
Predicting Travel Time from Path Characteristics
for Wheeled Robot Navigation

Peter Regier Marcell Missura Maren Bennewitz

Abstract— Modern approaches to mobile robot navigation
typically employ a two-tiered system where first a geometric
path is computed in a potentially obstacle-laden environment,
and then a reactive motion controller with obstacle-avoidance
capabilities is used to follow this path to the goal. However, when
multiple path candidates are present, the shortest path is not
always the best choice as it may lead through narrow gaps and
it may be in general hard to follow due to a lack of smoothness.
The assessment of an estimated completion time is a much
stronger selection criterion, but due to the lack of a dynamic
model in the path computation phase the completion time is
typically a priori not known. We introduce a novel approach
to estimate the completion time of a path based on simple,
readily available features such as the length, the smoothness,
and the clearance of the path. To this end, we apply non-linear
regression and train an estimator with data gained from the
simulation of the actual path execution with a controller that
is based on the well-known Dynamic Window Approach. As
we show in the experiments, our method is able to realistically
estimate the completion time for 2D grid paths using the learned
predictor and highly outperforms a prediction that is only based
on path length.

I. INTRODUCTION

A fundamental ability of a mobile robot is collision-
free navigation in the environment. Many state-of-the-art
navigation systems employ a two-stage approach to realize
this in an efficient manner. Here, the first stage is dedicated
to plan a spatial global path through the environment from
the position of the robot to the goal location. Such global
path planning is commonly carried out using a grid-based
A* planner [1]. To smoothly follow the globally computed
2D path afterwards, one typically employs a local reactive
collision avoidance system that efficiently generates velocity
commands for the robot [2], [3], [4].

Robots nowadays are facing the challenge of having to
solve tasks with ever increasing complexity. In several real
world applications, the predictability of the completion time
of such tasks plays an important role. In particular in multi-
robot scenarios where the actions of multiple robots need
to be accurately coordinated, the prediction of the task
completion time is pivotal for time-efficient planning. Such
scenarios include cooperative floor-cleaning and household
tasks, long term autonomous driving systems [5] that need
to estimate their travel time for a more efficient power
supply management, and museum tour-guide robots that have
to schedule their guiding precisely in order to guarantee
sufficient entertainment of the visitors [6].

All authors are with the Humanoid Robots Lab, University of Bonn, 53113
Bonn, Germany. This work has been supported by the European Commission
under contract number FP7-610532-SQUIRREL.

Fig. 1. Motivation of our approach. The robot can choose between two
options to reach the goal location. The shorter path (red) leads through dense
clutter where the robot needs to drive carefully and needs accurate sensing
and pose estimation to avoid collisions. The second path (green) is longer
but leads through wide free space where the robot can drive with a faster
velocity profile. The work presented in this paper learns to predict the travel
time along 2D paths from training data to decide which path leads to the
fastest completion time.

When it comes to navigation, and most applications of
mobile robots involve phases of locomotion in an environment,
the travel time can make up a significant amount of the total
task completion time. The fastest option, however, often
differs from the shortest or cost-minimal solution found using
2D path planning on a cost grid map. Consider for example
Fig. 1, where the robot has two options to reach the goal
location. The first option (red path) contains narrow passages
with several cluttered objects. The second option (green path)
traverses solely free space. Taking the red path, the robot
needs to drive slowly since it needs accurate sensing and
precise motion execution to avoid collisions. At very tight
spots the robot even has to stop frequently and rotate in order
to adjust its heading. In contrast, the green path leads through
free space where the robot can drive with higher velocities.
Thus, the robot is faced with the question which route to
choose to reach the goal location as quickly as possible.

