
Motion Planning for Manipulation

Maren Bennewitz, Rohit Menon
Humanoid Robots Lab, University of Bonn

Humanoid Motion Planning
Different approaches based on the task
• Motion planning and trajectory generation for

manipulation (upper limbs)
• Navigation and gait planning for locomotion (lower limbs)
• Whole-body controller ensures balancing during both tasks

Goal of This Chapter
• Introduction to basic concepts: path, trajectory,

configuration space, task space

• Understanding of important components: configuration
space obstacles, collision detection, sampling-based
planning

• Next lecture (Tue June 3!): trajectory generation

Motivation

Figure, “Introducing Helix”, 02/2025, www.youtube.com/watch?v=Z3yQHYNXPws

Motivation
• How to reach a target object such

that the arm can manipulate it?
• How to reach such that the arm

motion is collision-free in a
cluttered environment?

• How to reach such that the arm
motion is smooth smooth?

• How to reach such that the path
obeys temporal constraints?

[Sundaralingam et al., "Curobo:
Parallelized Collision-Free Robot Motion
Generation”, ICRA, 2023]

Motion Phases for Grasping Tasks

Initial
Pose

Pre-Grasp
Pose

Grasp
Pose

Gripper
Close

Post-Grasp
Pose [“MoveIt! Pick and Place Demo”, 07/2018,

www.youtube.com/watch?v=QBJPxx_63Bs]

Place &
Release

Steps in Manipulation Motion Planning

• Define start and goal end-effector poses

• Define intermediate poses if needed

• Add constraints if necessary

• Generate a collision-free arm motion path

• Parameterize a trajectory from the path

Motion Planning

Inverse
Kinematics

Solver
Collision
Checker

Initial Pose 𝑝!

Goal Pose 𝑝"

Path Planner
in Joint Space

Constraints

Goal
Joint 𝑞"

Initial
Joint 𝑞!

Configuration
[𝑞#, 𝑞$,…]

Collision Information
about [𝑞#, 𝑞$,…]

Obstacle
Information

Trajectory
Generator

Environment

Collision-Free
Path

[𝑞! , 𝑞#, 𝑞$,…, 𝑞"]

Collision-Free
Trajectory

[𝑞! 𝑡' , 𝑞# 𝑡# , 𝑞$ 𝑡$,
… , 𝑞"(𝑡")]

Motion Planning

Inverse
Kinematics

Solver
Collision
Checker

Initial Pose 𝑝!

Goal Pose 𝑝"

Constraints

Goal
Joint 𝑞"

Initial
Joint 𝑞!

Configuration
[𝑞#, 𝑞$,…]

Collision Information
about [𝑞#, 𝑞$,…]

Obstacle
Information

Trajectory
Generator

Environment

Path Planner
in Joint Space

Collision-Free
Path

[𝑞! , 𝑞#, 𝑞$,…, 𝑞"]

Collision-Free
Trajectory

[𝑞! 𝑡' , 𝑞# 𝑡# , 𝑞$ 𝑡$,
… , 𝑞"(𝑡")]

Motion Planning

Inverse
Kinematics

Solver
Collision
Checker

Initial Pose 𝑝!

Goal Pose 𝑝"

Path Planner
in Joint Space

Constraints

Goal
Joint 𝑞"

Initial
Joint 𝑞!

Configuration
[𝑞#, 𝑞$,…]

Collision Information
about [𝑞#, 𝑞$,…]

Obstacle
Information

Trajectory
Generator

Environment

Collision-Free
Path

[𝑞! , 𝑞#, 𝑞$,…, 𝑞"]

Collision-Free
Trajectory

[𝑞! 𝑡' , 𝑞# 𝑡# , 𝑞$ 𝑡$,
… , 𝑞"(𝑡")]

Motion Planning

Inverse
Kinematics

Solver
Collision
Checker

Initial Pose 𝑝!

