
Improving Navigation with the Social Force Model
by Learning a Neural Network Controller in Pedestrian Crowds

Peter Regier Ibrahim Shareef Maren Bennewitz

Abstract— In this paper, we present a novel, efficient ap-
proach to improve the acceleration commands computed by the
popular social force model (SFM) [1] for navigation through
pedestrian crowds. Our method consists of two stages. In the
first phase, we collect training data with a simulated approach.
In this step, we modify the steering acceleration commands
from the SFM according to a set of discrete alterations and
simulate the motion of the robot as well as the pedestrians into
the future for each alteration. We rate each resulting trajectory
based on a cost function and apply the best steering command
to the robot. While controlling the robot in such way, we collect
for every time step the input and output training data. In the
second stage, we then learn a neural network given the collected
training data. We use the best acceleration values experienced
in the first phase as target values for the neural network and
define simple input features describing the local surrounding of
the robot. In extensive simulation experiments using different
pedestrian densities, we demonstrate that the controls generated
by the learned neural network lead to a significantly reduced
number of collisions with pedestrians compared to the results
of the basic SFM controller, while achieving similar or even
shorter completion times.

I. INTRODUCTION

The ability to navigate through crowds of people is es-
sential for all service robots operating in human populated
environments such as office corridors, hospitals, or shopping
malls. Generating motion commands for navigation among
people is a complex task for which the prediction of the
motions of surrounding people needs to be taken into account
to be able to anticipate and avoid collisions (see Fig. 1).

A popular approach to model human-aware navigation is
the social force model (SFM) [1], which drives individuals
through the combination of repulsive and attractive virtual
forces called “social forces”. However, such virtual force
field methods have limitations since mobile robots controlled
by using force fields can be trapped in local minima and
show oscillation behavior in narrow spaces. In addition,
encountering dense crowds of pedestrians can lead to a high
number of collisions [2], [3].

We therefore propose a two-stage approach to improve the
controls generated by a SFM based controller to realize effi-
cient and collision-free robot navigation through pedestrian
crowds. The idea of the first training phase is to improve
the SFM based robot navigation. To do so, we simulate
the positions of the robot as well as of the pedestrians
in the robot’s local environment a few time steps into the
future. We hereby assume the positions and velocities of the

All authors are with the Humanoid Robots Lab, University of Bonn,
Germany. This work has been supported by the DFG Research Unit
FOR 2535 Anticipating Human Behavior.
978-1-7281-3605-9/19/$31.00 c©2019 IEEE

Fig. 1: Example observation of a robot navigating through environments
populated by humans. To avoid collisions and efficiently reach the goal,
the robot has to decide on its control commands. We propose to use a
neural network in combination with the popular social force model (SFM)
to generate acceleration commands given features describing the predicted
configuration of the humans in the robot’s vicinity.

pedestrians to be known. For the robot’s control, we consider
a discrete set of incremental alterations of the accelerations
commands generated by the SFM based controller. Based
on the prediction for a given steering command, our system
then evaluates the surroundings of the robot, i.e., the number
of pedestrians in the robot’s vicinity and the distance to its
navigation goal. The best result of the acceleration values is
chosen as the control command to be executed by the robot.
With this predictive controller, the robot navigation behavior
can be seriously improved since it forecasts the situation and
reacts accordingly.

However, the prediction is computationally expensive and,
furthermore, a real robot will not have knowledge about
the velocity and the target destination of all surrounding
people. Therefore, we propose to train in a second step a
neural network (NN) based on simple features describing the
configuration of the pedestrians in the robot’s vicinity and the
output of the predictive controller. The NN combined with
the SFM can then be used for safe and efficient navigation
through dense crowds.

As we show in extensive simulation experiments with
different densities of pedestrians, the controls generated by
the NN lead to a significantly reduced collision rate of
the robot with pedestrians in comparison to the basic SFM
controller. Furthermore, the experiments demonstrate that
a robot controlled by the NN achieves a speed that is
comparable to the one generated by the SFM controller.