With two-stage navigation systems where a global path
planner is combined with a local motion controller, the precise
outcome of the motion execution is typically difficult or
impossible to predict in advance, especially when traversing
narrow or cluttered passages. A reactive robot control system
such as the popular Dynamic Window Approach (DWA) [4]
can neither ensure a time-optimal trajectory, nor control
stability, nor convergence of the system [7]. Additionally,
many sources of noise randomly influence the navigation
performance, i.e., the slippage of the wheels, noise in the

sensor measurements, and inaccuracies in the localization.
The resolution of the grid-based environment representation
or the choice of the navigation cost function can also influence
the performance significantly.

In this paper, we present a novel method to predict the
travel time for a mobile robot based on path features that
are available ahead of the execution time. This will allow
the robot to evaluate different options and choose the path
that is predicted to be the most time-efficient. Given a
2D path in a grid representation of the environment, our
method predicts the completion time by means of regression
analysis based on general path characteristics such as its
length, clearance, and curvature. We extensively evaluated
our method in various environments of different complexity.
As the experiments show, our method is able to realistically
estimate the completion time of 2D grid paths and outperforms
a prediction that is solely based on the path length. To
the best of our knowledge, this is the first approach that
can efficiently predict the completion time of navigation
tasks without applying computationally expensive calculations
using an exact kino-dynamic model of the robot.

II. RELATED WORK

Grid-based planners are usually very fast in computing a
spatial global path to a goal location and are widely used in
navigation systems for wheeled robots [8], [9], [10]. Typically,
these systems employ a local reactive collision avoidance
method to generate actual velocity commands for the robot
to follow a globally computed 2D path such as the DWA [3],
[4] or the Nearness Diagram Method [2]. Note that the
global paths typically contain sharp corners in the vicinity of
obstacles so that these low-level reactive systems explicitly
take into account deviations from the global 2D grid path to
achieve smooth trajectories with a faster progress towards the
goal location compared to stopping and turning on the spot. A
different technique was developed by Stachniss and Burgard
who suggested to plan directly in a 5D space in a local
channel around the global 2D path with A* [11]. This space
additionally contains the orientation as well as discretized
translational and rotational velocities. In this way, smooth
trajectories that directly consider kino-dynamic constraints
are obtained.

All the approaches mentioned above assume that the time-
optimal trajectory lies close to the computed 2D path, which
is often the case but might not be true in the presence of many
obstacles. In such cases it might actually be better to also
take into account different paths with fewer obstacles that
need to be passed. Therefore, we present a method that learns
the time the robot needs to navigate along a given 2D path
based on path characteristics. Based on general features of a
2D path, the robot can then estimate the completion time it
would need to follow the path towards the goal location and
choose the best option among different possibilities.

Murphy and Newman considered robots operating in large
outdoor environments and developed an approach to trade off
the risk of planning a path with suboptimal length for planning
time and plan over probabilistic costmaps [8]. To create

such a probabilistic costmap, one typically needs a priori
knowledge about the terrain such as an overhead image of
the environment. The work of Murphy and Newman focuses
on traversing special types of terrain, whereas our approach is
optimized for dealing with challenging indoor environments
with mainly flat floor where the terrain properties play a minor
role for the performance. Zhu and Qingbao proposed path
planning based on a genetic algorithm [12]. The authors
introduced functions to describe path characteristics that
allow to choose an optimized path from a given set. This
approach does not consider the motion control system of the
robot. Philippsen [13] used probabilistic navigation functions
to trade off the risk of colliding with dynamic obstacles
against the length of a detour to avoid those. However, the
approach requires tuning and user-defined heuristics and does
not involve a trained model.

Lau et al. [7] developed an approach to time-optimal control
from sparse way points to the goal based on quintic Bézier
splines. Starting from a given straight-line path, the trajectory
is optimized for smoothness and time taking into account
the constraints of the system. In this paper, we consider
general navigation in environments of different complexity
also containing highly cluttered and narrow passages. Our
goal is to estimate the travel time based on simple, readily
available features describing the path characteristics and in
this way enable the robot to choose the best option, i.e., the
path assumed to lead fastest to the goal using a standard
DWA-based controller that generates velocity commands in
an efficient manner.

