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Abstract— In this paper, we introduce an approach to efficient
robot navigation through cluttered indoor environments. We
propose to estimate local obstacle densities based on already
detected objects and use them to predict traversal costs
corresponding to potential obstacles in regions not yet observable
by the robot’s sensors. By taking into account the predicted
costs for path planning, the robot is then able to navigate in a
more foresighted manner and reduces the risk of getting stuck
in cluttered regions. We thoroughly evaluated our approach
in simulated and real-world experiments. As the experimental
results demonstrate, our method enables the robot to efficiently
navigate through environments containing cluttered regions and
achieves significantly shorter completion times compared to a
standard approach not using any prediction.

I. INTRODUCTION

Today, mobile robots are able to localize and navigate in
laboratory environments that are nicely tidied up, static, and
have an accurate, up-to-date world representation such as a
floor plan or a pre-recorded SLAM map. When robots step
out of the laboratory, however, they face an ever-changing
world filled with piles of objects and moving obstacles that
are not contained in the static environment representation.
In particular, service robots operating alongside humans in
daily-life domestic and office environments need to navigate
efficiently and robustly also through cluttered scenes, for
example in children’s rooms with toys scattered on the floor,
in workshops with tools laying around, or in storage rooms
with piles of boxes.

Driving through clutter is challenging as it requires accurate
sensing of obstacles and precise motion execution. The robot
has to drive slower, turn frequently, replan a collision-free
path when new obstacles come into the its field of view,
backtrack and take a detour when it gets stuck in a dead end,
execute dangerous maneuvers such as driving backwards, and
may eventually even have to give up when it is unable to
find a suitable path back out of the cluttered area.

Hence, the shortest path planned on a given floor plan is
not necessarily the most efficient path, as taking a detour
around cluttered areas right from the beginning may be longer,
but faster and safer to execute. Consider, for example, the
scene depicted in Fig. 1. If the robot takes the green path, it
can drive fast and steadily to the goal without encountering
obstacles, which is more efficient than taking the red path
and potentially getting stuck.

If the world was fully observable and the distribution of
clutter was known, the robot would be able to plan a path
that is optimized for efficiency by reasoning about safety
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Fig. 1. A robot navigating through a cluttered environment has to choose
between different paths for navigating to a goal. While the red path is shorter,
it passes through a cluttered area, putting the robot at risk of getting stuck.
The green path is longer, but it is safer. Our approach predicts traversal
costs corresponding to potential obstacles outside the field of view (FOV)
based on already detected objects. This enables the robot to choose more
promising paths that are likely to lead to a shorter completion time.

distances, allowable velocities, and probabilistic sensing and
motion execution errors. While solving this problem is already
challenging, accurate planning is impossible when the world
is only partially observable. Due to limited sensor ranges and
occlusions from the robot’s point of view, the true distribution
of clutter is unknown to the robot, hence it cannot directly
plan and optimize the planned path for efficiency.

Traditional planners can only consider objects that are
either registered in the given map of the environment, or
have already been observed by the sensors, so these planners
would assign equal traversal costs to all unobserved areas in
the free space of the given map. However, clutter is typically
not spread uniformly. In a children’s room, toys often come
in piles. In a workshop, tools usually gather around the
workbench. In storage rooms, boxes are usually stacked
in heaps close to each other. Using knowledge about the
distribution of clutter allows for predicting cluttered areas in
regions that the robot has not yet observed, which enables
the robot to plan its path in a more foresighted manner.

In this paper, we propose a method to predict the occurrence
of obstacles in the space outside the field of view from
the information about objects in already observed areas.
By increasing the costs for traveling through areas where
obstacles are expected, we allow a path planner to avoid
cluttered areas, which leads to more foresighted navigation.
Since the world is only partially observable, there is no
guarantee that the predicted obstacles actually exist and that
the planned path is optimal with respect to efficiency, but it
seems reasonable to avoid difficult navigation challenges if
easier and safer options are available.