Goal Pose 𝑝"

Path Planner
in Joint Space

Constraints

Goal
Joint 𝑞"

Initial
Joint 𝑞!

Configuration
[𝑞#, 𝑞$,…]

Collision Information
about [𝑞#, 𝑞$,…]

Obstacle
Information

Trajectory
Generator

Environment

Collision-Free
Path

[𝑞! , 𝑞#, 𝑞$,…, 𝑞"]

Collision-Free
Trajectory

[𝑞! 𝑡' , 𝑞# 𝑡# , 𝑞$ 𝑡$,
… , 𝑞"(𝑡")]

Concepts Needed for Motion Planning

• What is a path?

• What is a trajectory?

• What different kinds of robot spaces exist?

• How to plan a path?

• Ho to perform collision checking?

• How to generate a trajectory?

Path
• Defines geometric sequence of positions
• Lacks timing and dynamic information
• Can be
–Point to point
–Multi-point

S

G

S

G

P1

P2

P3

Trajectory
• Adds time parameterization to path
–Initial and final times
–Time optimality

• Specifies velocity, acceleration, jerk or torque along path

S

G

S

t0 tf

G

P1
P2

P3

t0 t1 t2 t3 tf

Robot Spaces
• Robots operate in multi-dimensional spaces
–Configuration space (joint space): Space formed by

the combination of robot joint angles
–Task space (Cartesian space): Space described by end-

effector position (𝐑!) and orientation (𝐒𝐎(3)), both (𝐒𝐄(3))
–Workspace: Actual physical region that the end-effector

can reach (𝐑" for mobile robot base, 𝐑! for arms)
• Real-world tasks are specified in task spaces
• However, robots are controlled in configuration space
• Obstacle regions are typically given workspace

Task Space
• More intuitive than joint space for manipulation planning
• Controls end-effector pose (position, orientation)
• Enables direct control of robot's environmental interaction
• Crucial for grasping, tool use, and human-robot

collaboration

Task Space Motion: Pre-Grasp to Grasp
• End-effector must linearly approach the object
• Interpolate in task space from 𝑝# to 𝑝$ keeping the gripper

orientation fixed
• Compute inverse kinematics
[𝑞# = 𝐼𝐾(𝑝#), 𝑞" = 𝐼𝐾(𝑝"), … , 𝑞$ = 𝐼𝐾(𝑝$)]

Task Space
Motion

[“MoveIt! Pick and Place Demo”, 07/2018,
www.youtube.com/watch?v=QBJPxx_63Bs]

𝑝# 𝑝$

Pre-Grasp Pose Grasp Pose

Configuration Space (C-Space)
• Represents the space of the robot’s joint angle

configurations
• For a robot with n joints, its configuration space is an
n-dimensional space

• High-dimensional, capturing all possible configurations
• Essential for collision checking and motion planning

Example: Initial to Pre-Grasp
• Start and goal poses (𝑝#, 𝑝$) defined in task space
• Compute inverse kinematics 𝑞# = 𝐼𝐾(𝑝#), 𝑞$ = 𝐼𝐾(𝑝$)
• Then, compute a path from 𝑞# to 𝑞$ in joint space
• In case of obstacles, generate a collision-free path
[𝑞#, 𝑞", … , 𝑞$] in joint space

C-Space
Motion

[“MoveIt! Pick and Place Demo”, 07/2018,
www.youtube.com/watch?v=QBJPxx_63Bs]

𝑝#
𝑝$

C-Space of a Two-Joint Planar Arm
• Consider a 2-joint planar arm with no joint limits
• Each joint angle 𝜃% corresponds to a point on circle 𝑆#

• C-Space is 𝑆#x 𝑆# = 𝑇"corresponding to a 2D torus
• Configuration 𝑞 in C-space consists of 2 angles 𝑞 = 𝜃#, 𝜃"

[Choset et al., Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT press, 2005]