Recently, Regier et al. proposed to estimate obstacle
densities beyond observed areas based on already detected
objects and predict corresponding traversal costs [14]. The
authors hereby assume that the robot possesses only partial
knowledge about the obstacles in its surrounding. The work
presented in this paper can be combined with such a prediction
step in order to recompute the best path whenever new
information about obstacles becomes available.

III. NAVIGATION FRAMEWORK

In this work, we assume that a 2D grid map representation
of the environment is given and consider a mobile robot
control system that applies a classical two-stage navigation
approach, where the global path is computed by a grid planner
on a costmap.

Afterwards, the task of the reactive local controller is
to find velocity commands that allow the robot to follow
this global path with collision-free motions. A well-known
approach is to use roll out or look-ahead methods as in
the DWA [3], [4]. A DWA-controller considers at each time
step only a local costmap, which is a small fraction of the
environment model allowing the system to operate in real time.
The basic principles of the DWA approach are as follows:

At each time step, a local goal on the global 2D path is
determined right outside the local costmap. In the second step,
a set of feasible steering commands from the robot control
space is computed to reach the local goal. For each sampled
velocity command a simulated trajectory is determined and

evaluated through a predefined cost function. Based on the
evaluation, the velocities of the best trajectory are taken for
the control. The terms of the cost function used to evaluate
the trajectories are based on the distance to the global path,
the distance to the local goal, and the traversal cost given by
the costmap.

Such a two-layered approach can generate robust, collision-
free motion even in obstacle-laden environments. However,
the highly unpredictable nature of the DWA controller as
well as the influence of noisy perception and localization
make the estimation of the completion time of a motion task
a difficult endeavor. The cheapest path in a costmap is not
always the best choice as it may lead through narrow or
cluttered passages and it may be in general hard to follow
without slowing down and rotating on the spot.

To illustrate this, we performed two navigation experiments
in a large cluttered environment where the robot had the
choice to drive through or around the cluttered region. Fig. 2
shows this scenario with the two paths and their corresponding
velocity profiles. The red profile in Fig. 2 shows that driving
around a cluttered region allows the robot to navigate at
full speed and reach the goal in a shorter time even though
the total path length is longer. Driving through the dense
clutter, however, leads to higher localization errors due to
more frequent rotations, repeated velocity drops in order to
avoid collisions and on-spot rotations, which are necessary
in regions with very little space to navigate.

Thus, the estimated completion time is in many situations
a much stronger selection criterion than the path costs, but
due to the lack of a dynamic model in the path computation
phase the completion time is typically not known a priori.
In the following, we introduce a novel approach to estimate
the completion time from path features to enable the robot
to choose the most promising path among different possible
routes through the environment.

IV. PREDICTING TRAVEL TIME FROM PATH
CHARACTERISTICS

In principle, the only way to predict the completion time
is to simulate the path execution and measure the time the
robot takes to navigate to the goal. Our idea is to apply a
machine learning approach and to train a predictor function
for the execution time based on a small number of generic
features that can be efficiently computed from a given global
2D grid path.

A. Features for Describing Path Characteristics

We define a path P = {p0,p2, . . . ,pn} between the current
position of the robot and the goal location as a sequence
of two-dimensional coordinates (nodes) pi = (xi,yi) , i ∈
{0 . . .n}, as illustrated for an example path in Fig. 3.
A segment si of the path is then given by the vector
si+1 = pi+1−pi. We found out that the length of the path,

its clearance, and smoothness are expressive features that can
be used to effectively estimate the time the robot needs to
travel along the path towards the goal location. These features
are described in detail in the following:

time [s]

0.6

0.0

0.2

0.4

ve
lo

ci
ty

 [
m

/s
]

