MINERVA: A Tour-Guide Robot That Learns
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Abstract. This paper describes an interactive tour-guide robot which
was successfully exhibited in a Smithsonian museum. Minerva employed
a collection of learning techniques, some of which were necessary to cope
with the challenges arising from its extremely large and crowded environ-
ment, whereas others were used to aid the robot’s interactive capabilities.
During two weeks of highly successful operation, the robot interacted
with thousands of people, traversing more than 44km at speeds of up to
163 cm/sec in the un-modified museum.

1 Introduction

This paper presents Minerva, the latest in a series of mobile tour-guide robots.
The idea of a tour-guide robot goes back to Horswill [8], who implemented a
vision-based tour-guide robot in the AI lab of MIT. More recently, Burgard
and colleagues developed a more sophisticated tour-guide robot called Rhino,
which that successfully installed in the Deutsches Museum Bonn [1]. Inspired by
this, Norbakhsh and colleagues developed a similar robot called Chips for the
Carnegie Museum of Natural History [14].

Building on these successes, the Minerva project pursued two primary goals:

1. Scaling up: Minerva’s environment was an order of magnitude larger and
more crowded than previous museum environments. The robot’s top speed
of 163 cm/sec was more than double than that of previous robots. An ad-
ditional scaling goal was a reduction in lead-time for installing such robots
(from several months to only three weeks). As in the Rhino project, the
environment was not modified in any way to facilitate the robot’s operation.

2. Improved user interaction. To aid the robot’s interactive capabilities,
Minerva was designed to exhibit a life-like character, strongly relying on
common tokens in inter-human interaction. For example, Minerva possessed
a moving head with motorized face and a voice. The robot’s behavior was a
function of its “emotional state,” which adjusted in accordance to people’s
behavior. These new interactive means were essential for the robot’s ability
to attract, guide, and educate people—something which was recognized as
a clear deficiency of previous tour-guide robots.



Fig. 1. Panoramic view of the Material World Exhibition, Minerva’s major op-
eration area which is located in the entrance area of the Smithsonian’s National
Museum of American History (NMAH).

These goals mandated the pervasive use of learning, at several levels of the
software architecture. Minerva

— employs statistical techniques to acquire geometric maps of the environ-
ment’s floor plan and its ceiling (other such robots did not learn their map),
thereby facilitating the installation process,

— uses the ML estimator to acquire high-level models of time-to-travel, en-
abling the robot to follow much tighter schedules when giving tours, and

— employs reinforcement learning to acquire skills for attracting people, thereby
increasing its overall effectiveness.

In addition, Minerva continuously estimates other important quantities, such as
its own location, the location of people, and its battery charge.

During a two-week exhibition that took place in August/September 1998
in one of the world’s largest museums, the Smithsonian’s National Museum of
American History (NMAH), Minerva successfully gave tours to tens of thousands
of visitors. The “Material World” exhibition (see Figure 1), where most exhibits
were located, was a huge and usually crowded area, which almost entirely lacked
features necessary for localization (even the ceiling was uninformative, as the
center area had a huge whole with a continuously moving pendulum inside).
During the exhibition, more than 100,000 people visited the NMAH, and thou-
sands of people interacted with the robot. The robot successfully traversed 44km,
at an average speed of 38.8 cm/sec and a maximum speed of 163 cm/sec. The
top speed, however was only attained after closing hours. During public hours,
we kept the robot at walking speed, to avoid frightening people.

This article describes major components of Minerva’s software. Since we
adopted much of the software approach by Burgard and colleagues [1], the fo-
cus 1s here on research that goes beyond this work. In particular, we describe
in detail Minerva’s learning components, and only highlight other, previously
published components .

2 Learning Maps

Previous tour-guide robots were unable to learn a map; instead they relied on
humans to provide the necessary information. To facilitate the rapid installation
in novel environments, Minerva learns maps of its environments. In particular,
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Fig. 2. (a) Minerva. (b) Minerva’s motorized face (in happy mode). (¢) Minerva
gives a tour in the Smithsonian’s National Museum of American History.

Minerva learns two types of maps, Occupancy maps (see also [3, 17]), and ceiling
texture maps. The use of a dual map is unique; however, it is necessary in large,
open and densely crowded environments such as the museum, where a single
sensor modality is often insufficient to track the robot’s position reliably.