Workspace of a Two-Joint Planar Arm
• For the 2-joint planar arm, the workspace is a 2D torus,

i.e., a subset of ℝ"

• All points in the 2D torus are reachable with two different
configurations: elbow-up or elbow-down

[Choset et al., Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT press, 2005]

C-Space Obstacles and Free Space
• Typically, complete description of the robot’s geometry and

of its workspace W is provided
• Let 𝑂 ⊂ 𝑊 represent the workspace obstacle region
• Let 𝐴(𝑞) ⊂ 𝑊 denote set of points occupied by the robot

when in configuration 𝑞 ∈ 𝐶
• C-space obstacle: 𝐶&'(= 𝑞 ∈ 𝐶 𝐴 𝑞 ∩ 𝑂 ≠ ∅}
• Free C-space: 𝐶)*++ = 𝐶\𝐶&'(

Workspace Obstacles to C-Space Obstacles
• Consider circular mobile robot with single

polygonal obstacle as shown
• “Slide” the robot around the obstacle to find

the constraints the obstacle places on the
configuration of the robot

• Resulting obstacle in C-space
• Motion planning for circular robot in top figure

is equivalent to motion planning for point in
C-space

[Choset et al., Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT press, 2005]

Workspace and C-Spaces for Different
Mobile Robots

[Choset et al., Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT press, 2005]

What about Transforming Workspace
Obstacles to C-Space for n-Joint Arms?
• For circular mobile robots, converting workspace obstacles

to C-space is relatively trivial due to
–Symmetry of the robot
–Workspace and C-space being low dimensional ℝ"

• Robot arms have workspace in ℝ! and task space in SE(3)
• C-space is Τ, with 𝑛 number of joints
• Hence, conversion of workspace obstacles to C-space is

computationally infeasible

Geometric Path Planning Problem
Given
• Robot’s configuration space C
• Robot’s workspace𝑊
• Obstacle region 𝑂 ⊂ 𝑊
• Initial configuration q- ∈ 𝐶)*++
• Goal configuration q. ∈ 𝐶)*++

Goal
For the query (q-, q.), compute a collision-free path
[𝑞/ , 𝑞#, 𝑞",…, 𝑞$] in the configuration space

Motion Planning Complexity
• Not easy to compute 𝐶&'(and 𝐶)*++
• Exponential dependence on C-space dimensionality
• Two approaches: Combinatorial and Sampling
• Combinatorial algorithms
–Complete, i.e., either find a solution or will correctly

report that no solution exists
–Exact, i.e., find paths through C-space w/o resorting to

approximations
–However, NP-hard

Motion Planning Complexity
• Sampling-based approach
–Weaker guarantee: Will find a solution eventually if one

exists, but no guarantee on failure report in finite time in
case none exists
–Approximate: Uses approximation of C-space for

collision checking

Sampling-Based Motion Planning
• Avoid explicit construction of the obstacle configuration

space 𝐶&'(
• Instead, perform search that probes C-space with sampling
• Collision checking without exact geometric models

Collision
Checker

Sampling-Based Motion
Planning

(C-Space Sampling)

Configuration in C-Space 𝑞!"#$

Collision Information About 𝑞!"#$

Obstacle
Information

EnvironmentGeometric
Model

Geometric Models
• Representations for known objects, i.e., robot and known

obstacles
–Primitives (rectangle, cylinder, box, sphere)
–Meshes

• Representations for unknown objects, i.e., sensed obstacles
–Point clouds
–Occupancy maps

• See Chapter 3 for more details on 3D world representations

Collision Avoidance

[Tech United Eindhoven, “Reactive Collision Avoidance With the AMIGO Robot”, 01/2016,
 www.youtube.com/watch?v=7GcLU9l65eM.]

