Efficient Coverage of 3D Environments with Humanoid Robots
Using Inverse Reachability Maps

Stefan OfBwald

Abstract— Covering a known 3D environment with a robot’s
camera is a commonly required task, for example in inspection
and surveillance, mapping, or object search applications. In
addition to the problem of finding a complete and efficient set of
view points for covering the whole environment, humanoid robots
also need to observe balance, energy, and kinematic constraints
for reaching the desired view poses. In this paper, we approach
this high-dimensional planning problem by introducing a novel
inverse reachability map representation that can be used for fast
pose generation and combine it with a next-best-view algorithm.
We implemented our approach in ROS and tested it with a Nao
robot on both simulated and real-world scenes. The experiments
show that our approach enables the humanoid to efficiently
cover room-sized environments with its camera.

I. INTRODUCTION

You probably know this problem: Your TV remote, glasses,
and car keys keep vanishing, especially when you are in
a hurry. A personal assistance robot can help you out by
searching for the lost object in your apartment. Humanoid
robots are particularly well suited for this task, as they can
bend over to look into boxes like the robot in Fig. 1, or
bend down to peek below tables and chairs. In this paper,
we present an approach for calculating an efficient plan for
covering a known environment with the camera of a humanoid
robot by integrating view point planning with whole-body
motion planning. We assume that the robot already has a
3D map of the environment and the robot’s task is then to
completely cover relevant areas with its camera as efficiently
as possible.

Our approach adapts the next-best-view algorithm for
3D coverage by Dornhege et al. [1] to meet the requirements
of humanoid robots. The original approach has been used in
RoboCup Rescue disaster scenes on tracked vehicles with
cameras mounted on a robotic arm. Humanoids with head-
mounted cameras, in contrast, have a much smaller reachable
volume to place the camera due to the kinematic limitations
of the robot. Additionally, humanoid robots need to consider
walking and pose stability, energy consumption, and the risk
of overheating joints when planning view poses for observing
the scene. Due to the high degree of freedom, planning
whole-body postures while searching next-best-view poses is
computationally highly expensive. Hence, we propose to use
pre-computed inverse reachability maps that can be queried
efficiently during the view point planning stage. In a first
step, our approach generates promising view poses by casting
rays from surfaces and sampling candidate camera poses for
free-space voxels where many of these rays pass through.

All authors are with the Humanoid Robots Lab, University of Bonn, 53113
Bonn, Germany, {sosswald,philkark,maren} @cs.uni-bonn.de.

Philipp Karkowski

Maren Bennewitz

Fig. 1.
a box for completing the task of completely covering the environment with
its camera, e.g., for finding objects.

Nao inspecting an environment. The robot bends over to peek into

Afterwards, we use the inverse reachability map to evaluate
possible whole-body configurations to reach the views. As a
result, we get a set of camera poses that cover the environment
and formulate a travelling salesman problem to find the best
connecting tour for the humanoid.

Our experiments in simulation and real-world scenarios
with a Nao robot show that our system enables the humanoid
to successfully and efficiently inspect home-like environments
covering all interesting surfaces. The proposed coverage
planning system can be applied to object search as well as to
similar problems including inspection or surveillance tasks,
and re-mapping the environment to incorporate changes.

II. RELATED WORK

Finding view points from where a whole known or
unknown scene can be observed is a well-known, challenging
problem in both robotics and computer graphics. A large
number of applications need to solve this problem, including
autonomous exploration, autonomous scanning and recon-
struction of 3D objects, and coverage and surveillance tasks.

The optimization problem of finding the minimum number
of viewing points required for observing a known environment
has been formulated as the art gallery problem, which asks
for the positions where guards or CCTV cameras have to be
placed for monitoring an art gallery with a polygonal floor
plan in 2D or a polyhedral model in 3D. The art gallery
problem is known to be NP-hard and APX-hard even in 2D
environments [2].

Stasse et al. [3] and Foissotte et al. [4], [S] presented a two-
step approach for exploration and coverage with a humanoid
robot. In the first step, a next-best-view algorithm is used
for finding suitable view poses. In the second step, a posture
generator tries to find postures to reach the desired view poses.
The two steps are alternated in a greedy iterative scheme.
Separating view pose planning and pose planning has the
disadvantage that collision checks, stability constraints, and
energy optimization cannot be considered while optimizing
the view points. Generating a pose for every candidate
view point is infeasible. We overcome this problem by pre-
computing an inverse reachability map that can be queried
fast enough to be used in the view point planning stage.

