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Humanoid Motion Planning
Different approaches based on the task
• Motion planning and trajectory generation for 

manipulation (upper limbs)
• Navigation and gait planning for locomotion (lower limbs)
• Whole-body controller ensures balancing during both tasks



Goal of This Chapter
• Introduction to basic concepts: path, trajectory, 

configuration space, task space

• Understanding of important components: configuration 
space obstacles, collision detection, sampling-based 
planning

• Next lecture (Tue June 3!): trajectory generation



Motivation

Figure, “Introducing Helix”, 02/2025, www.youtube.com/watch?v=Z3yQHYNXPws



Motivation
• How to reach a target object such 

that the arm can manipulate it?
• How to reach such that the arm 

motion is collision-free in a 
cluttered environment?

• How to reach such that the arm 
motion is smooth smooth?

• How to reach such that the path 
obeys temporal constraints?

[Sundaralingam et al., "Curobo: 
Parallelized Collision-Free Robot Motion 
Generation”, ICRA, 2023]



Motion Phases for Grasping Tasks

Initial 
Pose

Pre-Grasp 
Pose

Grasp 
Pose

Gripper 
Close

Post-Grasp 
Pose [“MoveIt! Pick and Place Demo”, 07/2018, 

www.youtube.com/watch?v=QBJPxx_63Bs]

Place & 
Release



Steps in Manipulation Motion Planning

• Define start and goal end-effector poses

• Define intermediate poses if needed

• Add constraints if necessary

• Generate a collision-free arm motion path

• Parameterize a trajectory from the path
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Concepts Needed for Motion Planning

• What is a path?

• What is a trajectory?

• What different kinds of robot spaces exist?

• How to plan a path?

• Ho to perform collision checking?

• How to generate a trajectory?



Path
• Defines geometric sequence of positions
• Lacks timing and dynamic information
• Can be
–Point to point 
–Multi-point

S

G

S

G

P1
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Trajectory
• Adds time parameterization to path
–Initial and final times
–Time optimality

• Specifies velocity, acceleration, jerk or torque along path
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Robot Spaces
• Robots operate in multi-dimensional spaces
–Configuration space (joint space): Space formed by 

the combination of robot joint angles 
–Task space (Cartesian space): Space described by end-

effector position (𝐑!) and orientation (𝐒𝐎(3)), both (𝐒𝐄(3))
–Workspace: Actual physical region that the end-effector 

can reach (𝐑" for mobile robot base, 𝐑! for arms)
• Real-world tasks are specified in task spaces
• However, robots are controlled in configuration space
• Obstacle regions are typically given workspace



Task Space
• More intuitive than joint space for manipulation planning
• Controls end-effector pose (position, orientation)
• Enables direct control of robot's environmental interaction
• Crucial for grasping, tool use, and human-robot 

collaboration



Task Space Motion: Pre-Grasp to Grasp
• End-effector must linearly approach the object
• Interpolate in task space from 𝑝# to 𝑝$ keeping the gripper 

orientation fixed 
• Compute inverse kinematics 
[𝑞# = 𝐼𝐾(𝑝#), 𝑞" = 𝐼𝐾(𝑝"), … , 𝑞$ = 𝐼𝐾(𝑝$ )] 

Task Space 
Motion

[“MoveIt! Pick and Place Demo”, 07/2018, 
www.youtube.com/watch?v=QBJPxx_63Bs]

𝑝# 𝑝$

Pre-Grasp Pose Grasp Pose



Configuration Space (C-Space) 
• Represents the space of the robot’s joint angle 

configurations
• For a robot with n joints, its configuration space is an 
n-dimensional space

• High-dimensional, capturing all possible configurations
• Essential for collision checking and motion planning



Example: Initial to Pre-Grasp
• Start and goal poses (𝑝#, 𝑝$) defined in task space 
• Compute inverse kinematics 𝑞# = 𝐼𝐾(𝑝#), 𝑞$ = 𝐼𝐾(𝑝$ ) 
• Then, compute a path from 𝑞# to 𝑞$ in joint space
• In case of obstacles, generate a collision-free path 
[𝑞#, 𝑞", … , 𝑞$ ] in joint space 

