
January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

International Journal of Humanoid Robotics

c© World Scientific Publishing Company

CLASSIFYING OBSTACLES AND EXPLOITING CLASS INFORMATION

FOR HUMANOID NAVIGATION THROUGH CLUTTERED ENVIRONMENTS

PETER REGIER1

ANDRES MILIOTO2

CYRILL STACHNISS2

MAREN BENNEWITZ1

University of Bonn,
1 Endenicher Allee 19a, 53115 Bonn, Germany

2 Nussallee 15, 53115 Bonn, Germany

{pregier,maren}@cs.uni-bonn.de, amilioto@uni-bonn.de, cyrill.stachniss@igg.uni-bonn.de

Received 31 March 2019

Revised Day Month Year

Accepted Day Month Year

Humanoid robots are often supposed to share their workspace with humans and thus have to deal with

object used by humans in their everyday life. In this article, we present our novel approach to hu-

manoid navigation through cluttered environments, which exploits knowledge about different obstacle

classes to decide how to deal with obstacles and selects appropriate robot actions. To classify objects

from RGB images and decide whether an obstacle can be overcome by the robot with a corresponding

action, e.g., by pushing or carrying it aside or stepping over or onto it, we train and exploit a convo-

lutional neural network (CNN). Based on associated action costs, we compute a cost grid containing

newly observed objects in addition to static obstacles on which a 2D path can be efficiently planned.

This path encodes the necessary actions that need to be carried out by the robot to reach the goal. We

implemented our framework in ROS and tested it in various scenarios with a Nao robot as well as in

simulation with the REEM-C robot. As the experiments demonstrate, using our CNN the robot can

robustly classify the observed obstacles into the different classes and decide on suitable actions to find

efficient solution paths. Our system finds paths also through regions where traditional motion planning

methods are not able to calculate a solution or require substantially more time.

1. Introduction

As humanoid robots are designed to work in human environments, one of the tasks that

need to be solved consists of navigating through a cluttered environment where stepping

over or onto obstacles or moving an object out of the way might be necessary. Thus, they

must be able to avoid or to deal with different types of objects located at random places

in the environment. Finding suitable robot motions in environments cluttered with objects

imposes a high level of complexity to the motion planning problem and is difficult to solve

in a computationally efficient manner.

Common approaches to humanoid navigation in complex environments involve whole-

body motion planning and multi-contact planning1,2. These approaches usually take several



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

Fig. 1. Application example, in which the path of the robot is blocked. Based on classified non-static obstacles (in

this case a stuffed toy and toy blocks) and their associated actions and costs, our system computes a cost grid on

which a 2D path can be efficiently computed. The path also encodes the actions that need to be executed by the

robot during navigation to reach the goal. As can be seen, the robot moves the stuffed toy aside to clear its path

and can then continue walking along the 2D path.

seconds up to minutes to compute a solution. This may prevent the use on a mobile platform

or limits it’s ability to operate in a reactive way. To limit the computational load, other

frameworks employ footstep planning3,4,5,6 to avoid computing whole-body motion plans.

However, if a blocking object needs to be moved aside to reach the goal location, they often

do not yield a solution and thus result in a navigation failure.

In this article, we combine the advantages of the existing planning approaches by ex-

ploiting semantic information about objects. We present a novel approach to humanoid

navigation that combines fast 2D path planning with 3D footstep planning and object ma-

nipulation actions in obstructed regions of the path. We consider an indoor environment

from which the robot creates a 2D grid map with static obstacles in the absence of clutter

using a standard mapping approach7.

During navigation, the robot adds information about objects of different classes per-



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

ceived with its camera to the map. We hereby use a convolutional neural network to clas-

sify the objects and to decide whether an obstacle can be stepped over or stepped onto,

or moved out of the way by pushing or carrying it aside. For the classification task, we

use our recently developed real-time CNNs8 that are capable of segmenting RGB images

to detect given object classes. This framework provides reliable information about specific

object types and their pixel-wise masks (e.g., books, boxes, toys etc.) that we map to appro-

priate action types, which allow the robot to navigate across the corresponding area. Our

approach adds associated stepping and manipulation costs to a 2D map that is used for path

planning. In this way, we greatly simplify the full planning problem, as we split the whole

plan into several parts, while each part is solved individually. Fig. 1 illustrates a motivating

example, where the robot can only reach its goal by manipulating an object. According to

the resulting cost map after classifying the obstacles, our planner chooses a path where the

robot needs to move the stuffed toy aside.

We implemented our framework in ROS and tested it in various experiments with a

Nao humanoid. As the experimental results illustrate, the robot can robustly classify the

observed obstacles into different classes and use this information to efficiently find solution

paths through passages where objects are blocking the path. The underlying architectures

used to extract the semantics from the environment were carefully tailored to this task in

order to achieve efficient inference, which allows our approach to run in our small Nao

humanoid.

As extension to our previous work9, we detail how to learn the costs of actions, extend

our framework to allow several actions per object class, use point cloud data for deciding

which action to take, and present additional experiments.

2. Related Work

Stilman and Kuffner were the first who considered navigation amongst movable objects

where the robot can move objects aside if necessary to reach the goal location10. The idea

of their approach is to decompose the environment representation into disjunct regions and

search for obstacle motions that connect two disjoint regions allowing the robot to transi-

tion between them. Stilman et al. employed the framework on a real humanoid to navigate

through an environment with movable chairs and tables11 where the world state was ob-

served by an external motion capture system. In contrast to this approach, we perform fast

planning on a cost grid based on a 2D map, which can be easily obtained by using standard

mapping algorithms7. Furthermore, we classify objects perceived by the robot and encode

different actions associated to the object classes directly in the navigation costs contained

in the cost grid. In this way, we combine the planning on a 2D cost grid with local 3D

footstep planning and object manipulation.

A variant of the humanoid locomotion problem, in which the robot can utilize objects

to get to locations that are otherwise out of reach for the robot, was approached by Lev-

ihn et al.12. The authors introduced the concept of relaxed-constrained planning where the

planner is allowed to violate certain constraints. The violation is then locally resolved by

using suitable objects, e.g., to overcome a high step height.



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

The task of collecting objects and delivering them to designated places while clearing

cluttered obstacles out of the robot’s way, was addressed by Hornung et al.13. The authors

proposed to apply a high-level planner with integrated perception, world modeling, action

planning, navigation, and mobile manipulation. Our navigation framework is orthogonal to

that approach and could be integrated into such a higher level task planning framework.