In the past, several variations of next-best-view algorithms
for finding a good sequences of view points to observe a
scene have been proposed. Bissmarck er al. [6] published
a run-time comparison of some existing solutions. Next-
best-view algorithms have also been successfully applied
to find view points for 3D reconstruction using in-hand
manipulation [7], using cameras mounted on robotic arms
with a fixed base [8], and using unmanned aerial vehicles [9].
Our scenario, however, requires a humanoid robot to walk
around in the environment, which makes planning more
difficult as balancing constraints and pose optimization have
to be considered. In contrast to approaches that reduce the
problem complexity by limiting view point candidates to
convex hulls [10] or bounding spheres [11] surrounding the
objects of interest, we sample candidate view poses in the
whole volume that the robot can reach.

While we focus on the task of covering a known environ-
ment completely, the general framework can also be used
for autonomous exploration as in the work of Dornhege and
Kleiner [12]. In the autonomous exploration task, covering the
known surfaces of the environment is replaced by covering
the frontiers between known and unknown regions and the
information gain of a view point is estimated based on the
size of the unknown voids in the field of view. Daudelin and
Campbell [13] propose a probabilistic extension of the work
by Isler et al. [14], which consider the information gain for
each cell in the vicinity of frontier surfaces for computing
the next best view.

In our previous work [15], we introduced an approach
for speeding up exploration tasks by exploiting background
knowledge. Based on a topological graph provided by the
user, the robot computes a global exploration strategy using a
travelling salesman problem solver. This global strategy can
be combined with a local exploration strategy determined
with the approach present in this paper.

Burget and Bennewitz [16] applied inverse reachability
maps for selecting suitable stance poses of a humanoid for
grasping tasks. This application requires high maneuverability
of the endeffector, and hence the authors use a manipulability
measure based on the Jacobian matrix of the kinematic chain.
For our coverage task, high maneuverability is not needed
and we evaluate poses based on stability, energy consumption,
and required time for reaching the whole-body pose instead.

III. PROBLEM DESCRIPTION AND FRAMEWORK

Our goal is to completely cover a known environment
with the camera of a humanoid robot. We assume that a
complete 3D model of the environment is already given, e.g.,
generated during a previous SLAM run. The robot then has
to determine a sequence of lookout poses for the camera so
that all relevant regions can be covered, e.g., for the purpose
of executing a search or inspection task. Thus, the goal is to
find a preferably small set of viewing poses that respect the
robot’s kinematic limits and stability constraints and from
where the whole scene can be observed. As discussed in
Sec. II, the problem of finding the minimum set of view
poses that cover the whole environment is known to be a
hard problem on its own. Solving this problem in the context
of humanoid robots introduces several constraints and long
planning times due to the high number of degrees of freedom,
which increase the complexity of the problem even further.

We approach this challenge by implementing a sampling-
based next-best-view algorithm that has already been success-
fully used on tracked vehicles [1]. For efficient planning for
humanoid robots, we extend this approach by pre-computing
possible robot poses in an inverse reachability map that can
be queried efficiently while searching for good view poses.
In the following sections, we will introduce our efficient
implementation of the inverse reachability map and present
its applicability within a next-best-view planning algorithm.

IV. REACHABILITY MAP AND POSE EVALUATION

Whole-body planning for humanoid robots is a challenging
problem due to the high-dimensional configuration space and
due to computationally expensive constraints such as posture
stability and self-collision avoidance. Planning times can be
significantly reduced by pre-computing valid postures and
storing them as a reachability map (RM). A reachability map
is a volumetric representation of the poses that an endeffector
can reach given that the robot’s base frame (i.e., the center
pose between the feet poses on the ground) is located at
the origin of the RM. The RM is typically computed by
sampling in the configuration space. Each cell of the RM that
is marked as reachable can be annotated with one or more
joint configurations for reaching the desired pose together with
a cost value associated with that joint configuration. During
motion planning, the planner uses the RM as a lookup table for
finding a set of suitable robot configurations without having
to perform expensive kinematic computations or stability and
self-collision checks. The planner then only has to perform
location-dependent checks such as collision checks with the
environment and optimize a cost criterion.