0 10 20 30 40 50 60

velocity profile

3m

start goal

Fig. 2. Example velocity profiles of a robot driving through and around
the cluttered region. Obstacles are displayed in grey. In order to reach
the goal, the robot has the choice to either navigate through (blue path)
or around (red path) the clutter. The corresponding velocity profiles are
displayed to indicate common navigation issues that arise from navigating
close to multiple obstacles. Considering the red profile, it is easy to see
that the robot can constantly drive close to the maximum velocity and, thus,
reaches the goal after only 34s with a traveled distance of 18.54m. The blue
profile shows that constant speed drops occur, which are necessary in order
to avoid collisions. Additionally, on-spot rotations are performed if too tight
directional changes are necessary. This leads to a lower traveled distance of
14.46m while the execution time increased to 55.36s.

Fig. 3. Visualization of the features we use for path characterization. The
figure shows an example path from the robot’s current positions (grey circle)
to the goal location through an environment with three obstacles (yellow
rectangles). The path consists of three segments and two nodes. The angles
α1,2, α2,3, and θ used in Eq. (2) are also shown. The shortest distances
between the segments and the obstacle cells are illustrated as black dashed
lines and are used in Eq. (3).

1) The total length of the path is given by the sum of the
lengths of each path segment:

Lp =
n

∑
i=1
|si| (1)

2) The average smoothness of a path expresses its devia-
tion from being a straight line:

Sp =
θ +∑

n−1
j=1 α j, j+1

n
, (2)

where θ is the angle between the initial heading of the
robot and the first path segment, and α j, j+1 denotes
the angle between two path segments s j and s j+1. For
example, α1,2 in Fig. 3 denotes the angle between s1
and s2.

3) Finally, the average path clearance is computed as
follows:

Cp =
∑

n
i=1 max{Dmax−Dmin (si,cocc) ,0}

n
(3)

using the shortest distances Dmin (si,cocc) between each
path segment si and the occupied cells cocc closer than
a threshold Dmax > 0. We assume that obstacles with
a distance greater than Dmax have no effect on the
task execution. The clearance is illustrated in Fig. 3
as a dashed line from a path segment si to its closest
obstacle.

B. Prediction of Travel Time

Using the three path features defined above, we train a
predictor function

Tp = F (Lp,Sp,Cp) (4)

that estimates the expected path execution time Tp based on
the total length, average smoothness, and average clearance
of the path. These features are readily available before the
actual path execution starts by a local controller.

C. Regression Models

Regression is a common tool in statistical analysis to find
relationships among variables. The goal of the regression
analysis is to find a model that fits well the given data points
use it for prediction afterwards. Different models can map
different types of relationships between the variables. Linear
regression, for example, is a very fast algorithm, but can only
model linear coherences. A special case of linear regression
is the simple linear regression that fits the data with a simple
regression line. Linear regression, in contrast, models the
relationship among several independent variable to predict
the requested dependent quantity. For systems with non-linear
behavior, linear predictors are often not sufficient. Better
results can be achieved with more advanced methods. Support
vector machines, for example, are kernel methods that map
the data input into a high-dimensional feature space using
kernel functions. This kernel trick allows to detect non-linear
coherence in data sets.

To find the right regression approach for our problem,
we evaluate the simple linear regression, linear regression,
and support vector method for the task of completion time
prediction based on the path features length, smoothness, and
clearance that are described above.

V. EXPERIMENTS

In this section, we discuss the data collection process,
the regression analysis, as well as the prediction results in
different environments.

A. Data Collection

Our goal is to obtain a single regression model that covers
as many scenarios as possible. In order to gather data that
is well distributed over the feature space, we performed
experiments on a variety of maps such as the Willow office
environment and artificially created maps (see Fig. 4). One

Fig. 4. Maps used in the experiments. (a) Office environment created
by Willow Garage, (b) narrow maze-like environment, and (c) cluttered
environment with many randomly distributed obstacles.

type of artificial maps we used are highly cluttered maps
consisting of uniformly distributed or Gaussian distributed
pillars, where pillars are randomly generated in varying
quantity of 75 pillars per hundred square meters, 50 pillars
per hundred square meters, and 25 pillars per hundred
square meters with varying radii from 20-60 cm according
to the distribution used. Another type of artificially created
maps consist of narrow maze-like structures with a corridor
width between 0.6 m and 0.9 m. We generated three different
artificial maps of both types.