The contribution of our work is a controller that is learned
in a supervised manner based on simple features describing
the pedestrian state around the robot. To generate the training
data, we predict the state of the local environment by
simulating forward the motions of pedestrians and the robot.

II. RELATED WORK

A navigation approach that uses the SFM in combination
with machine learning was presented by Ferrer et al. [4].
The authors introduced a metric computed as the weighted
sum of the robot’s social forces and determined the weights
of the different forces using a Markov Chain Monte Carlo
Metropolis-Hastings algorithm. Our approach, in contrast,
learns to improve the acceleration commands of the robot
provided by the SFM depending on the current situation.

Inverse reinforcement learning (IRL) has been the most
widely-used approach applied to achieving social navigation.
Henry et al. [5] utilized IRL to teach a path planner on
a 2D grid from example traces of pedestrians. The authors
note that a robot agent in such a context would have limited
knowledge of its environment and therefore estimate the
density and flow of pedestrians around it using Gaussian
processes. Gaussian Processes have also been utilized for
modeling pedestrian motion by Vemula et al. [6]. The
authors used real human trajectory data to train their model
and propose to discretize each agent’s neighborhood and
construct an occupancy grid per agent containing all infor-
mation of its neighbours. This approach is able to predict
future trajectories of observed pedestrians using a Monte
Carlo sampling approach as well as to compute the path
of a robot through a dense crowd. Kuderer et al. [7] and
Vasquez [8] used maximum-entropy IRL to learn a behaviour
model of pedestrians in order to generate socially compliant
trajectories. In the work of Vasquez [8], the speed and
orientation of the pedestrians in relation to the robot are
used as observations for the robot. However, IRL is typically
computationally expensive leading to long training times and
requires a large training set in order to learn the reward
function.

Kim and Pineau [9] proposed to use maximum mean
discrepancy as a query metric to determine how far an
observation is from the distribution of the training data up to
that point. Teaching values are requested only if this metric
is above a certain threshold. This approach produces safe
trajectories, however, it is rather computationally expensive
to train. Recently, Tai et al. [10] presented generative ad-
versarial imitation learning that directly learns a policy from
expert demonstrations using the so-called trust-region policy
optimization without going through the intermediate step of
learning a reward function and without needing a map of the
environment. The authors make use of the SFM and generate
a large set of training examples in order to train their model
based on raw depth data. So far, the approach has been only
applied to specific basic navigation scenarios.

Recently, long short-term memory (LSTM) have be-
come popular for motion prediction. For example, Ev-
erett et al. [11] consider motion planning for a group of
robots. The authors defined a reward function based on
velocity, change in heading direction, and distances to the
goal as well as the closest other agent. They use a LSTM
cell at the input layer where each agent in the environment
subsequently feeds the cell its own state at every decision

step. By considering the information of all agents about
the state, the LSTM contains a fixed-length, encoded state
of the world for the current decision step. The authors
then apply reinforcement learning to generate the naviga-
tion policy. As each learning episode contains information
from several agents the learning is accelerated. However,
the requirement of this method to have global knowledge
about the states of all agents limits its applicability in a
real-world scenario. Alahi et al. [12] proposed an LSTM
for modeling human motions in crowds. The focus in this
approach was on trajectory prediction without hand-crafted
functions. Also Pfeiffer et al. [13] use LSTM neural networks
to predict the motion of humans, in this case taking explicitly
into account static obstacles to improve the prediction in
cluttered environments. In the future, we plan to investigate
whether our predictive controller can be improved even more
with those recently presented capable prediction methods.
However, for this work we predict the motions of pedestrians
using the social force model.