Reachability maps have already been successfully used
for grasp planning with humanoid robots [17], [16] where
a 6D grasp pose is given in world coordinates and the
robot has to find suitable, collision-free stance poses for
reaching the desired grasp pose. Transferring this concept
to our application of full coverage planning, however, needs
modifications as the requirements are different. In the grasp
planning application, the reachable volume of the endeffector
is large, whereas in our application the endeffector is a

Fig. 2. Reachability map of a Nao robot. The colored boxes represent
poses that the top camera mounted in the robot’s head can reach given the
robot’s current feet positions. Green poses have low costs according to the
cost function (Eq. (3)), whereas red poses with high costs should be avoided.

COStS Cy

0s \ /
0:2 /

all weight all weight
on left foot double support on right foot
Fig. 3. Cost function for measuring pose stability based on the weight

distribution between the feet. Postures in double support are preferred as
they lead to bigger support polygons and are considered to be more stable
than single support postures.

head-mounted camera, which typically can only move within
a small and thin volume, shaped like a spherical segment
(see Fig. 2 for an example). The optimization criterion in the
grasp planning application is a manipulability measure. Using
a tool with the robot’s hand requires the ability to move the
endeffector to nearby poses, e.g., for turning a screw with
a screwdriver. As manipulability of the endeffector is not
important for our application, we define a new cost function
tailored to coverage planning that considers the stability of the
pose, the time to reach the pose, and the energy consumption
as humanoid robots easily overheat when resting in a stressful
pose for a longer period of time.

One possibility for defining a pose stability measure is to
measure the center of pressure on both feet or to calculate
the zero moment point and to determine the location of the
point with respect to the support polygon. When the center of
pressure approaches the boundary of the support polygon, the
robot posture gets unstable and small perturbations put the
robot at risk of tipping over. For the Nao robots that we use
during our experiments, however, the center of pressure cannot
be measured reliably enough, hence, we use an approximate
stability measure that compares the weight distribution on
the two feet. Postures where the robot is in double support
are more stable than poses where all the weight rests on one
foot only. Let w;, w, be the weight on the left and right foot,

respectively, as measured by the foot pressure sensors located
in the soles of the feet. Then, we define a weight ratio

max(w;,w,)
min(w;,w,)’

min (m) if min(w;, w,) >0

(1)

T =
0 otherwise

that is the ratio of the weight distribution between the two
feet clamped to the range [1,m] where m is a user-defined
constant, meaning that a pose is considered unstable if the
weight on one foot is more than m times higher than the
weight on the other foot. The ratio is symmetric with respect
to both feet. In practice, a value of m = 3 yields reasonable
results. We then define a cost function
(r—1)2
(m—1)?
that increases quadratically with increasing weight ratio and
is normalized to the range [0,1]. See Fig. 3 for an illustration
of the cost function.

To estimate the time At to reach the desired robot posture,
we measured the time to get from a standard walking pose
that the robot uses for navigation to the desired pose. For the
required energy consumption, we evaluate the electric current
for each joint while moving from the standard walking pose
to the desired pose and back to the walking pose. Given the
technical properties of the motors given in the data sheet
of the robot, we compute the consumed power P integrated
over the whole movement.

We then combine the three cost components to a cost
function

2

Cyp =

C =

kw - Co+ k- At+k, P 3)

with the components defined above and linear coefficients
kw, k¢, kp that we determined experimentally. Our view-
point planning algorithm tries to find poses that cover the
environment while minimizing this cost function.

We sample a large number n of robot postures ¢ in the
configuration space, execute the configuration on a robot,
measure the time, power, and stability data, and compute the
cost function. The resultis a set R = {(¢,c(¢)) | i =1...n}
of postures with associated costs (see the visualization
in Fig. 2). The individual cells of this reachability map reflect
the reachable workspace of the robot and the color of the
boxes in the figure shows the associated cost. If more than
one configuration leads to the same pose, the costs of the
lowest cost pose is shown.

V. EFFICIENT REPRESENTATION OF THE INVERSE
REACHABILITY MAP

In both the grasping application and our view-point
planning application, the desired endeffector pose is implied
by the task, whereas the robot’s base position can be chosen
freely. Hence, it is more efficient to invert the reachability
map to create an inverse reachability map (IRM) where
the endeffector is located in the origin and the cells reflect
the potential locations of the base frame from where the
robot can reach the desired endeffector pose. The IRM can
be represented as a 6D voxel structure where the voxel

coordinates correspond to the 6D pose of the robot’s base
frame and each voxel contains a list of one or more joint
configurations. Given a desired endeffector pose, the algorithm
transforms the IRM into the world coordinate system so that
the origin of the IRM matches the desired endeffector pose.
The intersection of the transformed IRM with the ground
plane yields a list of potential stance foot positions, which
then have to be checked for collisions and optimized for the
cost value.