We implemented our system in the Robot Operating
System (ROS) and thoroughly evaluated it both in simulated
and real-world experiments with a Robotino robot from
Festo Didactics. As the experimental results demonstrate, our
approach enables the robot to react to unexpected objects in a
foresighted manner and to navigate efficiently. In comparative
experiments with a traditional path planner, our method
achieves significantly shorter completion times in various
complex scenarios.

II. RELATED WORK

Lu et al. introduced the notion of layered costmaps and
implemented it in ROS [1]. Instead of maintaining a single
costmap, the authors proposed to split the information of the
costmap into several layers with different semantics. Each
layer represents a different type of obstacle or constraint,
such as the static map, caution zones, and the personal space
of a human that the robot should not penetrate. This concept
has been widely used, such as for path planning or in order to
represent the exploration progress. Marder-Eppstein et al. [2]
suggested to exploit the costmap representation for navigating
a PR2 robot through a cluttered real-world office environment
containing obstacles of varying shapes and sizes. While their
navigation system tries to navigate even through difficult
obstacle fields, our approach predicts the scene behind initially
detected obstacles and considers taking a detour right from the
start if navigating through the clutter does not look promising.

Hornung et al. [3] considered 3D environments containing
a moderate amount of cluttered objects. The focus was mainly
on finding collision-free upper body configurations of the
robot for traversing tight passages. For humanoid robots,
cluttered environments are particularly challenging as the
robots have to adhere to balancing constraints in addition to
the navigation task. Hence, they have to choose their footholds
carefully when moving through cluttered areas. Orthey and
Stasse [4] as well as Maier et al. [5] proposed suitable
solutions for this task given observed obstacle locations.

Joho et al. [6] presented a technique using nonparametric
Bayesian models for learning exact geometric arrangements
of objects from large data sets. The authors showed that their
unsupervised approach is able to learn how to set the table.
In a related approach, Sudderth et al. [7] also reasoned about
the number of objects and their spatial relation for detecting
items in visual scenes. While the authors are interested in
finding reproducible patterns in the geometric arrangements,
we cannot expect that there are typical structures that can
be learned in our scenario. Instead, we propose an efficient
approach for predicting traversal costs for unobserved parts of
the environment based on cluttered objects already observed.

When navigating alongside humans in crowded environ-
ments such as pedestrian areas, robots have to adapt to the
habits of humans, for example with respect to crowd flows
or personal spaces of humans. Henry et al. [8] proposed
an approach for learning to imitate human behavior in these
situations. Urban environments are another example for highly
cluttered environments that introduce particular challenges
for navigation such as traversability estimation, traffic rules,

and interactions with passers-by [9]. While these approaches
focus on predicting how the state of the observed world will
evolve in the future, our work focuses on predicting traversal
costs corresponding to clutter in so-far unobserved parts of
the environment. It would be interesting to combine the two
orthogonal prediction approaches in future work to achieve
better prediction of both moving and static obstacles.

Here, we focus on domestic and office environments.
Based on detected objects, we predict costs corresponding to
potential obstacles in close but not yet observed areas. By
making detours around regions that are likely too cluttered
for the robot to easily pass through, our robot avoids getting
stuck and efficiently navigates to the goal.

III. COST MAPS FOR PATH PLANNING IN CLUTTERED
ENVIRONMENTS

We assume that a 2D grid map containing the static
obstacles in the environment is given. As the robot moves
through the environment, it updates the map continuously
by marking cells as occupied or free whenever previously
unknown objects appear in the robot’s field of view. The
robot uses this map to localize itself and to predict costs
corresponding to potential cluttered objects in areas that it
has not yet observed with its sensors.

For path planning, a cost value is assigned to each grid cell
and an A*-based planner finds the path with the lowest costs
to the given goal location of the robot. In the following, we
first describe a standard cost function that considers a safety
distance to all obstacles. We then introduce an extension
to the cost function that also takes into account the clutter
density of the local surroundings.