III. SOCIAL FORCE MODEL

In the following, we first introduce the social force
model (SFM) [1], [14], [15], which is the basis of our
approach. The SFM models human motion as the sum of
three different social forces:

• The desired force ~f 0
i reflecting the desire of pedes-

trian i to reach a particular destination at a particular
speed,

• The obstacle force ~fwalli as repulsive force between
static obstacles and pedestrian i,

• The social interaction force ~fij as repulsive force
between pedestrians i and j.

The desired force ~f 0
i is defined as

~f 0
i =

∂~v 0
i

∂t
= v0i ~e

0
i − ~vi(t) , (1)

where ~vi is the current velocity of pedestrian i, ~e 0
i is a unit

vector pointing from the pedestrian to the goal and v0i is the
desired speed.

The obstacle force ~fwalli decays with the distance dw
between the pedestrian and a static obstacle:

~fwalli (dw) = e
−dw
0.2 (2)

The social interaction force is defined as the sum of two
components: fv that describes the deceleration along the
interaction direction ~tij and fθ that describes the directional
changes along ~nij .

The interaction direction is given by

~tij =
λ(~vi − ~vj) + ~eij
‖λ(~vi − ~vj) + ~eij‖

, (3)

where ~vi−~vj is the relative motion between the pedestrians,
~eij the unit vector pointing from pedestrian i to j and λ is
the relative weight of the two directions.

Let ~nij be the normal vector of ~tij , oriented to the left.
The forces fv and fθ are defined as

fv(dij , θij) = −Ae
−dij

B−(n′Bθij)2 (4)

and

fθ(dij , θij) = −AKe
−dij

B−(nBθij)
2 , (5)

where dij denotes the distance between two pedestrians i and
j and θij is the angle between ~tijand ~eij . The parameter K
is the sign of the angle θij and B is modelled as

B = γ||λ(~vi − ~vj) + ~eij || . (6)

The social interaction force ~fij can now be defined by
combining the Equations 4 and 5:

~fij(dij , θij) = −Ae
dij
B [e−(n

′Bθij)
2
~tij +Ke−(nBθij)

2

~nij]
(7)

Moussaı̈d [14] defined the parameters A,B, n, n′, γ, λ by
fitting the function in Eq. (7) to real-world data of pedestrian
behavior. The complete equation of motion for a pedestrian,
which determines how its velocity changes per unit time, is
then defined as the sum of the three forces:

∂~vi
∂t

= ~f 0
i + ~fwalli +

∑
j

~fij (8)

IV. PEDESTRIAN AND ROBOT MOTION

Since the SFM can still lead to collisions, especially in
scenarios with dense crowds of pedestrians, our aim is to
improve the robot’s acceleration commands given the SFM
commands. We propose to train a neural network that outputs
improved acceleration commands. To learn the NN, we use
a simulator that models the pedestrians and robot motion
according to the SFM.

A. Pedestrian and Robot Controller

Our simulated environment is based on an implementation
of the SFM as described in the previous section. Additionally,
we modify Eq. (8), that determines the pedestrian and robot
motion, by applying weights Fdf , Fof , Fsf to each compo-
nent:

∂~vi
∂t

= Fdf
~f 0
i + Fof

~fwalli + Fsf

∑
j

~fij (9)

B. Robot Model

We assume a non-holonomic robot and define the robot
state as tuple of the global xy-position and orientation θ. The
robot control is determined by vx and vθ, which are its linear
velocity in the heading direction and the angular velocity
around the vertical axis, respectively. Thus, the trajectories
for any constant velocity have a curvature with the radius
r = vx/vθ and the new state of the robot at time step t+∆t
is determined as:x(t+ ∆t)

y(t+ ∆t)
θ(t+ ∆t)

 =

x+ r
(
sin(θ + ∆t · vθ)− sin(θ)

)
y + r

(
cos(θ + ∆t · vθ)− cos(θ)

)
θ + vθ∆t

(10)