2.1 Statistical Mapping with EM

Both mapping algorithms are variants of a single, overarching approach origi-
nally presented in [18]. The general problem is typically referred to as concurrent
mapping and localization, which indicates its chicken-and-egg nature: Building
maps when the positions at which sensor readings were taken are known is rela-
tively simple, and so is determining the robot’s positions when the map is known;
however, if neither the map nor the robot’s positions are known, the problem is
hard.

The key idea is to treat the concurrent mapping and localization problem as
a maxrimum likelithood estimation problem, in which one seeks to determine the
the most likely map given the data.

Pr(m|d) (1)

Here m denotes the map, and d the data (odometry and range data/camera im-
ages). The likelihood Pr(m|d) takes into account the consistency of the odometry
(small odometry errors are more likely than large ones), and it also considers the
perceptual consistency (inconsistencies in perception are penalized). As shown
in [18], the likelihood function can be re-expressed as

T
Pr(m|d) = « /~-~/HPT(3(t)|m,x(t)) (2)
t=0
T-1
H Pr(:v(t+1)|u(t), x(t)) dz(®, ... dz(T).
t=0

where z(!) denotes the robot’s pose at time ¢, s(*) denotes an observation (laser,
camera) and u(*) an odometry reading.



Fig. 3. (a) Occupancy map and (b) ceiling mosaic of oddly-shaped ceiling (center
area has a hole and a moving pendulum).

Finding the global maximum of Pr(m|d) is computationally infeasible. How-
ever, local maxima can be found efficiently using the EM algorithm, a well-known
statistical approach to likelihood maximization. This approach interleaves phases
of localization (in the E-step) with mapping phases (the M-step). More specif-
ically, in the E-step our approach estimates the various past robot locations
denoted z

Pr(zim,d) (3)

assuming knowledge of the map m (initially, there is no map and z is exclusively
estimated from odometry). The M-step computes the most likely map based on
the previously computed z:

argmax Pr(m|z,d) (4)

m

As argued in [18], iteration of both steps leads to a local maximum in likelihood
space. In practice, this approach has been shown to generate maps of unprece-
dented complexity and size. However, the approach in [18] required that a person
put tape on the floor and pushed a button every time the robot traversed a piece
of tape—something that we want to avoid since it is an obstacle in rapid, robust
installation.

2.2 Occupancy Maps

Our approach deviates from [18] in two aspects: First, we omit the “backward
phase” in the E-step (localization), and second, we replace the density Pr(z|m, d)
by its maximum likelihood estimate argmax, Pr(z|m,d). We found that both
simplifications have only a marginal effect on the result; however, they greatly
reduce the computational and memory requirements. This, in turn, makes it pos-
sible to use raw laser data for localization and mapping, instead of the “button
pushes” that were required in the original approach to reduce the computation.



Simplified speaking, the resulting mapping algorithm performs Markov local-
ization [2, 10, 15] (E-step), interleaved with occupancy grid mapping [3, 17](M-
step). Both are easily done in real-time. In practice, we found that < 5 itera-
tions are sufficient, so that the resulting mapping algorithm is fast. A map of
the museum is shown in Figure 3a. This map, which was used during the entire
exhibition, is approximately 67 by 53 meter in size.

2.3 Texture Maps of the Ceiling

The sheer size, openness, and density of people in the present museum made it
necessary to learn a map of the museum’s ceiling, using a (mono) B/W camera
pointed up. The ceiling map is a large-scale mosaic of a ceiling’s texture (c.f.,
Figure 3b). Such ceiling mosaics are difficult to generate, since the height of the
ceiling is unknown, which makes it difficult to map the image plane to world
coordinates.

Just like the occupancy grid algorithm, our approach omits the backwards
phase. In addition, we make the restrictive assumption that all location distri-
butions are normal distributed (Kalman filters), which makes the computation
extremely fast. Unfortunately, this assumption requires that all uncertainty in
the robot’s pose is unimodal—an assumption that is typically only true when
the position error is small at all times (c.f., [12]).

The plain EM approach, as described above, does not produce small error.
However, a modified version does, for environments of the size of the museum
and for sensors as rich in information as cameras. The idea is to interleaves the
E-step and the M-step for each sensor item, which is much finer grained a level
than the approach described above. Whenever a sensor item is processed (new
and past data alike), it is first localized and then the map is modified accordingly.
A mosaic of the museum’s ceiling is shown in Figure 3b. One can clearly see the
ceiling lights and other structures of the museum’s ceiling (whose height varied
drastically).