To collect training data, we used the Gazebo simulation
environment [15] to simulate a model of the omnidirectional
Robotino robot by Festo Didactics. We first compute a global
path from the current position of the robot to a goal position
and then let the robot follow this path with a DWA-controller.
To obtain ground truth data, we measure the task completion
time when the position of the robot is close to the x-y-
coordinates of the goal position. The final heading is not
considered. In each experiment, the start position, the initial
heading of the robot, and the goal position were chosen
randomly. We used an A*-planner for computing the global
path. The lengths of the grid-based paths varied between
4 m and 50 m. The A*-planner and the DWA-controller are
implemented in the ROS navigation stack [16].

The choice of the parameters of the navigation systems
has a pivotal influence on the performance of the robot
during the experiments. We found the following parameters
to work best in practice. We used a resolution of 5 cm for
the global costmaps of the environments and 1 cm for the
local map. The frequency of the control loop was set to
8 Hz and the size of the local costmap was chosen to be
1.5 m × 1.5 m. The maximum linear velocity was set to 0.6 m

s
and the maximum rotational velocity was set 0.6 rad

s . The
acceleration limits for linear and rotational movement were set
to 0.7 m

s2 and 0.7 rad
s2 , respectively. Naturally, the capabilities

of the underlying physical system are instilled into a trained
regressor. A deviation from the configuration parameters at a
later time may work to some extent, we have not evaluated
this in our work so far, but in general it must be assumed
that the model is not transferable to a new system with
significantly different navigational capabilities. The training

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40 45 50

tim
e[

s]

length[m]

Fig. 5. Completion time of the simulated execution of the generated paths
in the three environments (yellow) over path length. With increasing length,
the data spreads broader around the regression line (blue). These results
were obtained from the experiments with noisy localization.

must be performed for each individual combination of robot
and navigation software.

We created two data sets with each containing 5500 nav-
igation tasks. The first dataset was gathered without any
sources of noise, i.e., no noise in the sensors and without
slippage of the wheels. In particular this also includes a perfect
localization. Naturally, this model is not entirely realistic, but
it helps to analyze the data with respect to the correlation
of the features with the estimate. The second data set was
collected from experiments with a localization system that
adds noise to the simulation due to faulty pose estimates.
Note that in the second data set, the sensors and motion
itself are still noise-free. Using these two data sets, we can
evaluate our model with noise in comparison to noise-free
results and also see how much the noise in the system affects
the navigation performance.

B. Regression Results

In this section, we present the results of our regression
analysis. For every data set, we learned an estimator for
each of the different approaches. We used a simple linear
regression (SLR) method based on the path length alone as
computed in Eq. (1), a linear regression (LR) model which
considers all the features mentioned above (see Sec. IV-A),
and we trained a support vector machine for regression (SVR),
also using all features. For training and testing we used
WEKA, a well-established data mining software [17]. To
evaluate the different regression models, we performed a
10-fold cross validation on the data set, i.e., during one
validation run, 90% of the data set is used for training and
the other 10% for testing this specific model. In the next
validation round, another subset of 10% is used for testing
and we repeated this process 10 times until every subset of
the data set has been tested. We computed the average of the
root mean square errors (RMSE) of every ten testing runs.
As a reference, we additionally computed the RMSE of the
constant average estimator over the entire data set.