Grey et al. recently presented an approach that uses so-called randomized possibil-

ity graphs to traverse environments with arbitrary obstacles, in which footstep as well as

whole-body motion planning is required1. The authors distinguish between passages that

are definitely passable by the robot and ones that are definitely impossible to be passed by

using approximations of the constraint manifold. So far, their approach has only been tested

in simulation with no perception involved. Lin and Berenson considered navigation in un-

even terrain using contact planning of palm and foot locations and learned estimates about

the traversability of regions2. The idea of this approach is to use the learned traversability

estimates as a measure how quickly the planner can generate feasible contact sequences.

This measure is used in the heuristic function of the contact space planner to guide the

search to areas with more contactable regions. Dornbush et al. recently developed a plan-

ning framework that considers adaptive dimensionality by determining which planning di-

mensions are relevant in each region of the environment14. Their idea was to plan with

multiple low-dimensional planning representations simultaneously within a multi-heuristic

search. While these approaches also aim at speeding up the search for viable solutions

paths, the authors do not consider perception and do not take into account the possibility of

actively modifying the environment.

The method proposed by Kaiser et al. extracts affordances of geometric primitives to

support the planning of whole-body locomotion and manipulation actions15. Navigation

through cluttered passages has not been considered in their scenario.

Although some of the above mentioned approaches provide a robust way to plan

through environments containing cluttered regions, they neglect the semantics of the ob-

jects. Semantic information, however, can be effectively exploited for humanoid naviga-

tion. Current advances in computer vision using deep CNNs to extract semantics of the

environment16,17,18 have made it possible to infer the semantic classes of objects in clut-

tered scenes with high accuracy. Such approaches allow us to map each object class to a

different action type that we can use for planning in an efficient way. Running our clas-

sifier in a fast manner is necessary to avoid adding a large computational overhead to our

approach. Thus, we build on top of recent work focusing on real-time CNNs8,19,20,21,22.

Since training deep CNN models is a data intensive task, we present a way alleviate this

by generating a large-scale dataset of our interest clutter classes with minimal effort in a

semi-autonomous way by crawling images from the Internet.

3. System Overview

Before we describe our approach in detail, we present an overview of the individual com-

ponents, which are also illustrated in Fig. 2. The first step is the semantic segmentation of

the input RGB image. The semantically segmented image is then provided to the object



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

path
planning

semantic
segmentation

static
2D map

object
mapping

segmented
point cloud

classified
RGB image

2D object-
costmap

path and
req. actions

RGB image depth image

RGB-D sensor

plan
execution

Fig. 2. Overview of our framework. The different components are summarized in Sec. 3.

mapping, which additionally uses 3D point cloud data from the input depth image aligned

with the RGB data, and a 2D grid representation of static obstacles in the environment.

This static 2D map is constructed using a standard mapping system7 in the absence of

further objects. The output of our object mapping is a 2D cost grid, encoding static obsta-

cles as well as the newly detected and classified objects, on which the path planning takes

place. The execution of the computed path, which comprises actions corresponding to the

detected objects, is done by the plan execution. The plan execution additionally uses the

segmented point cloud when necessary, while invoking the required object actions.

During navigation, our system continuously updates the representation of the environ-

ment with information about newly sensed obstacles that might be blocking the way of the

robot and replans the robot’s path toward the goal if necessary.

4. Semantic Segmentation

The first key step for our approach is the extraction of the semantics of objects in the

robot surroundings. Then our approach aims at inferring possible robot actions from the

objects in the environment in real-time. This requires a visual classifier that can recognize

individual objects accurately from a dictionary of possible classes, while still running fast

on a power- and payload-constrained machine such as a small humanoid robot. The state

of the art in object detection and semantic segmentation using CNNs makes the accuracy

of such algorithms acceptable for this approach to be feasible, but most CNN pipelines are

computationally intensive and require large amounts of training data. In order to make the

approach applicable on our robot, we rely on a lightweight architecture to achieve a good



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

Fig. 3. Top: encoder-decoder semantic segmentation CNN based on the non-bottleneck concept behind ERFNet21

inferring an image from our dataset. Bottom, left to right: original RGB image, prediction from CNN, and alpha

blend for visual qualitative performance assessment. Best viewed in color.

runtime vs. accuracy trade-off. To approach the amount of training data needed, we use

pre-trained models from Bonnet’s library8, which already provides useful features in the

convolutional layers and we create a large dataset by mixing images recorded by ourselves

and a huge amount of scavenged data from the Internet for refining the pre-trained models.

We opt in favor of a semantic segmentation pipeline, which maps each pixel of the

robot’s camera images into one of the eight classes: “balls”, “books”, “boxes”, “cars”,

“dolls”, “stuffed toys”, “toy blocks”, and “background”, so that each class has at least

one navigation action assigned to it. Note that our approach is not limited to these classes

and could easily be extended.

4.1. CNN-Based Semantic Segmentation

Fig. 3 shows a diagram of the encoder-decoder CNN architecture used in our approach that

is build using Bonnet8. The chosen architecture is based on ERFNet21, which proposes to

change each computational bottleneck introduced in ResNet17 and ENet20 with a “separa-

ble non-bottleneck” of a variable receptive field. This module uses a set of separable filters

of sizes [1×3] and [3×1] and different dilation rates d, which makes each layer effectively

wider without increasing computational cost, allowing the network to be more descriptive

without affecting runtime. The choice of using different dilation rates allows the network

to have a bigger equivalent receptive field in the image space, capturing long-range depen-

dencies, which is key for big objects. By using a model with these properties, and adjusting

the number and width of the layers to fit our data, we can achieve a model that is descrip-



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

tive enough to provide us with accurate semantic labels while running in real time. In order

to achieve even further efficiency in inference to allow the approach to run in a resource

constrained platform such as a small humanoid, we exploit TensorRT23 acceleration of our

neural network. In order to achieve this, the used ERFNet backbone needed to be modi-

fied to fit all supported operators. At the time of submission, there is no efficient support

of dilated convolutions within TensorRT, so in order to efficiently infer full semantic seg-

mentation with our proposed architecture, each [1× 3] and [3× 1] dilated convolution was

replaced by a dense convolution of [1× [3+2× d]] and [[3+2× d]× 1]. We observed no

drop in performance from this modification, and even though more operations are needed

for this, the acceleration obtained by the inference optimization provided in TensorRT was

superior.

