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Abstract. With the rise of robot swarms, it has become a relevant prob-
lem how humans can control them. Extended swarming is a potential ap-
proach in which robot swarms are treated as self-organising extensions
of human bodies. Swarm control takes the form of controlling the ob-
servable swarm body while robot chains connect the human operator to
relevant aspects of the environment. Inspired by how natural bodies are
controlled by a nervous system, we here investigate how the swarm body's
self-organisation can be in�uenced by robot chains acting as embodied
neural traces while remaining under human high-level control. Three
design principles are proposed for such embodied neural computation.
First, the swarm body's self-organisation is controlled both by top-down
human control and bottom-up sensor inputs alike to the hierarchical
control architecture of the nervous system. Second, robots participating
in robot chains are treated as rate-coded neurons rendering the chains
as embodied neural traces which o�ers intuitive control possibilities for
the human. Third, neural and swarm self-organisation are integrated by
utilizing the swarm's communication network as a sca�olding for neu-
ral function in�uencing swarm dynamics. This process is interpreted as
embodied Hebbian learning. Human control over the swarm is demon-
strated in a grid-based search-and-rescue simulation with the objective
of selecting the most valuable subregion de�ned by accumulated victims
in need. We evaluate how using embodied trace relevance in terms of
neural activation improves completion time to �nding the highest-value
trace as well as how attracting units to relevant traces increases their
robustness.

Keywords: Human-swarm interaction · Extended swarming · Swarm
robotics · Embodied neural computation · Bio-inspiration

�A signal comes in saying, 'threat!' Something has appeared that can be detected by

the changes it induces, for example alterations in the electrostatic �eld. At once, the

�ying swarm forms into this 'cloud-brain' or whatever it is...�

The Invincible, Stanisªaw Lem [13]
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1 Introduction

In swarm robotics, minimalistic robots rely solely on local information without
global leadership to promote �exibility, scalability, and robustness against node
failures [4]. Therefore, swarms are especially envisioned for scenarios with large
and dynamic environments such as Search-and-Rescue (SaR) missions.

However, deploying robot swarms to real-world problems requires human op-
erators to be in control of swarms. While humans require fused information about
the robot swarm and means to control it, the traditional swarm de�nition ex-
plicitly excludes the generation of global information and centralised leadership.
Human-Swarm Interaction (HSI) therefore develops swarm control methods in-
variant to swarm size in order to join the natural centralised human cognition
with the distributed synthetic intelligence of robot swarms [6, 11, 12], the latter
being referred to as centralisation-decentralisation trade-o�.

A potential approach to HSI is Extended Swarming (ES) which focuses on
designing the joint agent as a whole [6]. The joint agent describes the combination
of human and swarm as a goal-seeking unit itself. In ES, the observable robot
swarm is treated as a self-organising but controllable body extending the human's
sensor-act range [20, 21]. Human control takes the form of in�uencing aspects of
the extending body based on the virtual pheromone approach [19, 20], e.g., by
adjusting the swarm body's dispersion. The extending body is also streaked with
shortest-path robot chains connecting the human operator to relevant aspects of
the environment [1, 5, 21], such as victims in need. The underlying motivation of
ES is that the embodied swarm network performs the computation itself while
being under human high-level control. In comparison to fully centralised control,
swarms as world-embedded, or embodied, distributed networks can compute in
parallel, are more robust, can adapt to the environment, and can use the spatial
location of their nodes for computation [5, 19, 21].

In this work, we investigate the bene�t of designing robot chains as embodied
neural traces given that real bodies are also controlled by the nervous system.
For us, Embodied Neural Computation (ENC) refers to treating each robot par-
ticipating in chains as embodied neurons that self-organise by an embodied form
of Hebbian learning into embodied neural traces and has the following motiva-
tions. First, the brain provides an approach to the centralisation-decentralisation
trade-o� and applying neural principles to ES could be of use for HSI [6]. Second,
given the brain controls the body, neural parameters could o�er human control
possibilities over the swarm body. Third, embodied neural activity could be used
to represent chain relevance, similar to virtual pheromones in swarm robotics for
site selection [1]. Fourth, the ES vision aims at integrating the extending swarm
body into the human nervous system function in the long run, with a neural
swarm possibly simplifying such a cyborg integration [6].