3 Localization

In everyday operation, Minerva continuously tracks its position using its maps.
Position estimates are necessary for the robot to know where to move when
navigating to a specific exhibit, and to ensure the robot does not accidentally
leave its operational area. Here we adopt Markov localization, as previously
described in [2, 10, 15]. Markov localization is a special case of the E-step above.

Figure 4 illustrates how Minerva localizes itself from scratch (global localiza-
tion). Initially, the robot does now know its pose; thus, Pr(z|m, d) is distributed
uniformly. After incorporating one sensor reading (laser and camera), Pr(z|m, d)
is distributed as shown in Figure 4a. While this distribution is multi-modal, high
likelihood is already placed near the correct pose. After moving forward and sub-
sequently incorporating another sensor reading, the final distribution Pr(z|d, m)
is centered around the correct pose, as shown in Figure 4b. We also employed



Fig. 4. Global localization: (a) Pose probability Pr(z) distribution after inte-
grating a first laser scan (projected into 2D). The darker a pose, the more likely
it is. (b) Pr(z) after integrating a second sensor scan. Now the robot knows its
pose with high certainty/accuracy.

a filtering technique described in depth in [7], to accommodate the crowds that
frequently blocked the robot’s sensors (and thereby violated the Markov assump-
tion that underlies Markov localization).

4 Collision Avoidance

Minerva’s collision avoidance module controls the momentary motion direction
and velocity of the robot so as to avoid collisions with obstacles—people and ex-
hibits. At velocities of up to 163 cm/sec, which was Minerva’s maximum speed
when under exclusive Web control, inertia and torque limits impose severe con-
straints on robot motion which may not be neglected. Hence, we adopted a colli-
sion avoidance method called uDWA, originally developed by Fox and colleagues
[5, 6]. This approach considers torque limits in collision avoidance, thereby pro-
viding safety even at high speeds.

The pDWA algorithm was originally designed for circular robots with synchro-
drive. Minerva, however, possesses a non-holonomic differential drive, and the
basic shape resembles that of a rectangle. Collision avoidance with rectangu-
lar robots is generally regarded more difficult. However, uDWA could easily be
extended to robots of this shape by adapting the basic geometric model. The
approach was able to safely steer the robot at speeds of 1.63 cm/sec, which is
more than twice as high as that of any autonomous robot previously used in
similar applications. This suggests that the uDWA approach applies to a much
broader class of robots than previously reported.

5 “Coastal” Navigation

Minerva’s path planner computes paths from one exhibit to another. The prob-
lem of path planning for mobile robots has been solved using a variety of different



Fig. 5. Coastal navigation: The entropy map, shown in (a), characterizes the
information loss across different locations in the unoccupied space. The darker
an area, the less informative it is. (b) Path generated by the planner, taking
both information loss and distance into account. Minerva avoids the center area
of the museum.

methods [11]. Most mobile robot path planners, however, do not take into ac-
count the danger of getting lost; instead, they minimize path length (see [?] for
an exception). In wide, open environments, the choice of the path influences the
robot’s ability to track its position. To minimize the chances of getting lost, it
is therefore important to take uncertainty into account when planning paths.

Our idea is simple but effective: In analogy to ships, which typically stay close
to coasts to avoid getting lost (unless they are equipped with a global positioning
system), Minerva’s path planner is called a coastal planner. In essence, paths are
generated according to a mixture of two criteria: path length and information
content. The latter measure, information content, reflects the amount of infor-
mation a robot is expected to receive at different locations in the environment.
A typical map of information content is shown in Figure 5a. Here the grey scale
indicates information content: the darker a location, the less informative it 1s.
This figure illustrates that the information content is smallest in the center area
of the museum.

