Humanoids Robotics

Introduction to Least Squares

Maren Bennewitz
Goal of This Lecture

- Introduction to least squares error minimization
- Application to odometry calibration (today) and later also to camera calibration and whole-body self-calibration of humanoids
Odometry

- Estimation of the change of the robot position while the robot is moving using data from internal motion sensors
- Robots typically execute motion commands inaccurately
- **Systematic errors** might occur, i.e., due to wear
- Use least squares to correct the resulting drift
Motion Drift

Odometry calibration with least squares helps to reduce such systematic errors
Least Squares (LSQ)

- Approach for computing a solution of an overdetermined linear system
- Linear system $Ax = b$
- **Overdetermined system**: more independent equations than unknowns, i.e., *no exact solution exists*
- LSQ minimizes the *sum of the squared errors* in the equations
Problem Definition

- Given a system described by a set of n observation functions

\[\{ f_i(x) \}_{i=1:n} \]

- Let
 - x be the state vector (to be estimated)
 - z_i be a measurement of the state x
 - $\hat{z}_i = f_i(x)$ be a function that maps x to a predicted measurement \hat{z}_i

- **Given** n noisy measurements $z_{1:n}$ about the state x

- **Goal:** Estimate the state x that best explains the $z_{1:n}$ measurements
Problem Definition

\[
x \rightarrow f_1(x) = \hat{z}_1 \quad z_1 \\
\quad f_2(x) = \hat{z}_2 \quad z_2 \\
\quad \ldots \\
\quad f_n(x) = \hat{z}_n \quad z_n
\]

- **State** (unknown) to be estimated
- **Predicted measurements** observation function
- **Real measurements** noisy
Example

\[f_1(x) = \hat{z}_1 \quad z_1 \]
\[f_2(x) = \hat{z}_2 \quad z_2 \]
\[\ldots \]
\[f_n(x) = \hat{z}_n \quad z_n \]

- \(x \): position of a 3D feature in space
- \(\hat{z}_i \): coordinate of the 3D feature projected into camera image (prediction)
- Estimate the most likely 3D position of the feature based on the predicted image projections and the actual measurements \(z_i \)
Error Function

- Error e_i is the **difference** between the **predicted** and the **actual** measurement

\[e_i(x) = z_i - f_i(x) \]

- Assumption: The error has **zero mean** and is **normally distributed**
- Gaussian error with information matrix Ω_i
- The **squared error** of a measurement depends on the state and is a **scalar**

\[e_i(x) = e_i(x)^T \Omega_i e_i(x) \]
Goal: Minimize the Squared Error

- Find the state \(\mathbf{x}^* \) that minimizes the error over all measurements

\[
\mathbf{x}^* = \arg\min_{\mathbf{x}} F(\mathbf{x}) \quad \text{global error (scalar)}
\]

\[
= \arg\min_{\mathbf{x}} \sum_{i} e_i(\mathbf{x}) \quad \text{squared error terms (scalar)}
\]

\[
= \arg\min_{\mathbf{x}} \sum_{i} e_i^T(\mathbf{x}) \mathbf{\Omega}_i e_i(\mathbf{x}) \quad \text{error terms (vector)}
\]
Goal: Minimize the Squared Error

- Find the state \mathbf{x}^* that minimizes the error over all measurements

$$x^* = \arg\min_{\mathbf{x}} \sum_i e_i^T(x)\Omega_i e_i(x)$$

- Possible solution: compute the first derivative of the global error function and find its zero
- Typically non-linear functions, no closed-form solution
- Use a numerical approach
Assumptions

- A “good” initial guess is available
- The error functions are “smooth” in the neighborhood of the (hopefully global) minimum

Then: Solve the problem by **iterative local linearizations**
Solve via Iterative Local Linearizations: Gauss-Newton

- Linearize the error terms around the current /initial guess
- Compute the first derivative of the approximated global error function
- Set it to zero and solve the linear system
- Obtain the new state (which is hopefully closer to the minimum)
- Iterate
Linearizing the Error Function

Approximate the error functions around the initial guess x via **Taylor expansion**

$$e_i(x + \Delta x) \approx e_i(x) + J_i(x) \Delta x$$

Jacobian of the error function
Reminder: Jacobian Matrix (1)