A. Standard Cost Function

The standard cost function sets the costs of all occupied
cells to infinity, furthermore, occupied cells are inflated by
a safety distance and their neighbor cells get also assigned
infinite costs. In that way, the robot keeps a safety distance r to
all obstacles. While this results in the computation of collision-
free paths, it may lead to undesirable behavior as the shortest
path from one room to another would often run close to walls
and door posts when entering a room. While some situations
require to squeeze through narrow passages or move close
to obstacles, the robot should generally prefer to maintain a
certain clearance. A commonly used approach to represent
such a preference for open space is to add costs to the regions
adjacent to inflated obstacles that decay exponentially with
growing distance to the nearest obstacle. This approach allows
the planner to trade off between path length and obstacle
clearance. As this cost term quickly loses influence with
increasing distance, it only has to be computed for cells near
obstacles and can be neglected for cells further away.

Putting these cost terms together yields the following cost
function:

Cbase =


0 if n = 0
∞ if ∃i : di < r
Cmax ·max

i
ek(r−di) otherwise

, (1)



where r is the robot’s safety distance, d1, . . . ,dn are the
distances to the nearby obstacles, Cmax defines the highest
traversable cost, and k is a constant scaling factor controlling
the decay of the costs. The red curve in Fig. 2 illustrates this
cost function in an example environment with two obstacles.

B. Cost Function for Cluttered Environments

The cost function described in Eq. (1) takes only the
nearest obstacle into account and neglects all other obstacles.
However, areas with multiple obstacles close to each other
are more challenging for the robot, as locomotion in confined
spaces is difficult and the sensor view is often obstructed.
Increasing factor k would incite the robot to keep a larger
distance to all obstacles irrespective of the amount of clutter,
leading to unnecessarily long detours around single, free-
standing objects. By contrast, we propose to introduce an
additional cost term that reflects the amount of clutter in the
local surroundings of each grid cell.

The new cost function should meet these requirements:
• The cost value should increase exponentially with the

number of objects in the vicinity of the robot, so that
the planner will avoid cluttered regions.

• The cost function should have the same value range as
the original function Eq. (1).

• The cost function should approach zero as the distances
go to infinity.

• If there is only one object in the vicinity of the robot,
then the cost function should coincide with the original
cost function from Eq. (1).

The following cost function fulfills these requirements:

Cclut =


0 if n = 0
∞ if ∃i : di < r

Cmax ·min
{

1,
n
∏
i=1

(Ei +1)−1
}

otherwise
(2)

where Ei = ek·(r−di) is the same exponential decay function as
used above in Eq. (1). In this formula, we add 1 to Ei so that
far-away objects with Ei ≈ 0 turn into the neutral element
in the multiplication. After the multiplication, we have to
subtract 1 again so that the cost function approaches 0 when
the distances go to infinity.

In addition to the requirements defined above, the function
also has the following properties:
• The product can be computed incrementally as

Enew = (Eold +1) · (E j +1)−1 (3)

when a new object j is observed, which allows for
efficient implementation.

• In contrast to the original function Eq. (1), it is continu-
ously differentiable in the areas the robot can traverse,
which is required by some planning algorithms. Like the
original function, it is not differentiable at the borders
between free space and obstacles.

Fig. 2 shows a comparison of the standard cost func-
tion (red) and our approach (blue) in a simple environment
containing two obstacles.
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Fig. 2. Cost function for a simple environment containing two obstacles.
The green and yellow curves represent the exponentially decaying costs for
obstacle 1 and 2, respectively. These costs encourage the planner to keep a
clearance to obstacles in addition to the safety distance. While the standard
approach takes the maximum of those curves as the cost function (red), our
approach combines the curves according to Eq. (2), which leads to higher
costs in cluttered areas.
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Fig. 3. Our framework predicts an average clutter density for cells ci in
close but not yet observed areas by calculating densities within the radii R j
around ci based on occupied cells corresponding to non-static obstacles.