This paper provides the following contributions. In Sec. 2, the ES approach
to swarm control and sensor fusion is summarized based on a SaR mission re-
quiring the joint agent to select the most relevant subregion with victims in
need. Then, ENC is introduced into the extending swarm body (Sec. 3). We
�rst survey previous work on treating swarms as embodied neural systems and
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extract three design principles for ENC: Embodied hierarchical control, robots
as embodied neurons, and Embodied Hebbian Learning (EHL). In embodied hi-
erarchical control (principle 1), the swarm body's self-organisation is in�uenced
by both bottom-up sensor inputs and top-down human operator commands [6].
If robots participating in robot chains are treated as neurons, the swarm body
is streaked with embodied neural traces while neural parameters o�er intuitive
control over the swarm body for ES (principle 2). In order to integrate swarm and
neural self-organisation, the liquid-slow swarm body communication topology is
treated as a sca�olding for locking robot nodes to relevant information traces for
fast-solid neural information processing [22]. This process is interpreted as EHL
(principle 3) in�uencing the swarm body's self-organisation which also can be
modulated by the human. Finally, Sec. 4 demonstrates how ES with ENC pro-
vides swarm control possibilities for HSI invariant to swarm size in the context
of a grid-based SaR simulation. The completion time of establishing relevant
traces is evaluated showing that taking trace relevance in terms of neural acti-
vation into account improves completion time. In addition, we demonstrate how
utilizing neural activation for attracting robots increases trace robustness.

2 Extended Swarming

2.1 Model Assumptions

Consider a SaR scenario as an experimental testbed in which the joint agent's
goal is to decide which subregion featuring victims in need are of the highest
relevance (best-of-N problem), while we here focus on the interplay between
the human operator and the swarm. The joint agent A = h ∪ S, h being the
human operator node and S the swarm, operates on the region D, D here being
a two-dimensional grid plane N2, that includes static objects of interest o ∈ O,
i.e., the victims, being located at position (xo, yo) with relevance γ ∈ [0, 1]. For
this work, h is a static node with position (xh, yh). The swarm of size N is a
collection of homogenous simple robot nodes S = {r1, ..., rN}. A robot r with
position (xr, yr) has the basic local state [θr, vr] with θr ∈ [0, 2π] being the
heading direction and vr ∈ {0, 1} the speed while vr = 1 corresponds to 1m/s.
Joint agent nodes a ∈ A are able to sense other members h, r′ and objects o,
and estimate the relative bearings δ̂h, δ̂r′ , δ̂o to them if nodes are in their bearing
sensor range dij ≤ dδ̂max, dij being the Euclidean distance between two nodes ai
and aj . In addition, A nodes can estimate the object relevance γ̂ if in their state
sensor range dij ≤ dγ̂max. The A nodes can also selectively send messages at a
particular angle, such as possible with directed infrared communication [19].

Robot movements are based on an object attractor force and a dispersion
force being summed to θr. The object attraction force attracts robots towards
O if dij ≤ dδ̂max, while vr = 0 for all (xr, yr) = (xo, yo). The dispersion force
repels robots away from each other if dij ≤ ddisp resulting in a regular dispersion
pattern if the swarm is initiated as aggregated.

The A nodes with positions (xa, ya) establish communication edges if dij ≤
dcom yielding the swarm body Euclidean graph Gbody at the current time. In
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the following, Gbody is used to superimpose virtual pheromone �elds Φ and the
extending shortest-path tree Gtree.

2.2 Extending Swarm Control

In ES, the region D is explored via the swarm body being controlled by the virtual
pheromone approach [19] as adapted by Rockbach [20]. At prede�ned points in
time, a source node φ ∈ A injects a message into Gbody containing a hop counter
cφ ∈ N, which is distributed to connected nodes while being incremented by 1
at each hop. Here the hop counter c is used instead of estimating the Euclidean
distance to nodes as this su�ces [19]. Each node a only accepts the message with
the lowest hop count, thereby ensuring a radial distribution of the pheromone
message into the network, while also saving the bearing δ̂φ to the transmitting
node. The result of this virtual pheromone breadth-�rst distribution is a world-
embedded potential �eld described by Φφ = {(xa, ya, cφa , δ̂φa )|a ∈ A}. Thus, a
pheromone �eld is an embodied shortest-path tree with φ as source.