- Given a vector-valued function

\[g(x) = \begin{pmatrix} g_1(x) \\ g_2(x) \\ \vdots \\ g_m(x) \end{pmatrix} \]

- The Jacobian matrix is defined as

\[
J_g(x) = \begin{pmatrix}
\frac{\partial g_1(x)}{\partial x_1} & \frac{\partial g_1(x)}{\partial x_2} & \cdots & \frac{\partial g_1(x)}{\partial x_n} \\
\frac{\partial g_2(x)}{\partial x_1} & \frac{\partial g_2(x)}{\partial x_2} & \cdots & \frac{\partial g_2(x)}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial g_m(x)}{\partial x_1} & \frac{\partial g_m(x)}{\partial x_2} & \cdots & \frac{\partial g_m(x)}{\partial x_n}
\end{pmatrix}
\]
Linearizing the Error Function

Approximate the error functions around an initial guess x via **Taylor expansion**

$$e_i(x + \Delta x) \simeq e_i(x) + J_i(x) \Delta x$$
Squared Error

- With the previous linearization, we can fix x and carry out the minimization in the increments Δx
- We use the Taylor expansion in the squared error terms:

$$e_i(x + \Delta x) = \ldots$$
Squared Error

- With the previous linearization, we can fix \mathbf{x} and carry out the minimization in the increments $\Delta \mathbf{x}$
- We use the Taylor expansion in the squared error terms:

$$e_i(x + \Delta x) = e_i^T(x + \Delta x) \Omega_i e_i(x + \Delta x)$$
$$\simeq (e_i + J_i \Delta x)^T \Omega_i (e_i + J_i \Delta x)$$
$$= e_i^T \Omega_i e_i + e_i^T \Omega_i J_i \Delta x + \Delta x^T J_i^T \Omega_i e_i + \Delta x^T J_i^T \Omega_i J_i \Delta x$$
Squared Error (cont.)

- All summands are scalar, thus the transposition of a summand has no effect
- By grouping similar terms, we obtain:

\[
e_i(x + \Delta x) \\
\approx e_i^T \Omega_i e_i + e_i^T \Omega_i J_i \Delta x + \Delta x^T J_i^T \Omega_i e_i + \\
\Delta x^T J_i^T \Omega_i J_i \Delta x \\
= \underbrace{e_i^T \Omega_i e_i}_{c_i} + \underbrace{2 e_i^T \Omega_i J_i \Delta x}_{b_i^T} + \underbrace{\Delta x^T J_i^T \Omega_i J_i \Delta x}_{H_i} \\
= c_i + 2b_i^T \Delta x + \Delta x^T H_i \Delta x
\]
Global Error

- Global error = sum of the squared error terms corresponding to the individual measurements
- Approximate the global error in the neighborhood of the current solution \mathbf{x}

\[
F(\mathbf{x} + \Delta \mathbf{x}) \approx \sum_i \left(c_i + 2 b_i^T \Delta \mathbf{x} + \Delta \mathbf{x}^T H_i \Delta \mathbf{x} \right)
= \sum_i c_i + 2 \left(\sum_i b_i^T \right) \Delta \mathbf{x} + \Delta \mathbf{x}^T \left(\sum_i H_i \right) \Delta \mathbf{x}
\]

linearization of the global error
Global Error (cont.)

\[F(x + \Delta x) \approx \sum_{i} \left(c_i + 2b_i^T \Delta x + \Delta x^T H_i \Delta x \right) \]

\[= \sum_{i} c_i + 2 \left(\sum_{i} b_i^T \right) \Delta x + \Delta x^T \left(\sum_{i} H_i \right) \Delta x \]

\[= c + 2b^T \Delta x + \Delta x^T H \Delta x \]

with

\[b^T = \sum_{i} e_i^T \Omega_i J_i \]

\[H = \sum_{i} J_i^T \Omega_i J_i \]

(see two slides before)
Quadratic Form

- Thus, we can write the global error as a quadratic form in Δx

\[F(x + \Delta x) \approx c + 2b^T \Delta x + \Delta x^T H \Delta x \]