It is not sufficient to assume a linear distribution, as
in particular in the presence of clutter and narrow gaps
our navigation system exhibits a highly non-linear behavior.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Avg SLR LR SVR

R
o
o
t

M
ea

n
 S

q
u
ar

e
E

rr
o
r

[s
]

perfect localization
noisy localization

Fig. 6. Comparison of four different regression methods for perfect (red)
and noisy (blue) localization. The regression methods are the constant
average estimate (Avg), a simple linear estimate (SLR) based on path length
only, linear regression (LR) using all features, and support vector machine
regression (SVR) also using all features. As can be seen, the SVR has
the smallest RMSE of all approaches. This non-linear model seems to be
the best approximation for our robot and controller setup. Furthermore, we
see a clear improvement of the LR model in comparison to SLR with the
additional independent features.

Nevertheless, linear models are easy to fit and fast to compute
and thus serve as a good reference. Fig. 5 illustrates the
completion time of every run in the dataset over the path
length (computed according to Eq. (1)). Note that the spread of
the data points (yellow) around the linear regression line (blue)
increases with path length.

The regression results depicted in Fig. 6 show that the
features introduced in Sec. IV have a substantial influence
on the time estimation, as we can see a 14% improvement
for both data sets of the LR compared to SLR. A further
reduction of the prediction error can be achieved using the
non-linear model. Using the SVR results in a RMSE that
is further reduced by 15% compared to the LR for the data
set with perfect localization and 22% for noisy localization.
These results support that the system behaves highly non-
linear and a linear regression method is not sufficient if a
more accurate estimate is desired.

Comparing both data sets against each other, we can clearly
see the influence of the noisy localization which is close to
real-world runs. The results also show that some of the noise
can be estimated by our approach, since the error reduction
from LR to SVR is larger for noisy compared to perfect
localization. This improvement stems from the fact that a
much higher localization error correlates with certain non-
linear behaviors, e.g., rotating fast on the spot or traversing
monotone environments with only few features. Thus, the
non-linear SVR method is best suited for real-world scenarios.

The evaluation shown in Fig. 6 is well suited for a com-
parison of the different regression approaches. Additionally,
we are interested in the relative root mean square error of
the estimate, which is defined as follows:

σest =

√√√√∑
N
i=1

(Yi−Y ′i)
2

Y 2
i

N
, (5)

where Yi is the completion time of experiment i, Y ′i is the
corresponding estimated value, and N is the number of

1m

start goal

Fig. 7. A environment with two rooms and a corridor, that was not used for
the training data, with three different path options to get from the start to the
goal. The longest path (red) leads the robot through wide free-space area. The
shortest path (blue) guides the robot through narrow space between obstacles.
An alternative path (yellow) leads partly through the narrow passages and
through wide-space. The the evaluation of the path is shown in Tab. I.

experiments in a set. As we evaluated a wide variety of
scenarios which contained both very short and very long
paths, σest is a better measurement of the relative deviation
per experiment, as we first scale every separate squared error
by the corresponding completion time. We computed the
values of Eq. (5) for both the LR and SVR due to the superior
performance compared to SLR. For the LR and SVR, σest
evaluates to 0.32 and 0.13, respectively. These results show
that the use of SVR not only highly decreases the average
deviation, but also shows an improved estimate for the whole
spectrum of path lengths. As these results show, our approach
is able to predict the path completion time with an error of
only 13% in average.

C. Temporal Gain

To demonstrate the temporal gain when applying our
prediction, we performed an experiment on a completely
new map (see Fig. 7). In this experiment, three different path
choices to navigate from start to the goal location exist. The
first option is the shortest path (blue), which leads through
narrow areas. The red path is the longest, but it is smooth and
has a high clearnace to obstacles. The third alternative consists
of segments of the other two paths. Based on the completion
time predicted by our approach, the longest path is chosen
as the fastest option followed by the shortest path. The third
path is the slowest according to our prediction. By executing
all three options in simulation, the actual completion time in
Tab. I confirms the prediction and the path choice. The actual
temporal gain when executing the red path in comparison to
the execution of the shortest path amounts to 6 s, which is
9.8% of the travel time.