A Φ-potential �eld is used for robot particle allocation by de�ning a nega-
tively charged �eld centre φ− for attraction or a positively charged centre φ+

for repulsion with allocations being triggered based on a hop count distance
threshold τφ. An extending behaviour is given by a distance condition to the
�eld centre φ such as cφ < τφ and the resulting attraction or repulsion action to
φ being released with probability pφ. Triggered robots follow the attraction or
repulsion gradient as given by their local state (cφa , δ̂

φ
a ).

The extending posture is given by condition ch > τh with action h− and
releaser ph = 1 and is used to radially constrain the dispersion of S based
on the distance to h (Fig. 1a). The human can control the extending swarm
dispersion by adjusting τh, which is communicated via Gbody to all connected
robots, invariant to the swarm size. τh = 0 results in a swarm aggregated at h,
a �contracted pose�, while a larger τh allows the swarm to further disperse onto
D, referred to as �extended pose�. Thus, the extending posture encapsulates the
robots inside the swarm body and ensures the connectivity of Gbody. Φ

r-�elds
have a selected robot as source. If the above extending posture is combined
with condition cr > τ r and action r−, the extending posture is oriented towards
(xr, yr) with strength pr (Fig. 1c). Finally, if the source is a robot sensing an
object, condition co < τo with action o− �grasps� the object by allocating robots
towards o with recruiting depth τo and allocation force po (Fig. 1d).

2.3 Extending Swarm Fusion

Based on Rockbach et al. [21], swarm fusion in the context of ES requires the
establishment of robot chains between h and all sensor robots ro estimating
object relevance. The collection of shortest paths between h and all reachable
ro is the fusion graph Gtree, Gtree ⊂ Gbody. As described above, swarm control
is based on virtual pheromones distributed as an embodied shortest-path tree.
Since each r contains the local bearings towards h, a shortest path between h and
ro is found if ro injects a return message which is forwarded based on the local
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bearings. Each robot receiving such a return message is a node of the shortest
path and therefore restricts its movement vr = 0 for all r ∈ Gtree. Given the
swarm dynamics, new robot positions lead to a shortening of paths with time
since only the nodes participating in a shortest path stop while other nodes
continue their exploration [6].

Gtree represents a directed radial tree topology pointing towards h extending
its sensor range while each ro injects object relevance γ̂o into its individual
chains (Fig. 1a). The fusion graph contains three types of nodes; sensor robots ro

injecting γ̂o, relay robots forwarding the injections, and fusion robots integrating
information from multiple o. The fusion nodes emerge as a function of object
distance resulting in a hierarchical embodied fusion topology [21]. After Gtree
self-organisation, the human h can follow the observable path with the integrated
relevance estimation leading to the highest-value subregion.

3 Embodied Neural Computation

3.1 Background

We provide a short overview of treating robot swarms as embodied neural sys-
tems given the aim of introducing neural logic to ES. Augmenting a swarm with
neural logic requires an understanding of the relationship between swarms and
neural systems as well as how these can be exploited for design. Swarm cognition
proposes that both swarms and neural systems are decentralised computing net-
works that share similarities on the computational level [2, 24]. However, swarms
and neural systems are also fundamentally distinct; swarm agents move in space
with very �exible connections whereas neurons do not [22], resulting in faster
information processing for neural systems. Integrating the two systems therefore
means integrating di�erent time scales. In general, they both can be treated as
graphs G; here Gbody represents the swarm's liquid interactions and Gtree the
solid-neuronal, while a neural graph is called a connectome [4, 23].

In swarm engineering, limited work has considered how the potential over-
lap between swarms and neural systems could be exploited. Holland et al. [9]
described the idea that the computation capabilities of drones could be linked
together into an �ultraswarm"; into an arti�cial nervous system. An approach
called �Mergeable Nervous System" to recon�gurable robotics was proposed by
Mathews et al. [14]. Their proposal augments decentralised intelligence with a
semi-centralised control unit (brain robot) and is similar to ES where the human
operator constitutes the brain [6]. Otte [18] formalized and implemented a robot
swarm as a distributed neural network that can classify scattered stimuli such as
pixels making up an image. A hippocampus-inspired swarm model for navigation
was also discussed where robots were treated as neurons and groups of robots
formed reciprocal connected networks [16]. Finally, Hasbach and Bennewitz [6]
proposed constraining robot positions based on superimposed neural activity in
the context of ES. In the following, three principles for Embodied Neural Com-
putation (ENC) are extracted and elaborated; embodied hierarchical control,
embodied neurons, and Embodied Hebbian Learning (EHL).
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3.2 Principle 1: Embodied Hierarchical Control