We start from a pre-trained encoder using this modified architecture, which was trained

with the COCO dataset24 and therefore provides rich features even before the semantic

segmentation task-specific training. We attach a small decoder that is trained from scratch

using random weights and fine-tune the model training end-to-end using back-propagation

and a pixel-wise cross-entropy loss of the form

Lsemantic = −

C
∑

c=1

wc yc log
(

ŷc
)

(1)

wc =
1

log (fc + ǫ)
with fc =

1

P

P
∑

p=1

{

1 if p = c

0 if p 6= c ,
(2)

where wc penalizes class c according to the inverse of its frequency in the ground truth,

bounded by a parameter ǫ which is selected by cross-validation and is set to 1.02 in all our

experiments.

The training was performed with a dataset of 5,000 images containing roughly 20,000

toy instances with their respective dense masks, which we explain in the following section.

The retraining was performed by minimizing Eq. (1) through stochastic gradient descent

using the Adam optimizer, with a batch size of 36, a batch normalization momentum of

0.99, and an initial learning rate of 10−4. The learning rate is then halved every 50 epochs,

training for 200 epochs over the whole data. We used a channel dropout rate of 10% in

the layer before the linear classifier, and a weight decay of 10−5 for regularization during

training, and use the model with the best validation error measured after each epoch, a

practice commonly called early-stopping.

4.2. Data Collection

As previously stated, training deep CNNs requires a large amount of labeled training data

to obtain the accuracy required to run other approaches on top of the obtained semantics.

This effect is particularly magnified when using a semantic segmentation pipeline, because

a holistic knowledge of what each image contains is not enough, and labels are required at

a pixel level, increasing the effort required to label each image considerably. Even though

using pre-trained model helps to reduce the amount of required labeled data, a particular



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

Books Dolls Cars

Boxes Stuffed Toys Toy blocks

Fig. 4. Examples of pairs of classes with low inter-class distance, challenging for the CNN, but important for our

approach due to different associated object interactions.

Fig. 5. Examples of backgrounds used to generate the synthetic training images. Backgrounds were also crawled

from the internet, with queries designed to match viewpoints of places where the robot is likely to operate, such

as home and school environments.

case which makes the training more data-hungry is having low inter-class distances, like in

our case (see Fig. 4). To circumvent this problem, we collected a dataset with 1,000 objects

focusing on the hard examples of inter-class distance, i.e., focusing mostly on labeling

objects whose appearance is similar, but which have a different semantic label. This is done

to train CNN features that are sensitive enough to allow the classifier to fit the classification

hyper plane effectively. To generate a dataset for semantic segmentation, we need pixel-

wise masks for each individual object. Since such a labeling is expensive, we collected the

data with an RGB-D camera and segmented the objects in the depth channel to obtain the

ground-truth mask before feeding them to the CNN as a 3-channel RGB-only image.

To scale up the dataset and make it an order of magnitude bigger, we wrote a script to

automatically download images from the Internet with properly formatted queries returning

images fulfilling the following conditions: (i) the image contains only one of the desired

classes in the dictionary, and (ii) the image contains either an alpha channel making the

background transparent or has a blank background. Under these restrictions, the script re-

turns roughly 25,000 images using Google. We further reduce it to roughly 20,000 images

after six hours of supervised cleaning by a human. The supervision consists of navigating



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

Fig. 6. Examples of generated clutter images with added background. Left: RGB image, right: ground truth. Best

viewed in color.

Table 1. Example assignment of possible actions to object classes. The actions are chosen by an expert user

according to the robotic hardware, in this case a Nao robot.

Object class Possible actions

balls push, step over, pick up

cars, toy blocks step over, pick up

stuffed toys, dolls pick up

boxes, books step onto

quickly through the crawled images and identifying objects that either do not belong to the

specific class we are interested in, or whose alpha channel does not fit the object boundary.

For our CNN to be usable in realistic environments, the last step in this dataset generation

method is to generate 5,000 clutter images from our raw data, containing one of 300 differ-

ent backgrounds (Fig. 5) and any number of random objects from the database from 0 to

20 objects per image. This can be considered as “synthetic” data, but it is a step closer to

the real world, because the images are of real-world objects (Fig. 6).



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

Table 2. Classification metrics on validation set for different input image resolutions.

Resolution mAP
Per-class AP

mIoU
Ball Books Boxes Cars Dolls Stuffed toys Toy blocks

320× 240 0.792 0.908 0.747 0.733 0.768 0.801 0.828 0.759 0.585

640× 480 0.875 0.946 0.878 0.876 0.847 0.874 0.874 0.831 0.715

Table 3. Runtime for segmentation at different image resolutions.

Resolution
Runtime

GTX1080Ti Jetson TX2

320× 240 10 ms (100 FPS) 89 ms (11 FPS)

640× 480 33 ms (30 FPS) 245 ms (4 FPS)

Fig. 7. Data processing for the RGBD data. a) The original RGB image containing a doll and toy blocks be-

tween two walls. b) Semantic segmentation results using the Bonnet framework. c) Segmented point cloud of the

corresponding objects, using the depth image to get the spatial information of each marked pixel.

5. Path Planning Utilizing Obstacle Information

In this section, we describe our method for exploiting the semantic information about

detected and segmented objects during path and action planning.

5.1. Actions for Object Classes

We assume that an expert user assigns for the individual object classes possible actions

defining how the robot can overcome such obstacles when necessary. The possible actions

for the object types inherently depend on the specific robot that is being deployed. As an

example, Tab. 1 shows the actions associated with the object classes for a Nao robot. Note

that for some object classes several actions are possible, in which case our system selects

the least cost action to deal with the objects on its path. The robot furthermore analyzes

the point cloud of the object to decide if an action may not be executable, for example

because the object is to high to be stepped over. Those aspects are described in more detail

in Sec. 5.3.



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

Fig. 8. Pushing: In our implementation, the push action includes tracking the ball locally, positioning relative to

the object, and kicking it in the forward direction.

For our scenario, we currently use the following actions:

Standard walking in case of no objects: If the path does not contain any objects, the

robot’s walking controller follows a 2D path.