The velocities are clamped to reasonable values, i.e., |vx| ≤
1.0 m/s and |vθ| ≤ 1.0 rad/s. Given the linear and angular
accelerations ax and aθ we can compute the robot’s velocities
as

vx = vxr + ax ·∆t (11)

vθ = vθr + aθ ·∆t (12)

In our simulation, we determine aθ based on the resulting
social force vector and the robot orientation, and the robot
rotational velocity.

aθ = Kp ·∆α+Kd · (−vθ) (13)

where Kp and Kd denote the coefficients and ∆α is the angle
between the social force vector and the heading direction of
the robot. To compute the linear acceleration ax, we project
the social force vector onto the heading direction of the robot
and take the magnitude of the new vector as value for ax, if
∆α is less than or equal to 70◦. That means, we only apply
forward acceleration when the social force vector is within
the field of view of the robot, whereby ∆α = 0 means the
maximal acceleration. In case ∆α is greater than 70◦, we
set ax to the maximum possible negative value to slow down
or stop the robot.

V. PREDICTIVE CONTROLLER

We developed a predictive controller that aims at improv-
ing the computed SFM commands. The predictive controller
considers a set of adjustment values of the acceleration
commands generated by the SFM controller and simulates
the pedestrians’ as well as robot motion some time steps
into the future, evaluates the resulting configuration based
on an objective function, and chooses the best result. The
best acceleration values are then used as teacher values of
the neural network described in the next section.

In more detail, the predictive controller has knowledge
about the positions and velocities of the pedestrians within
a certain range around the robot and tries to improve the
acceleration commands computed by the SFM controller
at every time step by considering a set of adjustments,
defined as the tuple of linear acceleration adjustment δax and
angular acceleration adjustment δaθ from a set of discrete
possible adjustments tuples. The predictive controller then
simulates the motion of the pedestrians as well as the robot
for each considered adjustment for time ∆t into the future
and evaluates the resulting configuration with the following
objective function

Ω(δax, δaθ) = (14)
−αdG(δax, δaθ)− βped(δax, δaθ)− γcol(δax, δaθ),

where dG(δax, δaθ) is the resulting Euclidean distance from
the robot to its goal, ped(δax, δaθ) is the number of pedes-
trians that are predicted to be in a 3m radius around the
robot, col(δax, δaθ) is the number of collisions encountered
during the simulation step, and α, β, and γ are weights.

The tuple adj∗ = {δax∗, δaθ∗} that achieves the highest
evaluation is then added to the acceleration values returned

Fig. 2: Overview of the predictive controller that outputs the best acceler-
ation adjustment adj∗ = {δax∗, δaθ∗} for the calculated SFM command.
The objective function Ω takes into account the progress towards the
goal dG and the resulting number of pedestrians within a certain range ped.
See text for a detailed explanation.

Fig. 3: The features used as input to the neural network are the robot’s
observations of the pedestrians within its field of view. The robot’s sensor
field is divided into seven zones. The feature vector consists of the
distance to the closest pedestrian per zone, as well as the number of
pedestrians per zone. In this example, the vector would be as follows:
[(0,0),(0,0),(d3,2),(0,0),(d5,3),(0,0),(d7,2)]

by the SFM and chosen as the command to be executed by
the robot. Fig. 2 illustrates the different components of the
predictive controller.

VI. TRAINING A NEURAL NETWORK

The predictive controller introduced in the previous section
makes observations from its simulated environment which
cannot be obtained in the real world. In addition, the cal-
culations are too computationally expensive. We therefore
propose to learn a neural network that can subsequently
be used for a real robot to generate improved acceleration
commands based on the SFM. The output of the predictive
controller is hereby used as the training data.

We generated a training set by running our simulator and
recording at each time step a set of features describing
the situation and the adjustment tuple from the predictive
controller. The final training set contained approximately
300,000 data pairs of features and acceleration adjustments
and was collected with different densities of pedestrians.