The nervous system has been abstracted as a hierarchical fusion and control
architecture with fast, low-level, bottom-up, sensor-driven loops being modu-
lated by slow, high-level, top-down, cognition-driven loops [6]. Neural fusion,
more commonly called convergence, is illustrated by Hubel and Wiesel [10] who
showed how the vision system �rst encodes simple local visual features of a visual
scene that are sequentially fused over layers to more complex global representa-
tions. The self-organising hierarchical fusion topology Gtree represents embodied
neural convergence if the plane D2 is seen as a visual scene with stimuli O. The
swarm not only fuses local objects hierarchically into a global percept at h but
the emergence of fusion nodes as a function of object distance [21] also represents
an embodied instance of the Gestalt law of proximity [3], stating that stimuli
close in space are more likely being grouped together in the visual percept.

In turn, neural hierarchical distributed control refers to top-down modulat-
able low-level sensor-motor loops [6] which is best exempli�ed for ES by decen-
tralised octopus arms acting semi-autonomously [8]. In ES, local sensor infor-
mation at sensor and fusion nodes is used to directly trigger robot allocations
via pheromone �elds close to objects, economising time by not relying on human
control inputs [20]. For example, an object �seen� at the low level can trigger
the swarm body �re�ex� of �reaching out� to that object via using Φo for robot
attraction. By utilizing a repulsion pheromone �eld, the swarm body can also be
triggered to retract from an object. Such a reaching out or retraction behaviour
represents the swarm's �ne motor skills, alike to limbs or tentacles. Gross mo-
tor activity is achieved by orienting the pose as a function of Φr or Φo, or by
changing the extension, such as if o is a threatening stimulus for the A leading
to a contracted pose [20]. Finally, h controls the swarm bodies' self-organisation
top-down via τ and p for extending posture control as well as by the neural
parameters discussed in the following.

3.3 Principle 2: Robots as Embodied Neurons

Each ri ∈ Gtree is treated as a single world-embedded neuron [6, 16] given the
embodied computation viewpoint. Thus, robot chains now represent embodied
neural traces. ri is a neural rate-coding unit [15] receiving excitatory inputs
uinji ∈ [0, 1] from other nodes j computing an output activation uouti ∈ [0, 1] via

uouti = f(W ∗ uin + ubias) (1)

where uin is the input activation vector and W the weight matrix with
wji ∈ [0, 1], ubias ∈ Z is the bias of the neuron de�ning its resting activity,
and f is the neuron's activation function. Here, f(u) is a saturating linear unit
with an adjustable activation threshold Mu ∈ [0, 1]; f(u) = 0 for u < 0, u
for 0 ≤ u ≤ Mu, and 1 for Mu > u. Given the intended scalability in swarm
robotics, the same virtual weight w, bias ubias, activation function f , and activa-
tion threshold Mu are assumed for all robots so that the complexity for storing
the neural parameters is 1 rather than N2 −N (assuming no self-connections),
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while w,Mu, u
bias are under human in�uence as long as ri ∪ c ∈ Gtree. By

using directed communication at a particular angle, h can also selectively up-
date the neural parameters for a particular trace. New meanings are given to
these neural parameters in the context of ES. Assuming the same weight w, the
weight becomes the swarm body's distance sensitivity [21] with w < 1 decreas-
ing forwarded activity uout with each hop. Mu in turn de�nes the swarm body's
activation sensitivity, ignoring activities below its threshold. The bias ubias is
used to excite or suppress speci�c neural traces, e.g., if h pays attention to a
particular trace. In sum, Gtree is a simpli�ed connectome over which bottom-
up neural activity spreads while being under human top-down control via w
(distance sensitivity), Mu (activation sensitivity), and ubias (trace attention).