VI. CONCLUSIONS

In this paper, we presented a technique to estimate the
completion time for 2D grid paths. The completion time is
in general not known in advance as it strongly depends on
the capabilities of the underlying motion controller. Through
a low-dimensional categorization of the paths using three
generic features—their length, smoothness, and clearance—
and the simulation of a large variety of motion tasks on
different types of maps, we were able to regress an estimator
that predicts the path completion time with a low error
of around 10% before motion execution starts. Naturally,

TABLE I
EVALUATION OF THE PATHS SHOWN IN FIG. 7

red yellow blue
length 28.5145 m 26.0843 m 20.9335 m
clearance 0.2685 0.4401 0.5131
smoothness 0.0137 0.0457 0.0483
prediction time 47.373 s 58.756 s 50.392 s
completion time 55.512 s 63.751 s 61.511 s

as the completion time depends strongly on the navigation
performance of the robot, it needs to be trained individually
for a specific hardware and motion controller combination.

REFERENCES

[1] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[2] J. Minguez and L. Montano, “Nearness diagram (ND) navigation:
Collision avoidance in troublesome scenarios,” IEEE Transactions on
Robotics, vol. 20, no. 1, 2004.

[3] O. Brock and O. Khatib, “High-speed navigation using the global
dynamic window approach,” in Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 1999.

[4] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,” IEEE Robotics & Automation Magazine, pp.
23–33, 1997.

[5] M. Buehler, K. Iagnemma, and S. Singh, The DARPA Urban Challenge:
Autonomous vehicles in city traffic. Springer, 2009.

[6] S. Thrun, M. Bennewitz, W. Burgard, F. Dellaert, D. Fox, D. Hähnel,
C. Rosenberg, N. Roy, J. Schulte, and D. Schulz, “Minerva: A second-
generation museum tour-guide robot,” in Proc. of the IEEE Int. Conf.
on Robotics & Automation (ICRA), 1999.

[7] C. Lau, B.and Sprunk and W. Burgard, “Kinodynamic motion planning
for mobile robots using splines,” in Proc. of the IEEE/RSJ Int. Conf.
on Intelligent Robots & Systems (IROS), 2009.

[8] L. Murphy and P. Newman, “Risky planning on probabilistic costmaps
for path planning in outdoor environments,” IEEE Transactions on
Robotics, vol. 29, no. 2, pp. 445–457, 2013.

[9] J. Bohren, R. B. Rusu, E. G. Jones, E. Marder-Eppstein, C. Pantofaru,
M. Wise, L. Mösenlechner, W. Meeussen, and S. Holzer, “Towards
autonomous robotic butlers: Lessons learned with the PR2,” in Proc.
of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2011, pp.
5568–5575.

[10] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige,
“The office marathon: Robust navigation in an indoor office environ-
ment,” in Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2010.

[11] C. Stachniss and W. Burgard, “An integrated approach to goal-
directed obstacle avoidance under dynamic constraints for dynamic
environments,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
& Systems (IROS), 2002.

[12] H. Jun and Z. Qingbao, “Multi-objective mobile robot path planning
based on improved genetic algorithm,” in Int. Conf. on Intelligent
Computation Technology and Automation (ICICTA), vol. 2, 2010, pp.
752–756.

[13] R. Philippsen, S. Kolski, K. Macek, and B. Jensen, “Mobile robot
planning in dynamic environments and on growable costmaps,” in
Workshop on Planning with Cost Maps at the IEEE Intl. Conf. on
Robotics and Automation, 2008.

[14] P. Regier, S. Oßwald, P. Karkowski, and M. Bennewitz, “Foresighted
navigation through cluttered environments,” in Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots & Systems (IROS), 2016.

[15] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots & Systems (IROS), 2004.

[16] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: An open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