- We need to compute the derivative of $F(x + \Delta x)$ wrt. Δx (given X)
Deriving a Quadratic Form

- Given a quadratic form

\[f(x) = x^T H x + b^T x + c \]

- The first derivative is

\[\frac{\partial f}{\partial x} = H^T x + H x + b = (H + H^T)x + b \]
Quadratic Form

- Global error as quadratic form in Δx

 $$F(x + \Delta x) \simeq c + 2b^T \Delta x + \Delta x^T H \Delta x$$

- The derivative of the approximated global error $F(x + \Delta x)$ wrt. Δx is then:

 $$\frac{\partial F(x + \Delta x)}{\partial \Delta x} \simeq 2b + 2H\Delta x$$

Note: H is symmetric
(see three slides before)
Minimizing the Quadratic Form

- Derivative of $F(x + \Delta x)$
 \[
 \frac{\partial F(x + \Delta x)}{\partial \Delta x} \approx 2b + 2H\Delta x
 \]

- Setting it to zero leads to
 \[
 0 = 2b + 2H\Delta x
 \]

- Which leads to the linear system
 \[
 H\Delta x = -b
 \]

- The solution for the increment Δx^* is
 \[
 \Delta x^* = -H^{-1}b
 \]
Summary: Gauss-Newton

Iterate the following steps:

- Linearize around X and compute for each measurement
 \[e_i(x + \Delta x) \approx e_i(x) + J_i(x)\Delta x \]
- Compute the terms for the linear system
 \[b^T = \sum_i e_i^T \Omega_i J_i \quad H = \sum_i J_i^T \Omega_i J_i \]
- Solve the linear system
 \[\Delta x^* = -H^{-1}b \]
- Update state
 \[x \leftarrow x + \Delta x^* \]
How to Efficiently Solve the Linear System?

- Can be solved by matrix inversion (in theory)
- In practice:
 - Cholesky factorization
 - QR decomposition
 - Iterative methods such as conjugate gradients (for large systems)
Gauss-Newton Summary

Method to minimize a squared error:

- Start with an initial guess
- Linearize the individual error functions
- This leads to a quadratic form of the global error
- Setting its derivative to zero leads to a linear system
- Solving the linear systems leads to a state update
- Iterate
Application: Odometry Calibration

- Noisy odometry measurements $\mathbf{u}_i = (u_{i,x}, u_{i,y}, u_{i,\theta})^T$
- Goal: Eliminate systematic estimation errors by calibration
- Assumption: Ground truth \mathbf{u}_{i}^* is available
- Ground truth by external motion capture, scan-matching, or a SLAM system
- Use least squares to learn correction function
Odometry Calibration

- We are looking for a function $f_i(x)$ that, given its parameters x, returns a corrected odometry:

$$u'_i = f_i(x) = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} u_i$$

- We need to find the parameters x
Odometry Calibration (cont.)

- The state vector is
 \[x = \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{21} & x_{22} & x_{23} & x_{31} & x_{32} & x_{33} \end{pmatrix}^T \]

- The error function is
 \[e_i(x) = u_i^* - \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} u_i \]

- Accordingly, its Jacobian is
 \[J_i = \frac{\partial e_i(x)}{\partial x} = -\begin{pmatrix} u_{i,x} & u_{i,y} & u_{i,\theta} \\ u_{i,x} & u_{i,y} & u_{i,\theta} \\ u_{i,x} & u_{i,y} & u_{i,\theta} \end{pmatrix} \]

Does not depend on \(x \), why? What are the consequences? \(e \) is linear, no need to iterate!
Questions

- How do the parameters look like if the odometry is perfect?
- How many measurements are at least needed to find a solution for the calibration problem?
Summary

- Technique to minimize squared error functions
- Gauss-Newton is an iterative approach for solving non-linear problems
- Uses linearization as approximation
- Popular method in a lot of disciplines
- Following lectures: application of least squares to camera and whole-body self-calibration
Literature

Least Squares and Gauss-Newton

- Basically every textbook on numeric calculus or optimization
- Wikipedia (for a brief summary)

- Slides partially based on the course on Robot Mapping by Cyrill Stachniss