Since typically the velocity of the people cannot be reli-
ably observed, we use a different set of features to describe
the configurations of pedestrians around the robot based on
the available information. In particular, we define a field of
view in front of the robot with an opening angle of 140◦

with a 3 m radius and divide this area into seven equally
sized angular zones as depicted in Fig. 3. For each of these
zones, we determine the distance of the robot to the nearest

Fig. 4: The neural network architecture used for the robot controller (input
layer in blue, layers of linear neurons in yellow, and layers of sigmoid
neurons in purple).

pedestrian as well as the number of pedestrians currently
within the area. We use this information to describe the local
environment around the robot during training and application
of the NN.

As a result, the input dimension of the neural network is
16 (2 features for each of the 7 zones and the linear and
angular SFM acceleration) and the output, corresponding to
the acceleration values δax∗, δaθ∗ given by the predictive
controller, has a dimension of 2. An example how the feature
vector is computed is provided in Fig. 3.

We used the mean-square error as a loss function and
optimized training using RMSProp. The network as depicted
in Fig. 4 achieved the best validation loss rates for all archi-
tectures we evaluated, with an overall training time of only
10 minutes with an Intel Core i5 CPU for 300.000 collected
data points.

The weights of the neural network are initialized with the
Glorot normalization [16]. The output layer of the neural
network has two linear neurons corresponding to δax or
δaθ. Note that in general it might also be possible to train
absolute velocities which, however, would require a much
larger dataset for training and a more complex network
architecture.

VII. EXPERIMENTS

We performed extensive experiments in simulation to
evaluate the performance of the neural network controller in
comparison to the basic SFM and the predictive controller
in terms of number of collisions and completion time of the
navigation task.

A. Parameters and Setup

For the SFM we used the following parameters: A =
1.0, n = 2, n′ = 3 in Eq. (7). The desired velocity was
set to v0i = 0.8m/s and the parameters of Eq. (9) were set
to Fsf = 2.1, Fdf = 1.0, Fof = 1.0.

For the predictive controller, we experi-
mentally determined the range of δax, δaθ ∈
[−0.3,−0.2,−0.05, 0.0, 0.05, 0.2, 0.3] for the adjustment
values of the predictive controller and thus considered
49 adjustment tuples. For the objective function in Eq. (14),
we chose α = 5, β = 1, γ = 6. These values showed
the best performance for the pedestrian controller. The
prediction time was set to ∆t = 0.4 s and the simulated
environment ran with a frequency of 10Hz.

Our experimental environment consists of a corridor with
a width of 10m, bounded by two parallel walls. The robot’s

goal

robot

t = 0.0s

t = 5.0s goal

t = 8.0s goal

t = 14.5s goal

Fig. 5: Experimental setup with 50 pedestrians (black) and a corridor size
of 50x10 meters. The pedestrians on the left side have to reach the right
end of the corridor and vice versa. The robot (magenta) starts in the middle
of the corridor and has to reach the goal on the right (red). The resulting
trajectory is illustrated for five seconds before and after each shown time
step.

starting and goal position across all runs was the same with
a distance of 21m between these two points. We performed
the evaluation for six different pedestrian densities. For each
run, we distributed the pedestrians equally at either end of the
corridor and randomly initialized their position in a certain
region (Fig. 5). The goal positions of the pedestrians are
randomly sampled along the width of the corridor at the
opposite end.

For each of the six density groups we performed 50 runs
using the SFM controller, the predictive controller, and the
neural network controller in combination with the SFM.

B. Average Number of Collisions for Different Pedestrian
Densities

We first evaluated the average number of collisions be-
tween the robot and pedestrians for all three controllers.
We hereby assume a collision to happen when the outer
boundaries of the robot and a pedestrian come into contact,
where both radii were set to 0.2 m. The results depicted
in Fig. 6 show that both, the predictive controller and the neu-
ral network controller achieve a seriously reduced collision
rate for all densities compared to the basic SFM controller.
Over all runs, the NN controller shows a reduction of 31%
in the number of collisions compared to the SFM controller.
Most importantly, we show that the NN controller achieves a
performance comparable with the predictive controller, even
if it uses simple features instead of the complete information
from the simulation. As these results demonstrate, the NN
successfully imitates our predictive controller and seriously
improves the SFM commands.