3.4 Principle 3: Embodied Hebbian Learning

Neural learning is a form of self-organisation. In the neural sciences, it is well
known that learning is a result of the interdependence between neural structures
and neural activities [23]. More speci�cally, Hebbian learning [7] is described as
�neurons that �re together, wire together, and neurons that do not �re together,
do not wire together.�, referring to trace stabilization and forgetting by updating
W based on neuronal activity uout.

In its embodied version, Gtree ⊂ Gbody represents the embodied connectome
based on which neural activity spreads. To implement EHL, the connectome is
updated by in�uencing the positions of robots since they in turn de�ne Gtree [6].
From a swarm robotics perspective, this is a special case of an exploration-
exploitation trade-o�; should a robot participate in a current chain (�neural
trace stabilisation� via vr = 0) or rather continue exploration (�neural trace
forgetting� via vr = 1) [17]? In contrast to the virtual weight w, these embodied
connection weights ω ∈ {0, 1} are binary since robots can be either connected
or not, while node distance may be utilized for some applications [16]. EHL is
implemented via

P (vi = 0) = l(uouti ) (2)

where P (vi = 0) is the robot's stopping probability and l is the embodied learn-
ing function. Here, l(u) = 1 for u > Ml and εu+(1−ε) for u ≤Ml with parameter
Ml ∈ [0, 1] being the embodied one-shot learning threshold immediately stabil-
ising relevant traces and ε ∈ [0, 1] being the embodied learning rate de�ning
the stability of �exible traces for adjusting exploration-exploitation dynamics.
Note that trace stability depends on the joint probability of the individual robot
stopping probabilities. If Ml = 0 or ε = 0, all traces are stabilized.

The above EHL locks robots to relevant traces over time while trace brittle-
ness represents forgetting. However, brittleness can also result from undesired
factors, such as robot failures. Therefore, uouti > Ml traces are protected from
undesired brittleness by attracting further units for redundancy based on trace
pheromone �elds with condition cT < τT and robot particle attraction T−, T
being the nodes of Gtree,

τT = αuouti (3)
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pT = βuouti (4)

with the recruiting depth τT and allocation probability pT being coupled to
neural importance via scaling factors α ∈ R≥0 and β = [0, 1]. Thus, the density
around traces inside the swarm body is updated as a function of neural activity.

To conclude, EHL describes swarm pose self-organisation as a function of
neural activation while the swarm pose enables speci�c neural activity in the �rst
place. The human can control EHL by adjusting the embodied neural learning
parameters Ml (one-shot learning), ε (learning rate), α (recruiting depth), and
β (recruiting probability).

4 Computational Investigation

4.1 Simulation Setup

In order to investigate human control over the self-organising swarm body and
to evaluate the establishment of embodied neural traces in ES with ENC, we
implemented a simulation in MATLAB 2020b with a D2 = 100m× 100m grid.
h is placed at (50m, 50m) and N robots are initiated inside 10m around h. The
simulation parameters are dcom, dδ̂max = 10m, dγ̂max = 0.5m, and ddisp = 6m.

4.2 Demonstration of Swarm Body Control

The top-down controlled bottom-up self-organisation in ES with ENC is demon-
strated through the following examples. Assume a SaR unit A being deployed in
area D2 with unknown victims O, γ = 1 being a high need of attention accord-
ing to triage. Victim pairs are placed in all four directions (Fig. 1), three with
equal distance to h but di�erent criticality (east γ = 1, west γ = 0.25, south
γ = 0.1), and one pair (γ = 1) further away to the north. h must chose which
direction to attend to based on the enactive exploration of D2 with the swarm
body. Neural parameters are initialised with w = 0, Mu = 0.25, ubias = 0 and
EHL parameters with Ml = 0.5, ε = 0, α = 0.8, and β = 1.

The swarm body with N = 150 robots disperses onto D2 until the com-
manded stretching limit is reached (τh = 3 hops), leading to trace stabilisation
for the three close victim pairs (Fig. 1a). Given the threshold Mu = 0.25, the
swarm body assigns no relevance to the southern perception at h. Based on the
EHL setup, all traces are stabilised, but only the high-value trace to the east
is strengthened by the swarm bodies' bottom-up dynamics. Instead of following
the provided swarm body estimation, h however becomes attentive of the west-
ern region instead. Selective top-down attention to the west is implemented by
inducing ubias = 1 into the western direction while suppressing the other traces
by ubias = −2. The bottom-up dynamics now strengthen the western trace while
some units remain locked to the relevant eastern victims on standby (Fig 1b).