Formally, information content is defined as the expected reduction in entropy
upon sensing, i.e.,

H[Pr(z)] — /Pr(l) E[s|z] H[Pr(z'|s)] dz. (5)

Here E[s|z] denotes the expected sensor reading at pose z. When constructing
the map shown in Figure 5a, this expression is computed off-line for every loca-
tion, making the assumption that the robot knows its position within a small,
Gaussian-distributed uncertainty margin. Our approach also exploits the fact
that the robot’s sensors cover a 360° field of view, which allows us to ignore the
orientation # when considering information content. When computing (5), the
presence of people is taken into account by modeling noise in sensing (assuming
500 randomly positioned people in the museum).
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1 26 68 14 28

2 23 38 13

3 81 66 51 66 60

4 76 22

5 62 49

6 41 44

7 44 1 55 42 51

8 44 63

9
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11 34 16 69

12 61 53 69 72 32 87 55

13 28

14|33 39

15 60

16 46 68
17 59 13 57

18 46 42 31 36 31 12
19 1 25 58 69 12

20 57 62 37

21 55 24 20 15 74

22 208 66 46 38 38 23 56 39

23 113 76 59 24 46 59

Table 1. Time (in sec) it takes to move from one exhibit to another, estimated from
1,016 examples collected in the museum. These times, plus the (known) time used for
explaining an exhibit, form the basis for the decision-theoretic planner.

As described above, paths are generated by simultaneously minimizing path
length and maximizing information content, using dynamic programming [9].
A typical result is shown in Figure 5b. Here the path (in white) avoids the
center region of the museum, even though the shortest path would lead straight
through this area. Instead, it generates a path that makes the robot stay close to
obstacles, where chances of getting lost are much smaller. In comparative tests,
we found that this planner improved the certainty in localization by a factor of
three, when compared to the shortest-path approach.

6 Learning to Compose Tours

It was generally desirable for tours to last approximately six minutes—which
was determined to be the duration the average visitor would like to follow the
robot. Unfortunately, in practice the rate of progress depends crucially on the
number and the behavior of the surrounding people. Thus, the duration of tours
can vary widely if the the exhibits are pre-selected. To meet the target duration
as closely as possible, tours are composed dynamically, based on the crowdedness
in the museum.

To address this problem, Minerva uses a flexible high-level control module,
capable of composing tours on-the-fly. This module learns the time required for
moving between pairs of exhibits, based on data recorded in the past (using
the maximum likelihood estimator). After an exhibit is explained, the interface
chooses the next exhibit based on the remaining time. If the remaining time



| average | min | max
static |398 + 204 sec|121 sec|925 sec
with learning| 384 + 38 sec (321 sec|462 sec

Table 2. This table summarizes the time spent on individual tours. In the first row,
tours were pre-composed by static sequences of exhibits; in the second row, tours were
composed on-the-fly, based on a learned model of travel time, successfully reducing the
variance by a factor of 5.

is below a threshold, the tour is terminated and Minerva instead returns to
the center portion of the museum. Otherwise, it selects exhibits whose sequence
best fit the desired time constraint. The learning algorithm (maximum likelihood
estimator) and the decision algorithm were implemented in RPL, a language for
reactive planning [13].

Table 2 illustrates the effect of dynamic tour decomposition on the duration of
tours. Minerva’s environment contained 23 designated exhibits, and there were 77
sensible pairwise combinations between them (certain combinations were invalid
since they did not fit together thematicly). In the first days of the exhibition,
all tours were static. The first row in Table 2 illustrates that the timing of those
tours varies significantly (by an average of 204 seconds). The average travel time,
shown in Table 1, was estimated using 1,016 examples, collected during the first
days of the project. The second row in Table 2 shows the results when tours were
composed dynamically. Here the variance of the duration of a tour is only 38
seconds. Minerva’s high-level interface also made the robot return to its charger
periodically, so that we could hot-swap its batteries.

7 Spontaneous Short-Term Interaction

Interaction with people was Minerva’s primary purpose—it is therefor surpris-
ing that previous tour-guide robots’ interactive capabilities were rather poor.
The type of interaction was spontaneous and short-term: Visitors of the museum
typically had no prior exposure to robotics technology, and they could not be
instructed beforehand as to how to “operate” the robot. The robot often had
to interact with crowds of people, not just with single individuals. Most people
spent less then 15 minutes (even though some spend hours, or even days). This
type of interaction is characteristic for robots that operate in public places (such
as information kiosks, receptionists). It differs significantly from the majority of
interactive modes studied in the field, which typically assumes long-term inter-
action with people one-on-one.

To maximize Minerva’s effectiveness, we decided to give Minerva “human-
like” features, such as a motorized face, a neck, and an extremely simple finite
state machine emulating “emotions,” and use reinforcement learning to shape
her interactive skills.
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Fig. 6. The finite state automaton that governs Minerva’s “emotional” states.