Collision Detection
• For a particular configuration 𝑞 ∈ 𝑇,, check if 𝑞 ∈ 𝐶)*++

or 𝑞 ∈ 𝐶&'(
• Collision detection can be a continuous or Boolean function
• Boolean function 𝜙: 𝐶 → {𝑇𝑅𝑈𝐸, 𝐹𝐴𝐿𝑆𝐸}

𝑞 ∈ 𝐶&'(→ 𝜙 𝑞 = 𝑇𝑅𝑈𝐸, 𝑒𝑙𝑠𝑒 𝐹𝐴𝐿𝑆𝐸
• Boolean functions typically used in sampling-based

planners for accepting or rejecting a 𝑞 sampled from 𝑇,

• Distance function 𝑑: 𝐶 → [0,∞)
• Distance function used for optimization-based planning

where 𝑑 is used to assign a cost for 𝑞

Two-Phase Collision Detection
• For n-joint robots like arms collision detection is a two-

phase process
• Broad Phase:
–Avoid expensive computation for links far away from

each other
–Place simple bounding boxes around each links
–Perform simple overlap test to determine whether costly

checking is needed

Two-Phase Collision Detection
• Narrow Phase:
–Further process individual pairs of bodies that overlap in

broad-phase check
–Perform more expensive checking for collision

Sampling-Based Motion Planning
Different types of sampling-based planners
• Multi-query (e.g., probabilistic roadmap approach)
–Constructs a “roadmap” once to map the 𝐶)*++
–Multiple queries in same environment using the roadmap

• Single-query (e.g., RRTs)
–Build tree data structures on the fly for a given query
–Explore part of C-space to solve specific query as fast as

possible

Rapidly Exploring Random Trees (RRTs)
• Explore the configuration space by expanding incrementally

from an initial configuration
• Explored space corresponds to a tree rooted at the initial

configuration
• Basic principle: Sample configuration and compute local

connection to nearest neighbor
Goal Goal

RRTs: General Algorithm
Given: Configuration space C and initial configuration q0

qrandq0

tree constructed so far

q0

sample random
configuration

RRTs: General Algorithm
Given: Configuration space C and initial configuration q0

Find closest vertex in G
using a distance
function

q0
qrand

qnear

q0

RRTs: General Algorithm
Given: Configuration space C and initial configuration q0

Connect qrand with qnear
using a local planner

q0
qrand

qnear

qnear qrand

q0

Extension of the Tree: Constraints
• Need to consider obstacles: Check local connection for

collisions and add edge only if path collision-free
• Use fixed incremental step size so that the likelihood of a

collision-free path is increased
• Terminate when qnew is close to the desired qgoal

q0 qrand

qnear ε

qnew

qnew qgoal

Bias Towards the Goal
• During tree expansion, pick the goal instead of a random

node with some probability (5-10%)
• Why not picking the goal at each iteration?
• Avoiding running into local minima (due to obstacles or

other constraints) instead of exploring the space

Bidirectional RRTs
• High-dimensional, complex motion planning problems

require more effective methods: bidirectional search
• Grow two RRTs, one from qI and one from qG

• In every other step, try to extend each tree
towards of the other tree

q0 qG

RRT-Connect: Basic Concept
• Grow two trees: from start and end node (start and goal

configurations of the robot)
• Pick a random configuration:
• Find the nearest node in one tree:
• Extend the tree from the nearest node by taking a step

towards the random node to get
• Extend the other tree towards that from nearest node

in the tree
• Return the solution path when the distance between

and the nearest node in the second tree is close enough

Extend Function
Returns
• Trapped: Not possible to extend the tree due to collisions

or constraints

• Extended: Performed a step from towards ,
generated

• Reached: Trees connected, path found

RRT-Connect

RI 16-735, Howie Choset with slides from James Kuffner

Basic RRT-Connect

RRT_CONNECT (qinit, qgoal) {
Ta.init(qinit); Tb.init(qgoal);
for k = 1 to K do

qrand = RANDOM_CONFIG();
if not (EXTEND(Ta, qrand) = Trapped) then

if (EXTEND(Tb, qnew) = Reached) then
Return PATH(Ta, Tb);