IV. CLUTTER DENSITY AND COST PREDICTION

The cost function defined in the section above can be
applied to determine the costs in regions the robot has already
observed. However, we would like to also predict costs
corresponding to potential objects in adjacent regions that are
not yet within the field of view or occluded by other objects.
To do so, we estimate local obstacle densities depending on
the already observed objects and increase the traversal costs
for cells in close-by regions that are not yet visible.

To allow for efficient computation of the object density,
we calculate the observed occupation density inside a circle
of radius R j for each cell ci within the prediction region. We
perform this calculation for M circles with different radii
as shown in Fig. 3. The predicted density ρi is then found
by summing over all M density estimates, weighted by an
exponential factor that decreases with R,

ρi =
∑

M
j=1 e−R j o i, j

t j

∑
M
j=1 e−R j

, (4)

where t j is the total count of cells and oi, j is the count of
occupied cells around ci, both inside the circle with radius R j.
The cost Cpredict for each cell ci is then defined as

Cpredict = α ·ρi, (5)

where α has to be chosen such that clutter densities that raise
navigation difficulties lead to predicted costs close to Cmax. In
the future, we will extend our framework to include strategies
to learn about its best value.



V. EXPERIMENTS

We implemented our approach in ROS and evaluated it both
in simulation (Gazebo [10]) and in real-world experiments.
The practical experiments were performed using a Robotino
robot from Festo Didactics with a ASUS Xtion Pro Live fixed
to the mounting tower for obstacle detection and a Sick-S300
laser scanner mounted horizontally above the ground for
localization. For detecting objects, the robot uses data from
the RGBD camera to build a point cloud of the environment.
All points above the ground plane are considered as obstacles.
Points that cannot be explained by known obstacles contained
in the given environment representation are classified as
corresponding to cluttered objects. In our experiments, the
prediction region is located from 2.5 m up to 5 m around the
front half of the robot. The radii of the circles to compute
the occupation density are 0.5 m, 1.0 m, and 1.5 m.

A. Path Planning and Trajectory Execution

We use a grid-based A* planner to find a global plan
using the predicted costs described in Sec. IV. The robot then
executes the planned trajectory using the default local planner
included in ROS. This trajectory rollout planner samples
velocities in the robot’s control space, simulates and evaluates
the robot’s path in a short lookahead time frame, and sends
the highest-rated velocity command to the robot (see [11] for
details). By sampling and evaluating in the robot’s control
space, the planner is able to adapt the robot’s velocities to
the constraints imposed by the environment. In particular, the
robot will drive slower in cluttered areas as it has to respect
acceleration limits when turning or evading obstacles.

B. Quantitative Evaluation

We evaluated the impact of the amount of clutter on the
completion time in a series of simulation experiments with
varying obstacle densities for both the standard technique
without modifications and our approach with the modified
cost function and prediction. We randomly sampled objects
within a rectangular area of size 23×8 m2. The clutter area
is surrounded by free space leaving the robot the possibility
to drive around it. As clutter objects, we used boxes with
lengths varying from 0.3 to 1.2 m (see Fig. 6 for an example
map). For the sake of comparison, we define a parameter
for the obstacle density Dc in the clutter area as the average
number of objects that appear in a region of one square meter.

The task of the robot was to navigate to a goal point at
a distance of 28 m at the opposite end of the arena with the
cluttered area in between. In this scenario, the robot cannot
get stuck in the clutter area as there is always a possible
path to the goal, the robot can rotate on the spot and drive
back the path that it came from, and the simulator provides
error-free sensor measurements. For each Dc, we created 20
randomly cluttered environments with a variety of objects.
We averaged the results over two runs with different start and
goal positions for each generated environment and evaluated
the average travel time for reaching the goal. Fig. 4 shows
the mean and 95% confidence interval of the overall traveling
time in relation to the density of the clutter region.
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Fig. 4. Mean and 95% confidence interval of the traveling time in
relation to the amount of clutter. For low and high clutter densities, both
approaches behave similarly. In the middle range, our approach leads to
shorter completion times. For the densities marked with (*) and (**), our
approach performs significantly better than the standard approach according
to a paired t-test at the 0.05 and 0.001 level, respectively.
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Fig. 5. Average of the traveling time in comparison to the standard
approach broken down by the individual components of our system. Overall,
the combination of our cost function and prediction performs best. See
Sec. V-B for a detailed discussion of the results. Note that the vertical axis
starts at 70% to improve readability.