10 20 30 40 50 60
Pedestrians

0

10

20

30

40

50

60

C
o
lli
si
o
n
s

10

29

50

39

53

62

4

17

22

30

41

52

5

19 18

34
36

54

SFM

PC

NN

Fig. 6: Average number of collisions per run for the basic SFM con-
troller (SFM), the predictive controller (PC), and the neural network (NN)
for different pedestrian densities. Both, the predictive controller and the
neural network seriously outperform the basic SFM for all densities.

10 20 30 40 50 60

Pedestrians

0

10

20

30

40

50

T
im

e

26

33

36
39

44

51

25

30

33

39

42

46

26

30

33

39

42

53SFM

PC

NN

Fig. 7: Average completion time for the SFM controller, predictive con-
troller (PC), and the neural network (NN) for different pedestrian densities.
As can be seen, there is no significant difference between the three
controllers up to 50 pedestrians even if the NN and PC controller manage
better to avoid collisions with pedestrians (as shown in Fig. 6). Only
for 60 pedestrians the completion time of the NN controller is larger
than the time of the PC controller, suggesting that additional training for
very dense crowds is needed. These results demonstrate that the behavior
of the predictive controller can be mimicked successfully by the NN
controller, which is not using the omniscient simulation for improving
control commands.

C. Average Completion Time for Different Pedestrian Den-
sities

Furthermore, we compared the completion time of the
robot when controlled by the SFM controller, the predic-
tive controller and the neural network to navigate through
different pedestrian densities.

The results illustrated in Fig. 7 show that the NN controller
achieves a completion time that is comparable to the one of
the PC controller on average and outperforms the SFM con-
troller up to 50 pedestrians. The evaluation confirms again
that our NN is able to imitate the behavior of the predictive
controller. For 60 pedestrians the completion time of the NN
approach is higher than the time of both, the SFM and the PC
controller, suggesting that additional training for very dense
crowds is needed.

D. Qualitative Evaluation
Fig. 5 shows how the robot navigates through a pedestrian

crowd of 50 people towards its goal location (red). The

goal

Fig. 8: Qualitative comparison of the NN controller and the SFM controller
for the same pedestrians configuration. The NN controlled robot initiates
the evasive action earlier (magenta) than the SFM controlled robot (green).

magenta line illustrates the robot trajectory five seconds
before and after the current time step. As can be seen, the
robot moves smoothly through the pedestrians by applying
the acceleration adjustments of the NN. The reduced number
of collisions of the NN controller results from foresighted
behavior in terms of early evasive actions into areas with
only few pedestrians (see the example Fig. 8).

VIII. DISCUSSION

To use our NN controller in real-world scenarios, the
robot system needs to be equipped with a people tracking
system similar as in [17]. Furthermore, the robot needs to
localize itself in an environment with a highly occluded
field of view due to the presence of people around it. Both
aspects introduce errors and noise into the system compared
to our noise-free simulation. Thus, currently we are working
on modifying our simulation so that it is closer to real-
world scenarios by modeling the errors introduced by people
tracking and motion prediction and the localization module.

For this work, we chose supervised learning to train a
neural network. Another option to solve the problem would
be to use reinforcement learning, which works with a reward
function to train the network based on experienced runs,
instead of taking the output of the predictive controller as
teaching example as in our approach. In practice, however,
the development of a network structure is much more con-
venient and faster with a dataset collected using the predic-
tive controller, as we can quickly re-run the training when
modifying the structure of our network. Also reinforcement
learning processes are more sensitive to hyper parameters of
the system and require a lot of tuning to achieve the desired
outcome.

