Humanoid Robots
Exercise Sheet 6 - ICP and Particle Filter

Exercise 7 (10 points)
Execute the ICP algorithm to align the set of 2D points P to those of set Q (as close as possible).

\[
P = \left\{ \begin{array}{l} (1, 2), (1.5, 3), (2, 3.8), (3, 5), (2.7, 6), (2.5, 7), (3, 8), (3.5, 8.5) \end{array} \right\}
\]

\[
Q = \left\{ \begin{array}{l} (2, 3), (3, 3), (4, 3), (5, 5), (4, 5), (5, 6), (6, 6) \end{array} \right\}
\]

Also, compare between using the closest point and point-to-line matching methods to find the corresponding points of Q and P.

Note: The line is represented by the closest point and the closer of its two direct neighbours.

Exercise Steps:
Implement the missing parts in 'src/07_icp/src/ICP.cpp' according to the following instructions:

a) Implement the function distance that calculates the Euclidean distance between a pair of 2D points.

b) Implement the function closestPointOnLine that computes the closest point that lies on a given line to a given 2D point.

c) Implement the function min that gets the minimum value within a vector of values.

d) Implement the function euclideanCorrespondences that computes the corresponding points in P to those points in Q, using the closest point matching method.

e) Implement the function closestPointToLineCorrespondences that computes the corresponding points in P to those points in Q, using the point-to-line matching method.

f) Implement the function calculateAffineTransformation that computes the affine transformation matrix needed to align the previously computed corresponding points to the points of Q.

Exercise 8 (10 points)

A vacuum cleaner robot drives through a corridor with three ceiling lights. The robot does not know its starting position within the corridor, but it has a map of the corridor indicating the positions of the three light sources:

![Corridor with three light sources](figure1.png)

Figure 1: Corridor with three light sources

The robot is equipped with a light sensor and from the measured brightness it can calculate the distance to the nearest light source.

The robot provides a log file containing odometry measurements (i.e., the displacements of the robot) and the measured distance to the nearest light source for a number of time steps. Localize the robot on the map using a particle filter (Monte Carlo localization) according to the following steps:

a) Implement the function `gaussianProbability` that calculates the probability of a measurement according to a Gaussian distribution. This function is called $\phi(d, \sigma)$ on slide 76. σ is the standard deviation of the distribution.

b) Implement the function `sampleFromGaussian` that draws a sample from a Gaussian distribution with mean μ and standard deviation σ (see slide 64). For generating random numbers, you can use the standard C function `rand()` that returns a random integer between 0 and `RAND_MAX`.

c) Implement the function `initParticles` that initializes the particles as follows:

- The position x of the robot should be linearly distributed in the interval $[0, 10]$. You can either distribute the positions equidistantly or sample the positions from a linear distribution in the given interval.
- All particles should have the same weight weight and the weights must sum up to 1.
d) Implement the function `normalizeWeights` that normalizes the weights of the particles so that they sum up to 1.

e) When the robot travels for the distance u_x, the particles have to be displaced accordingly. However, u_x is subject to measurement errors and noise. Hence, instead of shifting all particles by the same distance u_x, we sample the displacement from a Gaussian with mean u_x. Implement the function `integrateMotion` for sampling a new position for each particle according to this motion model.

This step is called the *prediction step* of the Monte Carlo filter.

f) Implement the method `getDistanceToNearestLight` that calculates the distance from the robot’s position x to the nearest light source according to map in Fig. 1.

g) While traveling, the robot measures the distance to the nearest light source using its light sensor. Integrate the measurement in the method `integrateObservation` by changing the particles’ weights according to the observation model

$$ p(\tilde{z} \mid x) = \phi(z - \tilde{z}, \sigma) $$

(1)

where \tilde{z} is the measured distance (given as an argument to the function), z is the distance between the particle pose and the nearest light source (calculate this for each particle using `getDistanceToNearestLight`), and σ is the standard deviation (given as an argument).

This step is called the *correction step* of the Monte Carlo filter.

h) Implement low variance resampling in the method `resample` according to slides 33–35.

Hint: When doing calculations, make sure to cast integer values to double first. The expression $1.5 + 3/2$ will evaluate to 2.5 because $3/2$ will be truncated to the integer 1, whereas $1.5 + 3.0/2.0$ will evaluate to 3.0 as expected.

If you have Gnuplot installed on your computer, then you can run the script `scripts/plot.gp` to generate 20 plots in the folder `data` that show how your particle set evolves over time.

Deadline: 23 May 2019, 11:59 am