C-Space 
Motion

[“MoveIt! Pick and Place Demo”, 07/2018, 
www.youtube.com/watch?v=QBJPxx_63Bs]

𝑝#
𝑝$



C-Space of a Two-Joint Planar Arm
• Consider a 2-joint planar arm with no joint limits
• Each joint angle 𝜃% corresponds to a point on circle 𝑆#

• C-Space is 𝑆#x 𝑆# = 𝑇"corresponding to a 2D torus
• Configuration 𝑞 in C-space consists of 2 angles 𝑞 = 𝜃#, 𝜃"

[Choset et al., Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT press, 2005]



Workspace of a Two-Joint Planar Arm
• For the 2-joint planar arm, the workspace is a 2D torus, 

i.e., a subset of ℝ"

• All points in the 2D torus are reachable with two different 
configurations: elbow-up or elbow-down

[Choset et al., Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT press, 2005]



C-Space Obstacles and Free Space
• Typically, complete description of the robot’s geometry and 

of its workspace W is provided
• Let 𝑂 ⊂ 𝑊 represent the workspace obstacle region
• Let 𝐴(𝑞) ⊂ 𝑊 denote set of points occupied by the robot 

when in configuration 𝑞 ∈ 𝐶
• C-space obstacle: 𝐶&'( = 𝑞 ∈ 𝐶 𝐴 𝑞 ∩ 𝑂 ≠ ∅}
• Free C-space: 𝐶)*++ = 𝐶\𝐶&'( 



Workspace Obstacles to C-Space Obstacles
• Consider circular mobile robot with single 

polygonal obstacle as shown
• “Slide” the robot around the obstacle to find 

the constraints the obstacle places on the 
configuration of the robot

• Resulting obstacle in C-space
• Motion planning for circular robot in top figure 

is equivalent to motion planning for point in 
C-space

[Choset et al., Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT press, 2005]



Workspace and C-Spaces for Different 
Mobile Robots

[Choset et al., Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT press, 2005]



What about Transforming Workspace 
Obstacles to C-Space for n-Joint Arms?
• For circular mobile robots, converting workspace obstacles 

to C-space is relatively trivial due to
–Symmetry of the robot
–Workspace and C-space being low dimensional ℝ"

• Robot arms have workspace in ℝ! and task space in SE(3)
• C-space is Τ, with 𝑛 number of joints
• Hence, conversion of workspace obstacles to C-space is 

computationally infeasible



Geometric Path Planning Problem
Given
• Robot’s configuration space C
• Robot’s workspace𝑊
• Obstacle region 𝑂 ⊂ 𝑊
• Initial configuration q- ∈ 𝐶)*++
• Goal configuration q. ∈ 𝐶)*++

Goal
For the query (q-, q.), compute a collision-free path 
[𝑞/ , 𝑞#, 𝑞",…, 𝑞$] in the configuration space



Motion Planning Complexity
• Not easy to compute 𝐶&'( and 𝐶)*++
• Exponential dependence on C-space dimensionality
• Two approaches: Combinatorial and Sampling
• Combinatorial algorithms
–Complete, i.e., either find a solution or will correctly 

report that no solution exists
–Exact, i.e., find paths through C-space w/o resorting to 

approximations
–However, NP-hard 



Motion Planning Complexity
• Sampling-based approach
–Weaker guarantee: Will find a solution eventually if one 

exists, but no guarantee on failure report in finite time in 
case none exists
–Approximate: Uses approximation of C-space for 

collision checking



Sampling-Based Motion Planning
• Avoid explicit construction of the obstacle configuration 

space 𝐶&'( 
• Instead, perform search that probes C-space with sampling
• Collision checking without exact geometric models

Collision 
Checker

Sampling-Based Motion 
Planning 

(C-Space Sampling)

Configuration in C-Space 𝑞!"#$

Collision Information About 𝑞!"#$

Obstacle 
Information

EnvironmentGeometric
Model



Geometric Models
• Representations for known objects, i.e., robot and known 

obstacles
–Primitives (rectangle, cylinder, box, sphere)
–Meshes

• Representations for unknown objects, i.e., sensed obstacles
–Point clouds
–Occupancy maps

• See Chapter 3 for more details on 3D world representations



Collision Avoidance

[Tech United Eindhoven, “Reactive Collision Avoidance With the AMIGO Robot”, 01/2016,
 www.youtube.com/watch?v=7GcLU9l65eM.]



