

* Different joints can have different maximum velocities/
accelerations, different desired displacements

* All joints share same motion duration

* Time synchronization ensures coordinated,
simultaneous actions

* Common duration determined by joint with longest
motion duration

°* Energy conserved using minimal necessary acceleration
and velocity



Unsynchronized Trajectories

* Assume robot arm with 3 joints J1,
J2, 13 and individual desired
changes and maximum velocities

—J1: q1y = 0,91 = 30°% V14, = 6deg/s

—J2: q2¢ = 0,92 = 60°, V2,4 = 5deg/s
—J13: q3¢ = 0,93f = 90°,v3,,4x = 8deg/s

* With unsynchronized motion, all joints

<

reach maximum acceleration - — ety
_ _ _ 2 50
almax - azmax - a3max - 1deg/S

* J1 reaches final configuration quickest

* ]J3 reaches slowest R T e

ﬁﬁﬁﬁﬁﬁ



Time Synchronization of Trajectories

* Compute longest trajectory duration
Tsync

* Calculate stretching factor
T; = ti/TsynC where L is the
unsynchronized time for joint /




Multi-Point Trajectory Generation

* Typically motion paths consists of not just S and G, but
intermediate waypoints P1, P2, ...

* Stopping at each point causes time inefficiency
* Real tasks need smooth, uninterrupted motion
* No need to zero velocity at intermediate points

P1 G

S P2



Multi-Point Trajectory Generation

* Use polynomials to smoothly connect waypoints

* Piecewise cubic trajectory between waypoints
¢i(t) = a;i(t — ;) + bi(t — ;)% + c;(t — t;) + d;

* 4 unknown coefficients per segment: a;, b;, c;, d;

* Solve for coefficients using boundary conditions

* Match position at each segment boundary
¢i(ti) = ai, qi(tit1) = Qi+



Summary

* Definition of basic concepts for motion planning:
path, trajectory, configuration space, task space

* Collision detection
* Sampling-based planning considering constraints

* Trajectory planning for generating time-parameterized
paths



Literature Trajectory Generation

* Trajectory Planning for Automatic Machines and Robots
Luigi Biagiotti , Claudio Melchiorri, Springer, 2008