Push: If an objects needs to be pushed away, the robot follows the 2D path to the last free

grid cell on the path and starts the pushing action. Thus, the robot senses the object

locally using the segmented point cloud, moves to a target position relative to the

object, and pushes the object out of its way in forward direction. The push action

is illustrated in Fig. 8).

Step over and step onto: If the robot needs to traverse an area with objects that need to

be stepped over or onto, the robot applies footstep planning in the corresponding

region on a height map computed from the point cloud using our previous work25.

Fig. 9 shows the maximum height of a box the Nao can overcome.

Pick up: If the robot needs to pick up an object and move it out of the way, the robot again

follows the 2D path to the last free cell on the path in front of the object and then

identifies the object in the segmented point cloud, finds the target position relative

to the object, grabs it, rotates 180◦, and puts the object onto the ground, and rotates

back 180◦ . The pickup action is depicted in Fig. 10.

5.2. Action Costs

We define the costs of an action according to the time the robot needs to perform the action.

To determine the execution time, we designed an experiment in which the Nao robot had

to reach a goal one meter in front of it. The experimental setup of the actions is illustrated

in Fig. 11. We measured the time it took the robot to reach the goal by just walking to

the target location and by additionally pushing an object out of the way, stepping onto or

over objects, and picking up an object. For each case, we performed ten experiments and

selected the average execution time as the cost used for the planner. The averaged times



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

Fig. 9. Stepping onto: The step onto action includes stepping onto the object and also stepping down according to

a footstep plan.

Fig. 10. Picking up: The pick up action includes the tracking of the object locally, positioning relative to the

object, executing the grabbing, performing a 180
◦ turn, dropping the object, and rotating back 180

◦.

of the experiments are provided in Tab. 4. Since the walking is subject to errors induced

by the action itself, e.g., shaky walking start after the push action or the difference of

the orientation to the goal after the pick up action, it was important to let the Nao robot

walk before and after the corresponding action execution to measure the influence of small

uncertainties on the time performance.

Other factors, e.g., energy consumption or risk of failure, can be considered as well for

the cost computation and added to the determined cost.

5.3. Object Mapping

In this subsection, we describe how to map objects detected in the environment using

RGB-D data onto the cost grid used for planning. We use the semantic segmentation de-

scribed in Sec. 4 and combine it with the depth information of the RGB-D image to get a

segmented point cloud of the corresponding objects (see Fig. 7). Afterwards, we project the

segmented point cloud onto a 2D grid map representation of the environment containing



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

Table 4. Execution times of actions.

Action type Mean execution time [s]

walk 12

push 25

pick up 55

step over 40

step onto 61

walk push pick up step onto

Fig. 11. Experimental setup to determine the costs of actions according to the completion time. See Sec. 5.2 for a

detailed explanation.

inflated static obstacles as illustrated in Fig. 12a. Inflating all objects with the robot radius

is a general concept to prevent the robot from colliding with obstacles in case of slight

localization errors. We maintain an object database that contains the information about ob-

jects in form of object ID, object class, and the set of corresponding 2D grid cells. Note

that obstacles that cannot be classified by the CNN and, thus, are considered as background

are mapped as static and are not stored in the database of objects that can be manipulated.

Our approach uses a 2D cost grid map for path planning that encodes, in addition to the

static obstacles, the costs of the actions corresponding to the observed objects, which are

estimated as described in the previous subsection (Sec. 5.2).

To choose the action for an object, we consider the segmented point cloud to exclude

some possible actions listed in Tab. 1 that are predicted to be not executable by the robot

depending on the size of the object. We then assign the cheapest action of the remaining

actions to each object and, thus, to the cost map. For example, a small ball can either

be pushed away (cheapest action), stepped over, or the ball can be picked up in order to

free the path while for a big ball, e.g., a basket ball, neither action would be expected

to be executable so that the object would be marked as static in the map. The applied

heuristics to suggest a viable action for the Nao humanoid are listed in Tab. 5. In general

more advance operations for analyzing the geometry of the segmented object could be



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

step over

Fig. 12. a) Visualization of the projection of the objects onto a 2D grid. Inflated static obstacles are represented as

black cells and cells with detected objects from the segmented point cloud (see Fig. 7c) are color coded. Yellow

cells correspond to the doll, brown cells to the toy blocks. b) Resulting 2D cost map for planning with the costs

of the object actions encoded in the border cells of the objects. The border cells of the toy blocks (light gray),

which can be stepped over, have lower cost than the cells corresponding to the doll (dark gray), which needs to be

moved away so that the computed path contains the action to step over the blocks. The overlapping border cells

of the inflated objects are the sum of their action costs.

Table 5. Heuristics for the viable actions of the Nao robot.

Action type Geometric object features

push maximum height < 20 cm

pick up longitudinal axis < 30 cm

step onto maximum height < 7 cm

step over maximum height < 6 cm and transverse axis < 5 cm

performed. However, this leads to a trade-off between the accuracy of the suggested action

and the time performance of the planning framework.

In Fig. 12b, the cost value is represented by the gray level of the object border cells.

Hereby, the costs of the overlapping border areas between the inflated segmented objects

are the sum of the corresponding action costs of both/multiple objects, which means that in

these regions several object actions will be necessary. In this example, the path leads across

the toy block. From Tab. 1, our planner can chose between the step over and the pick up

action and decides to step over the block since this is the cheaper action.

Note that our system pauses the mapping while the robot executes a push, step, or pick

up action to free as much resources as possible to perform the action. Thus, no object

tracking takes place during that time.

5.4. Path Planning

Since the cost map contains the information about all obstacles, i.e, static and not static,

and encodes the potential object actions and their associated costs, we can efficiently use



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

A* search 26 with the Euclidean distance as the heuristic function to find a path for the

robot on the cost grid. If the path leads through any object area, the corresponding class

and, thus, the possible actions can be derived from the object database. In the example

shown in Fig. 7 and Fig. 12, our approach computes the green path with the action to step

over the toy blocks.

5.5. Updating the Action

Note that the path planner generally provides only suggestions regarding the action types.

Should the execution module not find a solution for a proposed actions, e.g., due to object-

environment configuration or classification errors, the action would be changed for the

corresponding object such that our planner would seek a different solution on the updated

cost grid. This can also happen in case the footstep planner does not find a sequence of

valid footholds for a region containing objects to be stepped over or onto, see Sec. 6.3 for

an example.