Collision Detection
• For a particular configuration 𝑞 ∈ 𝑇,, check if 𝑞 ∈ 𝐶)*++ 

or 𝑞 ∈ 𝐶&'(
• Collision detection can be a continuous or Boolean function
• Boolean function 𝜙: 𝐶 → {𝑇𝑅𝑈𝐸, 𝐹𝐴𝐿𝑆𝐸}

𝑞 ∈ 𝐶&'( → 𝜙 𝑞 = 𝑇𝑅𝑈𝐸, 𝑒𝑙𝑠𝑒 𝐹𝐴𝐿𝑆𝐸
• Boolean functions typically used in sampling-based 

planners for accepting or rejecting a 𝑞 sampled from 𝑇,

• Distance function 𝑑: 𝐶 → [0,∞)
• Distance function used for optimization-based planning 

where 𝑑 is used to assign a cost for 𝑞



Two-Phase Collision Detection
• For n-joint robots like arms collision detection is a two-

phase process
• Broad Phase:
–Avoid expensive computation for links far away from 

each other
–Place simple bounding boxes around each links
–Perform simple overlap test to determine whether costly 

checking is needed



Two-Phase Collision Detection
• Narrow Phase:
–Further process individual pairs of bodies that overlap in 

broad-phase check
–Perform more expensive checking for collision



Sampling-Based Motion Planning
Different types of sampling-based planners
• Multi-query (e.g., probabilistic roadmap approach)
–Constructs a “roadmap” once to map the 𝐶)*++
–Multiple queries in same environment using the roadmap

• Single-query (e.g., RRTs)
–Build tree data structures on the fly for a given query
–Explore part of C-space to solve specific query as fast as 

possible



Rapidly Exploring Random Trees (RRTs)
• Explore the configuration space by expanding incrementally 

from an initial configuration 
• Explored space corresponds to a tree rooted at the initial 

configuration
• Basic principle: Sample configuration and compute local 

connection to nearest neighbor
Goal Goal



RRTs: General Algorithm
Given: Configuration space C and initial configuration q0 

qrandq0

tree constructed so far

q0

sample random 
configuration



RRTs: General Algorithm
Given: Configuration space C and initial configuration q0 

Find closest vertex in G
using a distance 
function

q0
qrand

qnear

q0



RRTs: General Algorithm
Given: Configuration space C and initial configuration q0 

Connect qrand  with qnear 
using a local planner 

q0
qrand

qnear

qnear qrand

q0



Extension of the Tree: Constraints
• Need to consider obstacles: Check local connection for 

collisions and add edge only if path collision-free
• Use fixed incremental step size so that the likelihood of a 

collision-free path is increased
• Terminate when qnew   is close to the desired qgoal 

q0 qrand

qnear ε

qnew

qnew qgoal



Bias Towards the Goal
• During tree expansion, pick the goal instead of a random 

node with some probability (5-10%) 
• Why not picking the goal at each iteration?
• Avoiding running into local minima (due to obstacles or 

other constraints) instead of exploring the space



Bidirectional RRTs
• High-dimensional, complex motion planning problems 

require more effective methods: bidirectional search
• Grow two RRTs, one from qI  and one from qG