SWAP(Ta, Tb);
Return Failure;

}

Instead of switching, use Ta as smaller tree. This helped James a lot

[Kuffner&Lavalle, ICRA 2000]

K=max number of iterations

First tree has been
extended, try to
extend second tree

Success: trees connected

Max number of iterations reached

RRTs – Properties (1)
• Good balance between greedy search and exploration
• Effective for high-dimensional configuration spaces
• Produce non-optimal paths: solutions are typically jagged

and may be overly long
• Post-processing such as smoothing is necessary
• Generated paths are not repeatable and unpredictable
• Rely on a distance metric (e.g., Euclidean)

RRTs – Properties (2)
• Probability of finding a solution if one exists approaches 1

(probabilistic completeness)
• Unknown rate of convergence
• When there is no solution (path is blocked due to obstacles

or other constraints), the planner may run forever
• To avoid endless runtime, the search is stopped after a

certain number of iterations

Considering Constraints for Humanoid
Motion Planning
• When randomly sampling configurations, most of them will

not be valid since they cause the robot to lose its balance
• Use a set of predetermined statically stable double support

configurations from which to sample
• In the extend function: Check for joint limits, self-

collision, collision with obstacles, and whether it is
statically stable

RRT-Connect: Considering Constraints
• Check for constraint violation in configuration space
• Smooth path after a solution is found

f
found solution path
smoothed path

configurations with
violated constraints

Path Execution: Pick and Place

Past Execution: Grabbing Into a Cabinet

Goal Configuration
• How to actually determine the robot’s goal configuration for

a given manipulation task?
• Use inverse reachability maps (see previous chapter)

all valid goal configurations
for the same desired end effector pose

Literature Motion Planning
• Principles of Robot Motion: Theory, Algorithms, and Implementations,

Choset, Lynch, Hutchinson, Kantor, and Burgard, MIT press, 2005

• Planning Algorithms, LaValle, Cambridge University Press, 2006

• Motion planning. In Springer Handbook of Robotics ,
Kavraki and LaValle (pp. 139-162), Springer International Publishing, 2016

• Curobo: Parallelized Collision-Free Robot Motion Generation,
Sundaralingam, Hari, Fishman, Garrett, Van Wyk, Blukis, Millane, Oleynikova, Handa,
Ramos, and Ratliff, IEEE/RAS Int. Conf. on Robotics and Automation (ICRA), 2023

• HPP: A New Software for Constrained Motion Planning,
Mirabel, Tonneau, Fernbach, Seppälä, Campana, Mansard, and Lamiraux,
IEEE/ RSJ Int. Conf. on Int. Robots and Systems (IROS), 2016

• RRT-Connect: An Efficient Approach to Single-Query Path Planning
Kuffner and LaValle , IEEE International Conference on Robotics & Automation (ICRA), 2000

• Whole-Body Motion Planning for Manipulation of Articulated Objects
Burget, Hornung, and Bennewitz,
IEEE International Conference on Robotics & Automation (ICRA), 2013

Trajectory Generation

Motivation
• Sampling-based planning typically produces only paths
• Assumes static obstacles and finds a collision-free path
• However, robots exist in the spatial and temporal world
• Paths need to be parameterized with time
• The optimal trajectory depends on the constraints on the

velocities, torques, etc. of the robot joints

Trajectory
• Adds time parameterization to path
–Initial and final times
–Time optimality

• Specifies velocity, acceleration, jerk or torque along path

S

G

S

t0 tf

G

P1
P2

P3

t0 t1 t2 t3 tf

Main Trajectory Categories
Trajectory

One-
dimensional

Point to Point Multi-Point

Interpolation

Approximation

Multi-
dimensional

Point to Point Multi-Point

Interpolation

Approximation

General Objectives of Trajectory
Parameterization in Joint Space
• Joint positions (𝑞) and velocities (�̇�) should be differentiable
• Joint accelerations (�̈�) should be at least continuous, or

preferably differentiable for minimum jerk
• At the same time, the trajectory should be time-optimal