6. Experimental Evaluation

In this section, we present experiments to evaluate the performance of the CNN-based

classification framework for the navigation task at hand (Sec. 6.1) and to demonstrate the

capabilities of our system with respect to efficient planning and navigation in various real-

world experiments with a Nao humanoid (Sec. 6.2). Additionally, we performed experi-

ments with the REEM-C 27 humanoid (Sec. 6.3) in simulation to show a generalization

of our approach to other robot platforms that are able to perform more advanced actions.

For step over heuristic of the REEM-C, we set the maximum height and transverse axis

to 15 cm and 10 cm, respectively. For the pick up action, we designed a one-handed grab

procedure and determined the 10 cm as maximum value for both minor axes of the object.

Throughout this section, the illustrated grid maps are similar to Fig. 12a, i.e., they show the

inflated object classes (rather than the actual costs) for better visualization. The resolution

of the grid maps was set to 5 cm for all experiments. The inflation radius was chosen as

half the shoulder width of the considered humanoid (15 cm for the Nao and 25 cm for the

REEM-C).

6.1. Classification Results

The first set of experiments is designed to show that our semantic segmentation approach is

applicable on mobile robot platforms in terms of accuracy, runtime, and computational re-

sources. As detailed in Sec. 4.2, we train a semantic segmentation CNN with 5,000 images,

generated from a database of 20,000 different object instances, and over 300 backgrounds.

The network is then evaluated on a test set containing 1,000 real-world images collected in

our lab and pixel-wise annotated. Semantic segmentation approaches which assign a label

to each pixel in an image are typically evaluated using the mean Jaccard index, also called



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

mean intersection over union (mIoU), defined as

mIoU =
1

C

C
∑

i=1

tpi

tpi + fpi + fni

, (3)

where C is the number of classes, and tp, fp, and fn are the pixel-wise number of true

positives, false positives, and false negatives per-class, respectively. For approaches that in

the end work on objects, a commonly used measure is the mean average precision (mAP):

mAP =
1

C

C
∑

i=1

1

11

∑

r∈{0,0.1,...,1}

pi(r), (4)

where r corresponds to a value of recall in the precision-recall curve for each class, and

pi(r) is the value of precision corresponding to recall r for class i. Predicted instances are

defined as a positive detection when they have more than 50% IoU overlap with the ground

truth mask.

In our experiments, we found that the quality of the classification depends mostly on the

size of the input images, and therefore report in Tab. 2 the results for two resolutions of the

used sensor (ASUS Xtion PRO). For a resolution of 320× 240, we achieve a mAP over all

classes of 0.79 and for 640×480 the mAP increases to 0.88. These results are encouraging

since they show that starting from pre-trained weights, a network can be trained solely

on images crawled from the Internet and few hours of human supervision to clean the

dataset from improper objects present in the query results and wrong masks in the alpha

channel. The limitations of off-line batch training in terms of labeled data collection and

pre-definition of the classes are hard to circumvent and currently an open research area in

computer vision.

As with the accuracy of the model, the runtime of the CNN is also highly dependent on

the input resolution. In Tab. 3, we show the runtime of the model in different hardware and

using different resolutions. The results show that the approach is usable also in resource-

constrained hardware, such as the NVIDIA Jetson TX2, where we achieve a framerate of

4 Hz-11 Hz depending on the image resolution.

6.2. Real-World Experiments with a Nao Humanoid

The second set of experiments is designed to show the behavior of our planning framework

in different real-world navigation scenarios. The experiments demonstrate the advantages

of our method in comparison to pure footstep or whole-body-motion planning systems,

as these approaches are not capable of finding a solution to the goal when manipulation

actions are required.

We equipped the Nao robot with a ASUS Xtion PRO to show the full capability of our

navigation framework. For 6D localization we apply Monte Carlo localization as developed

by Hornung et al.28 and extended by Maier et al.29 for depth camera data.



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

a)

b)

c)

ACTION:
push

goal

balls
boxes

Fig. 13. Path planning with manipulation actions: Experiment with a Nao robot (left) and segmented objects with

inflation radius projected onto the grid map (right). Left: a) The robot detects the box and the ball on its way to

the goal and decides to push the ball in order to clear the path, since this is the cheapest path on the corresponding

cost map. b) After the robot has followed the path close to the object, it performs the pushing action. c) The robot

continues walking along the path, which does not contain any further objects.

6.2.1. Path Planning with Manipulation Actions

In the situation depicted in Fig. 13a, the robot detected a box and a ball that obstructed the

way. To reach the goal location, the robot could either push the ball aside or step onto the

box before continuing walking. Based on the computed cost map our planner found a path

across the ball. The robot followed the path to the vicinity of the ball and then performed

a push action (see Fig. 13b). After pushing the ball aside, the path to the goal was free and

the robot continued walking (see Fig. 13c.)

6.2.2. Replanning the Path During Execution

The next two experiments are designed to show the replanning capabilities of our frame-

work when the current 2D path does not appear to be optimal anymore according to an

updated cost map.

In the first experiment shown in Fig. 14, our robot first detected only a single row of

blocks and the stuffed toy blocking the way to the goal. Accordingly, stepping over the

two detected blocks was the cheaper solution compared to picking up the stuffed toy and

putting it aside. While following the path and updating the cost map, the robot subsequently

encountered more blocks, so that cheapest path was now lead through the stuffed toy and

the plan was change to include the action to pick up the stuffed toy. Thus, the robot followed

the path to the last free cell before the object and then executed the pick up action, before

it followed the remaining path to reach the goal. A video of this experiment is available

onlinea.

The next experiment in Fig. 15 shows a scenario with two different routes to the goal.

a https://youtu.be/WO94iXT3V1I



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

executing the pickup action

followed by replanning

b)

c)

d)

a)

Fig. 14. Replanning the path on an updated cost grid during execution. a) In this case, the robot initially observes

only two toy blocks at the foremost row and the stuffed animal in its field of view. The cheapest solution computed

by our planner on the corresponding cost grid leads through the toy blocks, which require footstep planning. b)

While moving forward, the robot detects further toy blocks and computes a new path on the updated cost grid.

Now the path leads through the stuffed animal, suggesting a pick up action. This solution is cheaper since it

contains one manipulation action rather than several step over actions. c) The robot executes the pickup action

and puts the object aside. d) Afterwards our planner updates the cost map and replans the path. The robot can now

simply follow the path to its goal.