IX. CONCLUSION

In this paper, we proposed a novel robot controller based
on a neural network to improve the navigation behavior of a
robot steered by the popular social force model (SFM). To
train the neural network, we developed a predictive controller
that uses information about the positions and velocities of
pedestrians within the vicinity of the robot and simulates
their motions a few time steps ahead. For the robot’s mo-
tions, the predictive controller evaluates a set of incremental
adjustments of the SFM computed acceleration commands
and determines the best result based on the number of close
pedestrians and the progress towards the navigation goal.
The best acceleration adjustments values are then used as
target values for the neural network. As input, we use simple
features describing the configuration of the pedestrians in the
robot’s vicinity.

The learned network can be efficiently applied on a robot
in combination with an SFM based controller and uses
only features that can be derived from real observations. As
our simulation experimental results with different pedestrian
densities show, the motion commands generated by the
predictive controller as well as by the neural network lead
to a significantly reduced collision rate in comparison to
the basic SFM controller while maintaining a comparable
velocity.

REFERENCES

[1] D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

[2] F. Farina, D. Fontanelli, A. Garulli, A. Giannitrapani, and D. Prat-
tichizzo, “Walking ahead: The headed social force model,” PloS one,
vol. 12, no. 1, 2017.

[3] F. Zanlungo, T. Ikeda, and T. Kanda, “Social force model with explicit
collision prediction,” EPL (Europhysics Letters), vol. 93, no. 6, p.
68005, 2011.

[4] G. Ferrer, A. Garrell, and A. Sanfeliu, “Social-aware robot navigation
in urban environments,” in Proc. of the European Conference on
Mobile Robots (ECMR), 2013.

[5] P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to navigate
through crowded environments,” in Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2010.

[6] A. Vemula, K. Muelling, and J. Oh, “Modeling cooperative navigation
in dense human crowds,” in Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 2017.

[7] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, “Feature-
based prediction of trajectories for socially compliant navigation.” in
Robotics: Science and Systems, 2012.

[8] D. Vasquez, B. Okal, and K. O. Arras, “Inverse reinforcement learning
algorithms and features for robot navigation in crowds: an experimen-
tal comparison,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots & Systems (IROS), 2014.

[9] B. Kim and J. Pineau, “Socially adaptive path planning in human
environments using inverse reinforcement learning,” Int. Journal of
Social Robotics, vol. 8, no. 1, pp. 51–66, 2016.

[10] L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially-compliant navi-
gation through raw depth inputs with generative adversarial imitation
learning,” in Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2018.

[11] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots & Systems
(IROS), 2018.

[12] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human trajectory prediction in crowded
spaces,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016.

[13] M. Pfeiffer, G. Paolo, H. Sommer, J. Nieto, R. Siegwart, and C. Ca-
dena, “A data-driven model for interaction-aware pedestrian motion
prediction in object cluttered environments,” in Proc. of the IEEE Int.
Conf. on Robotics & Automation (ICRA), 2018.

[14] M. Moussaı̈d, D. Helbing, S. Garnier, A. Johansson, M. Combe, and
G. Theraulaz, “Experimental study of the behavioural mechanisms
underlying self-organization in human crowds,” Proc. of the Royal
Society of London B: Biological Sciences, vol. 276, no. 1668, pp.
2755–2762, 2009.

[15] M. Moussaı̈d, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz,
“The walking behaviour of pedestrian social groups and its impact on
crowd dynamics,” PloS One, vol. 5, no. 4, p. e10047, 2010.

[16] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Int. Conf.
on Artificial Intelligence and Statistics, 2010.

[17] R. Triebel, K. Arras, R. Alami, L. Beyer, S. Breuers, R. Chatila,
M. Chetouani, D. Cremers, V. Evers, M. Fiore, et al., “Spencer: A
socially aware service robot for passenger guidance and help in busy
airports,” in Proc. of the Conf. on Field and Service Robotics, 2016.