For the extreme values Dc = 0 and Dc → ∞, both ap-
proaches yield the same behavior by definition: If no clutter
obstacles are present, both approaches will choose the shortest
path without being impeded, thus both the mean and variance
of the travel time are low. As the clutter density increases,
the completion time generally increases as the robot has to
take longer paths to avoid obstacles. If the clutter is too
dense for the robot to fit through, then both approaches
will plan a detour around the whole area, again leading to
similar completion times. The approaches behave differently
when the clutter is sparse enough for the robot to drive
through, but dense enough to impede the robot, i.e., for
values of Dc between 0.3 and 0.8. In this case, the robot has
to decide whether to drive through the clutter area or to take
a detour around it. Driving through the clutter leads to shorter
trajectories, but the robot has to drive slower near obstacles
and the risk of driving into a dead end and having to backtrack
increases. As the results show, our approach finds a good
trade-off and achieves shorter completion times in all cases.
For the densities marked with (*) and (**), the difference is
statistically significant according to a paired t-test at the 0.05
and 0.001 levels, respectively. For densities below 0.5, driving
through the clutter is usually the favorable option, while for
densities above 0.5 taking a detour around groups of obstacles
is often faster. For densities around 0.5, the completion
time strongly depends on the geometrical distribution of
the clutter, as dead ends and maze-like structures occur



frequently, making it hard to predict which path will lead
to the goal. Hence, both mean and variance increase for
both approaches. While our approach still performs better on
average, the difference is not statistically significant due to
the high variance. On average, updating the cost map after
new sensor readings takes 10.8±4.0 ms for our approach
compared to 5.9±2.3 ms for the standard approach.

To assess the contribution of the individual components,
we report the results in Fig. 5 separately for a planner using
only the cost function from Sec. III-B (green), a planner
using only the prediction method from Sec. IV (yellow), and
a planner using the combination of both (blue). For better
comparison, we normalized the times so that the standard
approach matches 100%.

The main effect of the cost function introduced in
Sec. III-B is to increase the costs for squeezing through nar-
row passages between obstacles. Such navigation maneuvers
slow down the robot and they are risky, as sensing errors
might lead to collisions or trap the robot in situations where
its planner cannot find a valid path anymore.As the results
from Fig. 5 show, the cost function on its own increases
the completion time compared to the standard approach for
low clutter densities, because the planner will keep a bigger
distance to groups of obstacles. In combination with the
clutter prediction, however, it decreases the completion time.

Overall, the combination of our cost function and the clutter
prediction performs best. In some cases, the prediction alone
performs marginally better than the combination, as the cost
function increases the clearance between the robot and groups
of obstacles, leading to slightly longer trajectories.

In the next section, we will discuss the influence of the
individual parts in more detail based on exemplary situations.

C. Qualitative Evaluation

Fig. 6 shows a typical simulation result. The task of the
robot was to navigate from the left side to the right side of
the room. The center of the room is filled with clutter objects
that are not contained in the robot’s map. In the depicted
situation, the robot has traveled about half the way to the goal.
The standard approach without the modified cost function and
prediction (top) tries to follow the shortest path to the goal,
which leads the robot through dense clutter. As the robot
has to respect acceleration limits when turning and evading
obstacles, the robot has to slow down. It arrives at the goal
after 102 s. Our approach, by contrast, predicts that there are
probably more objects behind the obstacles that gradually
appear in its field of view while driving. The prediction and
the modified cost function increase the costs towards the
center of the clutter area as well as in between the objects,
inciting the planner to choose the longer, but safer option of
making a detour around the obstructed area. Even though the
traveled distance of our approach is 11% longer, the robot
arrives at the goal 29% earlier after 72 s.