Since the balls were too large for the Nao to step over them (Fig. 15a), the robot could

either push the balls out of the way, pick them up, or take a detour around the large central

obstacle. In this case, our planner found a path that included the detour, since interacting

with multiple objects had higher associated costs. In Fig. 15b another obstructing object, in

this case a stuffed toy, was detected, where our planner decided based on the updated cost

map to perform a pick up action to clear the path.



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

Fig. 15. Replanning the path during execution: Nao humanoid and segmented objects with inflation radius pro-

jected onto the grid map. a) The robot perceives seven objects classified as balls in its way and decides to take

the detour around the L-shaped static obstacle since this appears to be the cheapest solution according to the cost

map. b) On its way to the goal, the robot detects a further object (in this case a stuffed toy). Our framework now

decides to pick up the object to reach the goal location.

6.3. Replanning Actions During Execution

The final experiment demonstrates the capabilities of our planning system to replan the

action for an object during execution. In this scenario (Fig. 16), the robot had to cross

a narrow passage with several blocks. The initial plan contained step over actions over

two blocks in the middle. However, after approaching the blocks and initiating footstep

planning for the step over action, our footstep planner25 could not find a sequence of valid

footholds in order reach the subgoal and failed. According to the failed action, the cost map

was updated with the new action pick up for the first block on the path. Replanning on the

updated map lead to a solution containing the same objects but with another action for the

first object. The robot had to pickup the first block on the path and step over the second

one. After performing the pick up action and replacing the block, the path planner found a

valid sequence of steps to cross the region.



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

follow path

follow path

a)

goal

step over

follow path

b)

goal

step over

pick up

c)

goal

step over

Fig. 16. Replanning actions during execution: Experiment with a REEM-C27 robot in simulation. a) Initially, our

planner computes a path that suggests to perform the step over actions over the two blocks to be computed with

a footstep planning algorithm (between the two blue circles). b) However, due to the configuration of the blocks,

the footstep planner could not find a valid footstep plan. Therefore, our planner selects an alternative action for

the first object on the 2D path. Based on the action table, our framework decides to pick up the first object and

recomputes the plan. c) After the robot has picked up and moved the object out of the way, the footstep planner

finds a path over the remaining region.



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

6.4. Summary of the Experiments

In sum, our experimental evaluation shows that semantic information about objects can

help humanoid navigation to efficiently plan and effectively execute navigation actions

that include handling objects. We demonstrate with our experiments that state-of-the-art

semantic segmentation CNNs such as Bonnet8 are well-suited to solve the associated per-

ception problem of classifying the individual objects in the vicinity of the robot. Based on

this information, the robot can combine 2D planning, footstep planning, and an effective

object-dependent action selection approach. As a result of that, complex to compute com-

plete whole-body plans or higher-level action plans provided by a symbolic action planner

can be avoided. With our framework, the robot can perform planning of complex navigation

tasks online, in simulation as well as in the real world. Our experiments demonstrate this

for the computation of new plans as well as for online replanning. The combined maximum

runtime of the mapping and planning step is 0.2 s for a reasonable number of objects (two

to five) on an Intel Core i7-4710MQ, without the object classification and segmentation,

which runs in another thread with 5 Hz. Thus, the claims made in this article have been

backed up with our experimental evaluation.

6.5. Implementation Details

For our experimental setup, we use the Robot Operating System 30 (ROS) as a communi-

cation backbone between the different framework components. For the experiments with

the Nao robot, we used the ROS packages 31 that contain the drivers for communication

with the NaoQI API 32, the robot model, and the walking module. For localization, we also

used ROS packages for Monte Carlo localization using Octomap as environment represen-

tation 33,34,35.

The experiments with the REEM-C were simulated in Gazebo 36 and visualized with

RViz 37. We integrated our footstep execution with the PAL Robotics repositories 38,39

available on GitHub that provide the robot model and the communication interface.

7. Future Work and Limitations

In future work, we plan to determine the actions for objects by using a neural network

that can predict the object affordance directly. In the last years, progress has been made

that shows the potential of such approaches 40,41,42,43. The detection of affordances could

reduce the amount of engineering required to identify the actions of objects and also re-

duce false action suggestion of our planner that are only noticed during execution, since

affordances consider not only the object properties but also its surrounding.

We designed the actions in Sec. 5.1 to overcome objects that are impeding the way to

the goal. The advantage of our planner is that we can easily exchange the action execut-

ing modules with more advance approaches. Similar to Hornung et al.13, one could use an

module that differs between one handed and two handed grabbing depending on the object

for the pick up action. For the push action one could differ between pushing the object

in the forward direction or to the side depending on the configuration of the environment.



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

Furthermore, one could apply the ideas of this research to different scenarios, where the

robot has not only to reach an obstructed goal, but also improve the configuration of the

environment, e.g., by cleaning it up. Here the robot needs to reason about the object place-

ment when a manipulation action is suggested. To achieve this, further investigation of

environment models, motion execution models, high level planning, database integration is

required. For further reading on this subject, we refer to 10,11,13,44,45,46.

Wrong object classification of the CNN or non-executable actions caused by wrong

heuristics for action execution can of course happen. In these cases, the map and the path

will be updated when new information becomes available. As a result, the robot’s resulting

path might not be the optimal one. We experienced the following classification errors in

our experiments:

• A single object was perceived as two objects of different classes, specially when

detected at the border of the field of view of the sensor, because the object was

only partially perceived and/or pixels further away from the robot cover a bigger

surface of the environment and thus provide less information for the CNN.

• False positive object detection of the background.

In most cases, the error was compensated by the next sensor measurement and the map as

well as the path were updated accordingly.

8. Conclusion

In this article, we presented a novel framework for humanoid motion planning that exploits

the knowledge about obstacle classes during the planning process for fast planning and effi-

cient humanoid navigation. As one central contribution we propose to train a convolutional

neural network to distinguish between different object classes and use this information to

construct a cost grid during navigation. The cost grid represents the static obstacles in the

environment as well as the costs of actions that need to be carried out by the robot to cross

cluttered regions. These cluttered regions typically contain obstacles that can be overcome

by the robot, i.e., by actions such as stepping over or onto, pushing, or picking up. The

robot then uses the cost grid for efficiently planning its path to the goal location and the

2D path implicitly contains all necessary actions to be executed by the robot. Should re-

planning be necessary during the execution due to failed actions, the cost grid is updated

with the costs of alternative actions and the path is replanned.