Intersecting the two volumetric representations of the
IRM and the environment model [16], however, is time-
consuming and storing the IRM as a sparse 6D structure is
not memory efficient. Making the assumption that the robot
can only stand on horizontal planes allows for a more efficient
implementation. If the robot’s feet rest flat on the ground, then
the roll and pitch angle of the feet relative to the endeffector
frame as well as the distance between the endeffector and
the feet on the vertical axis can be directly derived from
the endeffector coordinates in the world frame. Hence, we
propose to represent the IRM as a database instead of a
volumetric representation. Each entry of the database consists
of the base frame pose relative to the endeffector and a list
of joint configurations to reach the endeffector pose from the
given base pose with a corresponding cost value. We index
the database on the roll, pitch, and z component of the base
frame pose. As these coordinates can be computed directly
from the desired endeffector pose under the assumption that
the feet rest flat on the ground, we can access the candidate
base frame poses without having to perform geometrical
intersections of volumes by finding the nearest neighbor in
the database. In practice, the IRM can be implemented as a
k-d tree or octree that allows quick nearest-neighbor searches.
For a given query, the database returns a list of candidate feet
poses to reach the desired camera view pose. The algorithm
then selects the configuration with the lowest costs that does
not collide with the environment.

VI. PLANNING A TOUR OF VIEWING POSES

For generating view points and planning a sequence
of poses to cover the environment, we adopt ideas of
the approach by Dornhege et al. [1]. Please refer to the
original publication for a more detailed description including
mathematical formulations of the problem and algorithm.

A. Sampling Candidate Viewing Poses

The known model of the environment is represented as an
OctoMap [18]. Our algorithm first determines which occupied
voxels belong to surfaces that should be covered. For our
application, the ground plane does not have to be observed,
so we filter it out and limit the region of interest to a user-
defined bounding volume. However, our system still keeps the
full OctoMap for collision checks and navigation planning.

For each occupied voxel to be observed, the algorithm
casts rays starting from the occupied voxel into free space.
The ray is clipped at a minimum and maximum distance from
the occupied start voxel corresponding to the distance range

where the robot can well observe the surface. For each free-
space voxel, a counter is created that counts the number of
rays traversing the voxel. If many rays pass through one voxel,
this voxel is assumed to be a good lookout point as many
interesting surfaces can be observed. Contrary to Dornhege’s
original approach, we do not sample random linear rays, but
subdivide the unit sphere around the occupied voxel into 512
equally shaped conic rays. We then iterate through the cells
in each cone from the tip outwards and increment the voxel
counters of the traversed cells. When a collision occurs, we
continue with the next cone. This approach is more systematic
and a better representation of the utility of the view pose
candidates, as it eliminates the systematic bias of cells near
walls that get traversed more often if randomly sampled linear
rays are used. We filter the traversed voxels by the height
above the ground and do not consider voxels that are above
or below the range where the robot’s camera can be placed.

We then sort the remaining free-space voxels by de-
creasing utility according to the ray count. For each
voxel at position (z,y,z), we sample n random 3D ori-
entations (¢;,0;,1;) to get a set of 6D camera poses
{(z,y,2,¢:,0;,1;) | i =1,...,n}. The yaw angles 1; are
sampled from the full range [0, 27]. As we represent the in-
verse reachability map as a database indexed by (¢, 8, z) (see
Sec. V), we can directly sample roll angles ¢; and pitch
angles 6; for a given z from the inverse reachability map,
guaranteeing that all sampled poses are within the feasible
kinematic range of the robot. For each of the n camera poses,
we determine the number of surface voxels that are visible
in the viewing frustum, which yields a utility value for that
camera pose.