Point-to-Point Motion
• Define initial and final positions: 𝑞2 at 𝑡2 and 𝑞# at 𝑡#

(position along computed path)
• No intermediate waypoints
• Specify start and end constraints
• Consider acceleration boundaries for smooth motion
• Basis for more complex motion profiles

Constant Velocity Profile
• Most simple profile
• Linear
• 𝑞 𝑡 = 𝑎2 + 𝑎#(𝑡 − 𝑡2)
• We can specify either time

constraints or maximum velocity

Position

Velocity

Acceleration

Constant Velocity Profile
• 𝑞 𝑡 = 𝑎2 + 𝑎#(𝑡 − 𝑡2)
• Consider time constraints
• Position 𝑞2 at initial time 𝑡2
• Position 𝑞# at final time 𝑡#

Position

Velocity

Acceleration

Constant Velocity Profile
• 𝑞 𝑡 = 𝑎2 + 𝑎#(𝑡 − 𝑡2)
• From position 𝑞2 at initial time 𝑡2
• 𝑞 𝑡2 = 𝑞2 = 𝑎2
• 𝑎2 = 𝑞2

Position

Velocity

Acceleration

Constant Velocity Profile
• 𝑞 𝑡 = 𝑎2 + 𝑎#(𝑡 − 𝑡2)
• To position 𝑞# at final time 𝑡#
• 𝑞 𝑡# = 𝑞# = 𝑎2 + 𝑎#(𝑡# − 𝑡2)

• 𝑎# = 3"43#
5"45#

= ∆3
∆5

• �̇� 𝑡 = ∆3
∆5
= 𝑎# (constant velocity)

Position

Velocity

Acceleration

Constant Velocity Profile
• 𝑞 𝑡 = 𝑎2 + 𝑎#(𝑡 − 𝑡2)

• �̇� 𝑡 = ∆3
∆5
= 𝑎# (constant velocity)

• Acceleration �̈� 𝑡 = 0	 for	 𝑡2 < 𝑡 < 𝑡#
• However, �̈� 𝑡 is undefined for
𝑡 = 𝑡2, 𝑡 = 𝑡#

• Leads to jerks at the start and end
• Introduces heavy loads on the

actuators

Position

Velocity

Acceleration

Trapezoidal Profile
• Fast, simple, and widely used
• Respects velocity and acceleration

limits
• Motion divided into 3 phases
–Acceleration phase
–Constant velocity phase
–Deceleration phase

• If motion duration too low, then no
constant velocity phase

Position

Velocity

Acceleration

Trapezoidal Profile – Acceleration Phase
• Acceleration 𝑡 ∈ [0, 𝑇7]
• 𝑞7 𝑡 = 𝑎2 + 𝑎#𝑡 + 𝑎"𝑡"

• �̇�7 𝑡 = 𝑎# + 2𝑎"𝑡
• �̈�7 𝑡 = 2𝑎"
• 𝑎2, 𝑎#, 𝑎" defined by the constraints

on initial position 𝑞2 and velocity 𝑣2,
and the maximum velocity 𝑣8

• 𝑎2 = 𝑞2, 𝑎# = 0, 𝑎" =
9$
":%

Velocity

Acceleration

Position

Trapezoidal Profile – Const. Velocity Phase
• Constant velocity 𝑡 ∈ [𝑇7 , 𝑡# − 𝑇7]
• 𝑞; 𝑡 = 𝑐2 + 𝑐#𝑡
• �̇�; 𝑡 = 𝑐#
• �̈�; 𝑡 = 0
• For velocity to be continuous,