As our algorithm predicts clutter in regions that the robot
has not observed yet, it has to update the prediction, based on
real measurements, once the robot travels through previously
unknown regions and observes the actual scene. Fig. 6 also
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Fig. 6. Comparison of the two approaches on an example map (Dc = 0.35)
and velocity profiles in percent of the maximum allowable speed. The
standard approach (top) tries to follow the shortest path to the goal, leading
the robot through dense clutter where the robot has to slow down to avoid
collisions. With our approach (bottom), the costs increase in locations where
clutter is predicted, driving the robot around the clutter field and leading to
a shorter completion time.
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Fig. 7. Comparison of the individual components of our system on an
example map (Dc = 0.25). The standard approach loses time by squeezing
through narrow gaps. The prediction incites the planner to drive around
dense clutter. The cost function prevents the robot from driving through
narrow passages. Our combined approach leads to the shortest time.
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start goal

Fig. 8. Our approach chooses the conservative option of driving around
the dense clutter in the center. The standard approach drives through the
narrow passage and arrives at the goal earlier.



shows how the robot clears the prediction for areas that it
has observed as being freespace, e.g., in the center top area.

Fig. 7 shows the effects of the individual components of our
system on a sample map. The standard approach loses time as
it has to slow down near obstacles. The prediction incites the
planner to drive around dense clutter, but it still drives through
narrow passages. In the combined approach, the cost function
additionally prevents the robot from entering cluttered regions
through narrow passages, hence the combined approach yields
the shortest completion time.

In Fig. 8, our approach evades the dense region in the
center of the map and prefers the less dense area in the top.
As there is no guarantee that predicted obstacles exist, in
this case the clutter avoiding strategy leads to an unnecessary
detour. On average, however, the advantages of the prediction
outweigh the risk of superfluous detours.

D. Real-World Experiments

We conducted real-world experiments using the Robotino
robot in the environment shown in Fig. 9. The environment is
surrounded by walls and contains additional walls separating
a corridor and multiple rooms. Additionally, we placed several
obstacles on one side of the environment. While the robot
has access to a map containing the walls, it does not know
the amount or distribution of the clutter objects beforehand.

The standard approach computed a full path through the
cluttered region, which is displayed on the left in Fig. 9.
Although the robot successfully navigated through the clutter,
the robot needed to slow down on several occasions to change
its orientation and avoid collisions leading to a total navigation
time of 45.5 s.

Fig. 9. Experiment with the real Robotino traveling through a cluttered
scene. The standard approach computes a path through the clutter, where
the navigation is slowed down. Our approach predicts higher traversal costs
leading to an early replan around the cluttered region. The displayed costmaps
correspond to the time after the robot has reached the corresponding goals.

Our approach started with a similar navigation plan,
however, once the robot discovered the nearby clutter at
the start, the increased predicted costs in the cluttered region
immediately led to a replanned path around the corridor. This
path is shown on the right in Fig. 9. While resulting in a
longer path, the total travel time was only 34 s as the robot
was able to drive faster due to the free space on the right
corridor.

VI. CONCLUSIONS

In this paper, we proposed a novel solution to efficient
navigation through environments containing areas with many
cluttered objects. Our approach predicts traversal costs
resulting from potential obstacles in regions that are not
yet observable by the robot’s sensors. The prediction is based
on estimated obstacle densities from already detected objects.
By considering the predicted traversal costs directly for path
planning, the robot navigates foresightedly and avoids regions
that are likely to be too cluttered for the robot to easily pass
through.

We implemented our system within ROS and represented
the predicted traversal costs as a new cost map layer for
path planning. As we demonstrate in the experiments with
a wheeled robot equipped with a depth sensor, in several
situations the resulting navigation behavior significantly
outperforms the one generated by a standard path planner
that only considers detected objects.
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