As we showed in various experiments, the trained neural network is able to robustly

distinguish between the different obstacle classes and thus provides relevant information

to the robot’s planner. We demonstrated that a humanoid robot can exploit the knowledge

about classified obstacles during navigation and efficiently find solution paths that contain

appropriate actions to deal with the obstructing objects. Furthermore, we showed that in

case the current solution cannot successfully be executed, the robot invokes replanning and

our system provides an alternative path.



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

Acknowledgments

We thank Philipp Karkowski for providing the footstep planning framework and his con-

tributions to the conference version of this article. We furthermore thank NVIDIA for their

GPU donation, which was used for training the semantic segmentation models.

References

1. M. Grey, A. Ames, and C. Liu, “Footstep and motion planning in semi-unstructured environ-

ments using randomized possibility graphs,” in Proc. of the IEEE Intl. Conf. on Robotics &

Automation (ICRA), 2017, pp. 4747–4753.

2. Y. Lin and D. Berenson, “Humanoid navigation in uneven terrain using learned estimates of

traversability,” in Proc. of the IEEE-RAS Intl. Conf. on Humanoid Robots (HUMANOIDS), 2017,

pp. 9–16.

3. R. Deits and R. Tedrake, “Footstep planning on uneven terrain with mixed-integer convex op-

timization,” in Proc. of the IEEE-RAS Intl. Conf. on Humanoid Robots (HUMANOIDS), 2014,

pp. 279–286.

4. M. Fallon, P. Marion, R. Deits, T. Whelan, M. Antone, J. McDonald, and R. Tedrake, “Contin-

uous humanoid locomotion over uneven terrain using stereo fusion,” in Proc. of the IEEE-RAS

Intl. Conf. on Humanoid Robots (HUMANOIDS), 2015, pp. 881–888.

5. A. Hildebrandt, M. Klischat, D. Wahrmann, R. Wittmann, F. Sygulla, P. Seiwald, D. Rixen, and

T. Buschmann, “Real-time path planning in unknown environments for bipedal robots,” IEEE

Robotics and Automation Letters (RA-L), vol. 2, no. 4, pp. 1856–1863, 2017.

6. D. Wahrmann, A.-C. Hildebrandt, T. Bates, R. Wittmann, F. Sygulla, P. Seiwald, and D. Rixen,

“Vision-based 3d modeling of unknown dynamic environments for real-time humanoid naviga-

tion,” The Int. Journal of Humanoid Robotics (IJHR), vol. 16, no. 1, pp. 1—-34, 2019.

7. G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with rao-

blackwellized particle filters,” IEEE Trans. on Robotics (TRO), vol. 23, no. 1, pp. 34–46, 2007.

8. A. Milioto and C. Stachniss, “Bonnet: An Open-Source Training and Deployment

Framework for Semantic Segmentation in Robotics using CNNs,” in Proc. of the IEEE

Intl. Conf. on Robotics & Automation (ICRA), 2019, pp. 7094–7100. [Online]. Available:

https://arxiv.org/abs/1802.08960

9. P. Regier, A. Milioto, P. Karkowski, C. Stachniss, and M. Bennewitz, “Classifying obstacles and

exploiting knowledge about classes for efficient humanoid navigation,” in Proc. of the IEEE-RAS

Intl. Conf. on Humanoid Robots (HUMANOIDS), 2018, pp. 820–826.

10. M. Stilman and J. Kuffner, “Navigation among movable obstacles: Real-time reasoning in com-

plex environments,” Intl. Journal of Robotics Research (IJRR), vol. 2, no. 4, pp. 479–503, 2005.

11. M. Stilman, K. Nishiwaki, S. Kagami, and J. Kuffner, “Planning and executing navigation among

movable obstacles,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems

(IROS), 2006, pp. 820–826.

12. M. Levihn, K. Nishiwaki, S. Kagami, and M. Stilman, “Autonomous environment manipulation

to assist humanoid locomotion,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation

(ICRA), 2014, pp. 4633–4638.

13. A. Hornung, S. Boettcher, C. Dornhege, A. Hertle, J. Schlagenhauf, and M. Bennewitz, “Mo-

bile manipulation in cluttered environments with humanoids: Integrated perception, task plan-

ning, and action execution,” in Proc. of the IEEE-RAS Intl. Conf. on Humanoid Robots (HU-

MANOIDS), 2014, pp. 773–778.

14. A. Dornbush, K. Vijayakumar, S. Bardapurkar, F. Islam, M. Ito, and M. Likhachev, “A single-

planner approach to multi-modal humanoid mobility,” in Proc. of the IEEE Intl. Conf. on

Robotics & Automation (ICRA), 2018, pp. 4334–4341.



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

15. P. Kaiser, D. Gonzalez-Aguirre, F. Schueltje, J. Borras, N. Vahrenkamp, and T. Asfour, “Ex-

tracting whole-body affordances from multimodal exploration,” in Proc. of the IEEE-RAS

Intl. Conf. on Humanoid Robots (HUMANOIDS), 2014, pp. 1036–1043.

16. L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille, “Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE

Trans. on Pattern Analalysis and Machine Intelligence (TPAMI), vol. 40, no. 4, pp. 834–848,

2018.

17. K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in

Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

18. H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” Proc. of the

Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 2881–2890, July 2017.

19. A. Milioto, P. Lottes, and C. Stachniss, “Real-time semantic segmentation of crop and weed

for precision agriculture robots leveraging background knowledge in CNNs,” in Proc. of the

IEEE Intl. Conf. on Robotics & Automation (ICRA), 2018, pp. 2229–2235. [Online]. Available:

https://arxiv.org/abs/1709.06764

20. A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “ENet: Deep neural network architecture

for real-time semantic segmentation,” arXiv preprint, vol. 1606.02147, 2016.

21. E. Romera, J. Alvarez, L. Bergasa, and R. Arroyo, “ERFNet: Efficient residual factorized con-

vnet for real-time semantic segmentation,” IEEE Trans. on Intelligent Transportation Systems

(ITS), vol. 19, no. 1, pp. 263–272, 2018.

22. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “MobileNetV2: Inverted Resid-

uals and Linear Bottlenecks,” Proc. of the Conf. on Computer Vision and Pattern Recognition

(CVPR), pp. 4510–4520, 2018.