�̇�; 𝑇7 = �̇�7 𝑇7 → 𝑐# = 𝑣8
• For position to be continuous

𝑞; 𝑇7 = 𝑞7 𝑇7 → 𝑐2 = 𝑞2 −
𝑣8𝑇7
2

Velocity

Acceleration

Position

Trapezoidal Profile – Deceleration Phase
• Braking/deceleration 𝑡 ∈ [𝑡# − 𝑇7 , 𝑡#]
• 𝑞' 𝑡 = 𝑏2 + 𝑏#𝑡 + 𝑏"𝑡"

• �̇�' 𝑡 = 𝑏# + 2𝑏"𝑡
• �̈�' 𝑡 = 2𝑏"
• With �̇�' 𝑡# = 0, �̇�' 𝑡# − 𝑇7 = �̇�; 𝑡# − 𝑇7 ,
𝑞' 𝑡# − 𝑇7 = 𝑞; 𝑡# − 𝑇7 and given 𝑞#

• 𝑏2 = 𝑞# −
9$5"&

":%
, b#=

9$5"
:%

, b" = − 9$
":%

Velocity

Acceleration

Position

Trapezoidal Profile
• Derived trajectory in position for all

3 phases
• Trapezoidal profile is commonly used

in many robotic systems
• 𝑇7 determined in different ways
• Maximum velocity constraint
• Maximum acceleration constraint

Velocity

Acceleration

Position

Multi-Dimensional Trajectories
• Robotic manipulators have multiple degrees of freedom
• Typical robot trajectories span high-dimensional

coordinated motions
• All joint motions have to be coordinated for smooth and

collision-free motions

Time Synchronization of Multi-dimensional
Trajectories in Joint Space
• Different joints can have different maximum velocities/

accelerations, different desired displacements
• All joints share same motion duration
• Time synchronization ensures coordinated,

simultaneous actions
• Common duration determined by joint with longest

motion duration
• Energy conserved using minimal necessary acceleration

and velocity

Unsynchronized Trajectories
• Assume robot arm with 3 joints J1,

J2, J3 and individual desired
changes and maximum velocities
– J1: 𝑞1) = 0, 𝑞1* = 30°, 𝑣1+,- = 6𝑑𝑒𝑔/𝑠

– J2: 𝑞2) = 0, 𝑞2* = 60°, 𝑣2+,- = 5𝑑𝑒𝑔/𝑠

– J3: 𝑞3) = 0, 𝑞3* = 90°, 𝑣3+,- = 8𝑑𝑒𝑔/𝑠

• With unsynchronized motion, all joints
reach maximum acceleration
𝑎1+,- = 𝑎2+,- = 𝑎3+,- = 1deg/s.

• J1 reaches final configuration quickest

• J3 reaches slowest

Time Synchronization of Trajectories
• Compute longest trajectory duration
𝑇(<,;

• Calculate stretching factor
𝜏% = 𝑡%/𝑇(<,; where 𝑡% is the
unsynchronized time for joint i

Multi-Point Trajectory Generation
• Typically motion paths consists of not just S and G, but

intermediate waypoints P1, P2, …
• Stopping at each point causes time inefficiency
• Real tasks need smooth, uninterrupted motion
• No need to zero velocity at intermediate points

S

GP1

P2

P3

Multi-Point Trajectory Generation
• Use polynomials to smoothly connect waypoints
• Piecewise cubic trajectory between waypoints

• 4 unknown coefficients per segment:
• Solve for coefficients using boundary conditions
• Match position at each segment boundary

qi(t) = ai(t− ti)
3 + bi(t− ti)

2 + ci(t− ti) + di

Summary
• Definition of basic concepts for motion planning:

path, trajectory, configuration space, task space

• Collision detection

• Sampling-based planning considering constraints

• Trajectory planning for generating time-parameterized
paths

Literature Trajectory Generation
• Trajectory Planning for Automatic Machines and Robots

Luigi Biagiotti , Claudio Melchiorri, Springer, 2008