• In every other step, try to extend each tree 
towards         of the other tree

q0 qG



RRT-Connect: Basic Concept
• Grow two trees: from start and end node (start and goal 

configurations of the robot)
• Pick a random configuration:
• Find the nearest node in one tree:
• Extend the tree from the nearest node by taking a step 

towards the random node to get 
• Extend the other tree towards that         from nearest node 

in the tree
• Return the solution path when the distance between         

and the nearest node in the second tree is close enough



Extend Function
Returns 
• Trapped: Not possible to extend the tree due to collisions 

or constraints

• Extended: Performed a step from          towards         ,     
generated

• Reached: Trees connected, path found



RRT-Connect

RI 16-735,  Howie Choset with slides from James Kuffner

Basic RRT-Connect

RRT_CONNECT (qinit, qgoal)  {
Ta.init(qinit);   Tb.init(qgoal); 
for k =  1 to K do 

qrand = RANDOM_CONFIG();    
if not (EXTEND(Ta, qrand) = Trapped) then

if (EXTEND(Tb, qnew) = Reached) then
Return PATH(Ta, Tb);

SWAP(Ta, Tb);
Return Failure;

}

Instead of switching, use Ta as smaller tree. This helped James a lot

[Kuffner&Lavalle, ICRA 2000]

K=max number of iterations

First tree has been 
extended, try to 
extend second tree

Success: trees connected

Max number of iterations reached



RRTs – Properties (1)
• Good balance between greedy search and exploration
• Effective for high-dimensional configuration spaces
• Produce non-optimal paths: solutions are typically jagged 

and may be overly long
• Post-processing such as smoothing is necessary
• Generated paths are not repeatable and unpredictable
• Rely on a distance metric (e.g., Euclidean)



RRTs – Properties (2)
• Probability of finding a solution if one exists approaches 1 

(probabilistic completeness)
• Unknown rate of convergence
• When there is no solution (path is blocked due to obstacles 

or other constraints), the planner may run forever
• To avoid endless runtime, the search is stopped after a 

certain number of iterations



Considering Constraints for Humanoid 
Motion Planning
• When randomly sampling configurations, most of them will 

not be valid since they cause the robot to lose its balance
• Use a set of predetermined statically stable double support 

configurations from which to sample
• In the extend function: Check          for joint limits, self-

collision, collision with obstacles, and whether it is 
statically stable



RRT-Connect: Considering Constraints
• Check for constraint violation in configuration space
• Smooth path after a solution is found

f
found solution path
smoothed path

configurations with 
violated constraints



Path Execution: Pick and Place



Past Execution: Grabbing Into a Cabinet



Goal Configuration
• How to actually determine the robot’s goal configuration for 

a given manipulation task?
• Use inverse reachability maps (see previous chapter)

all valid goal configurations
for the same desired end effector pose



Literature Motion Planning
• Principles of Robot Motion: Theory, Algorithms, and Implementations, 

Choset, Lynch, Hutchinson, Kantor, and Burgard, MIT press, 2005

• Planning Algorithms, LaValle, Cambridge University Press, 2006

• Motion planning. In Springer Handbook of Robotics ,
Kavraki and LaValle (pp. 139-162), Springer International Publishing, 2016

• Curobo: Parallelized Collision-Free Robot Motion Generation,
Sundaralingam, Hari, Fishman, Garrett, Van Wyk, Blukis, Millane, Oleynikova, Handa, 
Ramos, and Ratliff, IEEE/RAS Int. Conf. on Robotics and Automation (ICRA), 2023

• HPP: A New Software for Constrained Motion Planning,
Mirabel, Tonneau, Fernbach, Seppälä, Campana, Mansard, and Lamiraux, 
IEEE/ RSJ Int. Conf. on Int. Robots and Systems (IROS), 2016

• RRT-Connect: An Efficient Approach to Single-Query Path Planning
Kuffner and LaValle , IEEE International Conference on Robotics & Automation (ICRA), 2000

• Whole-Body Motion Planning for Manipulation of Articulated Objects
Burget, Hornung, and Bennewitz, 
IEEE International Conference on Robotics & Automation (ICRA), 2013



Trajectory Generation



Motivation
• Sampling-based planning typically produces only paths
• Assumes static obstacles and finds a collision-free path
• However, robots exist in the spatial and temporal world
• Paths need to be parameterized with time
• The optimal trajectory depends on the constraints on the 

velocities, torques, etc. of the robot joints



Trajectory
• Adds time parameterization to path
–Initial and final times
–Time optimality