23. “NVIDIA TensorRT. Programmable Inference Accelerator.” [Online]. Available: https:

//developer.nvidia.com/tensorrt

24. T. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, P. Dol-

lar, and C. Zitnick, “Microsoft COCO: Common objects in context,” Proc. of the Europ. Conf. on

Computer Vision (ECCV), vol. abs/1405.0312, pp. 740–755, 2014.

25. P. Karkowski, S. Oßwald, and M. Bennewitz, “Real-time footstep planning in 3D environments,”

in Proc. of the IEEE-RAS Intl. Conf. on Humanoid Robots (HUMANOIDS), 2016, pp. 69–74.

26. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of

minimum cost paths,” IEEE Trans. on Systems Science and Cybernetics (SSC), vol. 4, no. 2, pp.

100–107, 1968.

27. “REEM-C. A biped humanoid robot.” [Online]. Available: https://pal-robotics.com/robots/

reem-c

28. A. Hornung, K. M. Wurm, and M. Bennewitz, “Humanoid robot localization in complex indoor

environments.” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),

2010, pp. 1690–1695.

29. D. Maier, A. Hornung, and M. Bennewitz, “Real-time navigation in 3D environments based on

depth camera data,” in Proc. of the IEEE-RAS Intl. Conf. on Humanoid Robots (HUMANOIDS),

2012, pp. 692–697.

30. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “ROS:

An open-source robot operating system,” in Proc. of the ICRA Workshop on Open Source Soft-

ware, vol. 3, no. 3.2, 2009.

31. “ROS: Aldebaran Nao.” [Online]. Available: https://wiki.ros.org/nao

32. “NAOqi API.” [Online]. Available: https://doc.aldebaran.com/2-1/naoqi/index.html

33. “ROS: Humanoid localization.” [Online]. Available: https://wiki.ros.org/humanoid localization

34. “ROS: OpenNI.” [Online]. Available: https://wiki.ros.org/openni2 launch

35. “ROS: Octomap.” [Online]. Available: https://wiki.ros.org/octomap

36. N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-robot



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

simulator,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), vol. 3,

2004, pp. 2149–2154.

37. “ROS: RViz.” [Online]. Available: https://wiki.ros.org/rviz

38. “PAL Robotics.” [Online]. Available: https://pal-robotics.com

39. “GitHub: PAL Robotics.” [Online]. Available: https://github.com/pal-robotics

40. J. Sawatzky, A. Srikantha, and J. Gall, “Weakly supervised affordance detection,” in Proc. of the

Conf. on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2795–2804.

41. A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis, “Detecting object affordances

with convolutional neural networks,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots

and Systems (IROS). IEEE, 2016, pp. 2765–2770.

42. A. Roy and S. Todorovic, “A multi-scale cnn for affordance segmentation in rgb images,” in

Proc. of the Europ. Conf. on Computer Vision (ECCV). Springer, 2016, pp. 186–201.

43. T. Luddecke and F. Worgotter, “Learning to segment affordances,” in Proc. of the IEEE

Intl. Conf. on Computer Vision (ICCV), 2017, pp. 769–776.

44. M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder, A. Carrera, N. Palomeras, N. Hurtos,

and M. Carreras, “Rosplan: Planning in the robot operating system,” in Proc. of the Int. Conf. on

Automated Planning and Scheduling (ICAPS), 2015, pp. 333–341.

45. S. Krivic, M. Cashmore, D. Magazzeni, B. Ridder, S. Szedmak, and J. H. Piater, “Decreasing

uncertainty in planning with state prediction.” in Proc. of the Intl. Conf. on Artificial Intelligence

(IJCAI), 2017, pp. 2032–2038.

46. Z. Saigol, B. Ridder, M. Wang, R. Dearden, M. Fox, N. Hawes, D. M. Lane, and D. Long,

“Efficient search for known objects in unknown environments using autonomous indoor robots,”

in IROS Workshop on Task Planning for Intelligent Robots in Service and Manufacturing, 2015.

Peter Regier studied at the University of Duisburg-Essen

in Germany and finished his degree in Mechanical En-

gineering in 2014. Currently, he is a PhD student in

the Humanoid Robots Lab at the University of Bonn.

His research focuses on autonomous navigation, percep-

tion, human-robot-interaction, and educational technology.

During his time in Bonn, he was engaged in devel-

oped of robotic software for several EU-funded projects.



January 9, 2020 9:12 WSPC/INSTRUCTION FILE regier19ijhr

Andres Milioto is a research assistant and Ph.D. student

at the University of Bonn since 2017. He received his

Electrical Engineering degree from Universidad Nacional de

Rosario, Argentina in 2016, where he was best of his

class. During this time, he was involved in several robotics

projects for private companies, including the construction of

a large-scale iron pellet stacker and software development

for robotics arms in welding applications, in Argentina, Mex-

ico, and Italy. Preceding this position in Bonn, he worked

for iRobot (USA) on software development and hardware

integration, developing behaviors and communication pro-

tocols for state-of-the-art, SLAM-enabled, consumer robots.

Cyrill Stachniss is a professor at the University of Bonn and

heads the lab for Photogrammetry and Robotics. Before work-

ing in Bonn, he was a lecturer at the University of Freiburg

in Germany and a senior researcher at the Swiss Federal In-

stitute of Technology. Cyrill Stachniss finished his habilitation

in 2009 and received his PhD thesis entitled “Exploration and

Mapping with Mobile Robot” supervised by Wolfram Burgard

at the University of Freiburg in 2006. From 2008-2013, he was

an associate editor of the IEEE Transactions on Robotics, since

2010 a Microsoft Research Faculty Fellow, and received the

IEEE RAS Early Career Award in 2013. Since 2015, he is a

senior editor for the IEEE Robotics and Automation Letters.

Maren Bennewitz is professor for Computer Science at the

University of Bonn, Germany, and head of the Humanoid

Robots Lab. She got her Ph.D. in Computer Science from the

University of Freiburg in 2004. Before she moved to Bonn in

2014, she was a Postdoc and assistant professor at the Uni-

versity of Freiburg. The focus of her research lies on robots

acting in human environments. In the last few years, she has

been developing several innovative solutions for robotic sys-

tems co-existing and interacting with humans. Among them

are techniques for efficient navigation with humanoid and

wheeled robots as well as for reliably detecting and track-

ing humans from sensor data and analyzing their motions.