7.1 Emotional States

When giving tours, Minerva used its face, its head direction, and its voice to
communicate with people, so as to maximize its progress. A stochastic finite
state machine shown in Figure 6 is employed to model simple “emotional states”
(moods), which allowed the robot to communicate its intent to visitors in a social
context familiar to people from human-human interaction [4]. Moods ranged
from happy to angry, depending on the persistence of the people who blocked its
path. When happy, Minerva smiled and politely asked for people to step out of
the way; when angry, its face frowned and her voice sounded angry. Most museum
visitors had no difficulty understanding the robot’s intention and “emotional
state.” In fact, the ability to exhibit such extremely simplified “emotions” proved
one of the most appreciated aspect of the entire project.

The effect of this approach is best evaluated by comparing it with Rhino
[1], which uses a similar approach for navigation but mostly lacks these in-
teractive capabilities. We consistently observed that people cleared the robot’s
path much faster than reported by the Rhino team. We found that both robots
maintained about the same average speed (Minerva: 38.8 cm/sec, Rhino: 33.8
cm/sec), despite the fact that Minerva’s environment was an order of magni-
tude more crowded. These numbers shed some light on the effectiveness of Min-
verva’s interactive approach. People clearly “understood’ the robot’s intentions,
and usually cooperated when they observed the robot’s “mood” changed.

7.2 Learning to Attract People

How can a robot attract attention? Since there is no obvious answer, we applied
an on-line learning algorithm. More specifically, Minerva used a memory-based
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reinforcement learning approach [16] (no delayed award). Reinforcement was
received in proportion of the proximity of people; coming too close, however, led
to a penalty (violating Minerva’s space). Minerva’s behavior was conditioned
on the current density of people. Possible actions included different strategies
for head motion (e.g., looking at nearest person), different facial expressions
(e.g., happy, sad, angry), and different speech acts (e.g., “Come over,” “do you
like robots?”). Learning occurred during one-minute-long “mingling phases” that
took place between tours. During learning, the robot chose with high probability
the best known action (so that it attracted as many people as possible); however,
with small probability the robot chose a random action, to explore new ways of
interaction.

During the two weeks, Minerva performed 201 attraction interaction experi-
ments, each of which lasted approximately 1 minute. Over time, Minerva devel-
oped a “positive” attitude (saying friendly things, looking at people, smiling).
As shown in Figure 8, acts best associated with a “positive” attitude attracted
the most people. For example, when grouping speech acts and facial expressions
into two categories, friendly and unfriendly, we found that the former type of
interaction performed significantly better than the first (with 95% confidence).
However, people’s response was highly stochastic and the amount of data we
were able to collect during the exhibition is insufficient to yield statistical sig-
nificance in most cases; hence, we are unable to comment on the effectiveness of
individual actions.

8 Conclusion

This article described the software architecture of a mobile tour-guide robot,
which was successfully exhibited for a limited time period at the Smithsonian’s
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National Museum of American History. During more than 94 hours of opera-
tion (31.5 hours of motion), Minerva gave 620 tours and visited 2,668 exhibits.
The robot interacted with thousands of people, and traversed more than 44km.
Its average speed was 38.8 cm/sec, and its maximum speed was 163 cm/sec.
The map learning techniques enabled us to develop the robot in 3 weeks (from
the arrival of the base platform to the opening of the exhibition). A much im-
proved Web interface (Figure 7b) gave people direct control of the robot when
the museum was closed to the public.

Our approach contains a collection of new ideas, addressing challenges arising
from the size and dynamics of the environment, and from the need to interact
with crowds of people. Special emphasis has been placed on learning, to accom-
modate the challenges that arose in this unprecedently large, open and crowded
environment. In particular, Minerva differed from previous tour-guide robots in
its ability to learn maps (of the floor-plan and the ceiling), models of typical nav-
igation times for scheduling tours, and patterns of interaction when attracting
people. In addition, Minerva differed from previous tour-guide robots in that she
exhibited a “personality,” adopting various cues for interaction that people are
already familiar with. The empirical results of the exhibition indicate a high level
of robustness and effectiveness. Future research issues include the integration of
speech recognition, to further develop the robot’s interactive capabilities.
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