• Specifies velocity, acceleration, jerk or torque along path

S

G

S

t0 tf

G

P1
P2

P3

t0 t1 t2 t3 tf



Main Trajectory Categories
Trajectory

One-
dimensional

Point to Point Multi-Point

Interpolation

Approximation

Multi-
dimensional

Point to Point Multi-Point

Interpolation

Approximation



General Objectives of Trajectory 
Parameterization in Joint Space
• Joint positions (𝑞) and velocities (�̇�) should be differentiable
• Joint accelerations (�̈�) should be at least continuous, or 

preferably differentiable for minimum jerk
• At the same time, the trajectory should be time-optimal 



Point-to-Point Motion 
• Define initial and final positions: 𝑞2 at 𝑡2 and 𝑞# at 𝑡# 

(position along computed path)
• No intermediate waypoints
• Specify start and end constraints
• Consider acceleration boundaries for smooth motion
• Basis for more complex motion profiles



Constant Velocity Profile
• Most simple profile
• Linear
• 𝑞 𝑡 = 𝑎2 + 𝑎#(𝑡 − 𝑡2)
• We can specify either time 

constraints or maximum velocity

Position

Velocity

Acceleration



Constant Velocity Profile
• 𝑞 𝑡 = 𝑎2 + 𝑎#(𝑡 − 𝑡2)
• Consider time constraints
• Position 𝑞2 at initial time 𝑡2
• Position 𝑞# at final time 𝑡#

Position

Velocity

Acceleration



Constant Velocity Profile
• 𝑞 𝑡 = 𝑎2 + 𝑎#(𝑡 − 𝑡2)
• From position 𝑞2 at initial time 𝑡2
• 𝑞 𝑡2 = 𝑞2 = 𝑎2
• 𝑎2 = 𝑞2

Position

Velocity

Acceleration



Constant Velocity Profile
• 𝑞 𝑡 = 𝑎2 + 𝑎#(𝑡 − 𝑡2)
• To position 𝑞# at final time 𝑡#
• 𝑞 𝑡# = 𝑞# = 𝑎2 + 𝑎#(𝑡# − 𝑡2)

• 𝑎# = 3"43#
5"45#

= ∆3
∆5

• �̇� 𝑡 = ∆3
∆5
= 𝑎# (constant velocity)

Position

Velocity

Acceleration



Constant Velocity Profile
• 𝑞 𝑡 = 𝑎2 + 𝑎#(𝑡 − 𝑡2)

• �̇� 𝑡 = ∆3
∆5
= 𝑎# (constant velocity)

• Acceleration �̈� 𝑡 = 0	 for	 𝑡2 < 𝑡 < 𝑡#
• However, �̈� 𝑡  is undefined for    
𝑡 = 𝑡2, 𝑡 = 𝑡#

• Leads to jerks at the start and end
• Introduces heavy loads on the 

actuators

Position

Velocity

Acceleration



Trapezoidal Profile
• Fast, simple, and widely used
• Respects velocity and acceleration 

limits
• Motion divided into 3 phases
–Acceleration phase
–Constant velocity phase
–Deceleration phase

• If motion duration too low, then no 
constant velocity phase

Position

Velocity

Acceleration



Trapezoidal Profile – Acceleration Phase
• Acceleration 𝑡 ∈ [0, 𝑇7]
• 𝑞7 𝑡 = 𝑎2 + 𝑎#𝑡 + 𝑎"𝑡"

• �̇�7 𝑡 = 𝑎# + 2𝑎"𝑡
• �̈�7 𝑡 = 2𝑎"
• 𝑎2, 𝑎#, 𝑎" defined by the constraints 

on initial position 𝑞2 and velocity 𝑣2, 
and the maximum velocity 𝑣8

• 𝑎2 = 𝑞2, 𝑎# = 0, 𝑎" =
9$
":%

 

Velocity

Acceleration

Position



Trapezoidal Profile – Const. Velocity Phase
• Constant velocity 𝑡 ∈ [𝑇7 , 𝑡# − 𝑇7]
• 𝑞; 𝑡 = 𝑐2 + 𝑐#𝑡
• �̇�; 𝑡 = 𝑐#
• �̈�; 𝑡 = 0
• For velocity to be continuous,