The victims located at the peripheral of the northern region are not perceived
via τh = 3. h explores the region by orientating the swarm body towards north
via a robot source �eld with τ r = 5, pr = 1, and the robot source position at
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the border of the dispersion while stretching to τh = 5 and deactivating trace
robustness via α = 0 (Fig. 1c). The swarm body is now pushed towards the north
and the two victims are perceived while h remains connected to the previously
found victims. By activating distance sensitivity w = 0.6 and switching o� the
bias ubias = 0, the north is perceived as irrelevant given the distance, although
both eastern and northern victims are in critical states. In addition, the western
direction is now also �ltered by the activation threshold given its relevance in
regard to its distance. The perception of the global scene has been adapted by
enactive top-down parameter selection in�uencing the swarm body's bottom-up
self-organisation. h now feels that the global percept is reliable and releases a
full bottom-up grasping reaction via Φo for �rst-responder action while oneself
being guided by the eastern trace towards the victims in need (Fig. 1d). The
traces to the other sites remain intact, enabling h to monitor the dynamics of
the other victims without delay and adapt to new situations as necessary.

4.3 Evaluation of Embodied Hebbian Learning

In order to evaluate trace self-organisation via EHL, four objects {o1, o2, o3, o4}
are randomly initiated, each in a 20m × 20m area located in one of the four
corners of D2. One randomly chosen oi is relevant (γ = 1) while the other three
are of low relevance (γ ≤ 0.5). The swarm body disperses onto the grid without
stretching constraint τh and a correlated random walk force is added so that
robots sometimes break the dispersion to explore remote regions. The neural
parameters are w = 1, Mu, u

bias = 0 with EHL parameters Ml = 0.5, and
α, β = 0. The task for S is to establish a connection to the relevant object.

Fig. 2 shows completion time until a connection to the relevant object oi is
found for ε = 0 (no forgetting) and ε = 0.1 (forgetting) with 100 samples each.
For limited resources, forgetting irrelevant traces increases the performance to
�nd the relevant object [17]. However, this increased performance comes with the
cost of increased brittleness of low-value traces. Speci�cally, connection proba-
bility, de�ned as the ratio of the number of connected trace time steps to the
total number of time steps during the search period, is 0.38 for ε = 0 and 0.06
for ε = 0.1 at N = 80.

To investigate trace robustness, robot failures are introduced with an indi-
vidual failure probability of 0.1 at each time step. Fig. 3 shows the connection
probabilities to a relevant oi with γ = 1, randomly placed with a maximal dis-
tance of 20m to the arena border and observed over 100 time steps after a
connection was �rst established with 100 samples. Both attraction depth and
probability increase the robustness of the relevant trace.

5 Conclusion

In Extended Swarming (ES) as an approach to Human-Swarm Interaction (HSI),
the swarm's embodied nature is utilised for hierarchically fusing local estimates
about the world while the swarm itself embodies a potential �eld that is used
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Fig. 1: Examples showing human control over the swarm body's self-organisation.
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Fig. 2: Speed to relevant trace establishment improves with trace forgetting.
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Fig. 3: Connection probability of a relevant trace for N = 100 and ε = 0 over
di�erent recruiting depths τT and probabilities pT .

for swarm control. This work proposed three design principles for Embodied
Neural Computation (ENC) in the context of ES. First, the swarm body's self-
organisation is controlled by both bottom-up sensor estimates and top-down
human control inputs. Second, robots participating in robot chains are treated
as embodied neurons o�ering intuitive control possibilities in the context of ES.
Third, swarm and neural level are integrated by using the swarm's commu-
nication topology as a sca�olding for neural function that in turn in�uences
robot movements which is interpreted as Embodied Hebbian Learning (EHL).
We demonstrated how the approach establishes human control over the swarm
extension in a search-and-rescue simulation. It was also shown how EHL improves
completion time for �nding the highest-value robot chain and how chain robust-
ness can be strengthened. A parameter sensitivity analysis should be conducted
next to explore the model in greater detail. Currently, our approach remains
theoretical and requires real-world validation. However, we have demonstrated
how robot swarms can not only be envisioned as autonomous agents, but also
as controllable extensions of humans with embodied neural-like computation.
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