�̇�; 𝑇7 = �̇�7 𝑇7 → 𝑐# = 𝑣8
• For position to be continuous

𝑞; 𝑇7 = 𝑞7 𝑇7 → 𝑐2 = 𝑞2 −
𝑣8𝑇7
2

   

Velocity

Acceleration

Position



Trapezoidal Profile – Deceleration Phase
• Braking/deceleration 𝑡 ∈ [𝑡# − 𝑇7 , 𝑡#]
• 𝑞' 𝑡 = 𝑏2 + 𝑏#𝑡 + 𝑏"𝑡"

• �̇�' 𝑡 = 𝑏# + 2𝑏"𝑡
• �̈�' 𝑡 = 2𝑏"
• With �̇�' 𝑡# = 0, �̇�' 𝑡# − 𝑇7 = �̇�; 𝑡# − 𝑇7 , 
𝑞' 𝑡# − 𝑇7 = 𝑞; 𝑡# − 𝑇7 and given 𝑞# 

• 𝑏2 = 𝑞# −
9$5"&

":%
, b#=

9$5"
:%

, b" = − 9$
":%

   

Velocity

Acceleration

Position



Trapezoidal Profile 
• Derived trajectory in position for all 

3 phases
• Trapezoidal profile is commonly used 

in many robotic systems
• 𝑇7 determined in different ways
• Maximum velocity constraint
• Maximum acceleration constraint

Velocity

Acceleration

Position



Multi-Dimensional Trajectories
• Robotic manipulators have multiple degrees of freedom
• Typical robot trajectories span high-dimensional 

coordinated motions
• All joint motions have to be coordinated for smooth and 

collision-free motions



Time Synchronization of Multi-dimensional 
Trajectories in Joint Space
• Different joints can have different maximum velocities/ 

accelerations, different desired displacements
• All joints share same motion duration
• Time synchronization ensures coordinated, 

simultaneous actions
• Common duration determined by joint with longest 

motion duration
• Energy conserved using minimal necessary acceleration 

and velocity



Unsynchronized Trajectories
• Assume robot arm with 3 joints J1, 

J2, J3 and individual desired 
changes and maximum velocities
– J1: 𝑞1) = 0, 𝑞1* = 30°, 𝑣1+,- = 6𝑑𝑒𝑔/𝑠

– J2: 𝑞2) = 0, 𝑞2* = 60°, 𝑣2+,- = 5𝑑𝑒𝑔/𝑠

– J3: 𝑞3) = 0, 𝑞3* = 90°, 𝑣3+,- = 8𝑑𝑒𝑔/𝑠

• With unsynchronized motion, all joints 
reach maximum acceleration
𝑎1+,- = 𝑎2+,- = 𝑎3+,- = 1deg/s.

• J1 reaches final configuration quickest

• J3 reaches slowest



Time Synchronization of Trajectories
• Compute longest trajectory duration 
𝑇(<,;

• Calculate stretching factor 
𝜏% = 𝑡%/𝑇(<,; where 𝑡% is the 
unsynchronized time for joint i



Multi-Point Trajectory Generation
• Typically motion paths consists of not just S and G, but 

intermediate waypoints P1, P2, …
• Stopping at each point causes time inefficiency
• Real tasks need smooth, uninterrupted motion
• No need to zero velocity at intermediate points

S

GP1

P2

P3



Multi-Point Trajectory Generation
• Use polynomials to smoothly connect waypoints
• Piecewise cubic trajectory between waypoints

• 4 unknown coefficients per segment: 
• Solve for coefficients using boundary conditions
• Match position at each segment boundary

qi(t) = ai(t− ti)
3 + bi(t− ti)

2 + ci(t− ti) + di



Summary
• Definition of basic concepts for motion planning: 

path, trajectory, configuration space, task space

• Collision detection

• Sampling-based planning considering constraints

• Trajectory planning for generating time-parameterized 
paths



Literature Trajectory Generation
• Trajectory Planning for Automatic Machines and Robots

Luigi Biagiotti , Claudio Melchiorri, Springer, 2008