B. Determining Whole-Body Configurations

If the utility of a camera pose is above a threshold, our
system determines whether there is a collision-free robot
pose for reaching that view. The methods used in Dornhege’s
original approach are not efficient and capable enough for
humanoid robots with very limited reachability ranges and
constraints on stability and energy consumption. To cope with
these challenges, our algorithm queries the inverse reachability
map (see Sec. V) to retrieve a list of candidate whole-body
configurations for reaching the given camera pose. Each
configuration consists of a list of joint angles, the poses of
the robot’s feet relative the camera frame, and a cost term. For
each of the configurations, we transform the feet poses into
the world coordinate system and perform a sequence of checks
to determine whether the whole-body pose is reachable:

1) Check whether the desired robot location is reachable
from the robot’s start location. As computing a full plan
from the start location to the desired location is too
computationally expensive to be executed for a large
number of candidate views, we instead pre-compute a
2D reachability map once at the beginning and update
the reachability map in case the environment changes. In
our current implementation, we generate a 2D occupancy
grid map by down-projecting the 3D model onto the map.
In the resulting map, we use a region-growing algorithm

to mark all free-space cells that are definitely reachable
from the robot’s starting position.
2) Check if the feet poses of the configuration (including
stepping safety margins) collide with the environment.
3) Check whether the full body of the robot collides with
the environment. In our experiments, we use the Flexible
Collision Library [19] for fast collision checks.

If a given camera pose can be reached by multiple robot
configurations, we select the configuration with the lowest
costs according to the cost function (see Eq. (3)). If no
whole-body configuration is found, then the camera pose is
unreachable and is not considered further.

C. Formulation as a Travelling Salesman Problem

The user can trade off the runtime of the view pose search
versus the thoroughness of the coverage by setting the number
of view pose samples and the utility thresholds, i.e., the ray
count for the voxels and the number of visible surface voxels
for the sampled camera poses. After sampling and evaluating
camera poses for all high-utility voxels, we get a set of camera
poses that cover large parts of the environment. Following
Dornhege’s approach [1], we partition the observed voxels by
the viewing poses to determine the smallest set of viewing
poses that still covers all observed voxels. This step reduces
the number of poses that the robot has to navigate to and thus
reduces the size of the planning problem to make it tractable.

The final step before the robot can start executing its
task is to compute a tour for visiting all viewing poses,
starting at the robot’s current location. Dornhege [1] provides
a comparison of different planning algorithms including
utility-based and cost-based greedy algorithms, set cover
and travelling salesman planners, and an exhaustive search.
The best choice of the planning algorithm depends on
the application: For object search tasks, it makes sense to
start with panoramic view points where large parts of the
environment are visible, as it is likely that the object can be
seen from these view points and the search can be completed
early. Hence, a utility-based greedy approach should be used
in this scenario. If, by contrast, the task requires that all
view points must be visited, for example in an inspection or
mapping task, then a cost-minimizing planner is preferred.
For our experiments, we choose to formulate the problem
as a travelling salesman problem (TSP) on a graph and use
a Lin-Kernighan heuristic solver [20] to find the shortest-
path solution that visits all viewing points necessary for
completely covering the environment. As Dornhege showed,
the additional time required for solving a TSP in comparison
to greedy approaches is outweighed by the gain in the time
and energy required to execute the plan, which is especially
true for humanoid robots. The nodes of the TSP graph consist
of the viewing poses and the robot’s start location. For each
pair of nodes, we add an edge annotated by the length of the
shortest path between the corresponding poses as computed
by an A* planner on the 2D occupancy grid map. As we
don’t require the robot to return to the start location, we make
the graph asymmetric by replacing the costs for travelling
from any view point back to the start node by 0, meaning

that the robot can “teleport” at no costs from the last visited
view pose back to the start. In the resulting tour, the last edge
is removed, leading to the shortest open-end path starting at
the robot’s current location and visiting all viewing poses.

VII. EXPERIMENTS

To evaluate our approach, we conducted a series of
experiments in both simulated environments and real-world
settings with a Nao robot by SoftBank Robotics [21]. The
robot is 58 cm tall and has 25 degrees of freedom.

A. Generating the Inverse Reachability Map

As a first step, we need to record an inverse reachability
map once in the beginning for the given robot.

Any posture generator can be used to create the set of
samples to be stored in the inverse reachability map, including
kinesthetic teaching by a human or random sampling in
a physics simulator. In our case, we used the whole-body
controller provided by the manufacturer as a black-box posture
generator for recording the inverse reachability map. The
whole-body controller formulates the generalized inverse
kinematics problem as a quadratic problem including joint
limit constraints and stability criteria that constrain the
center of mass to the support polygon. The controller then
solves the quadratic problem in a fixed cycle of 20ms.
More details on the whole-body controller are given in
the manufacturer’s documentation [22]. We systematically
sampled head orientations in the feasible range and torso
heights between 24 cm and 32cm and let the whole-body
controller find suitable joint configurations. The configurations
are evaluated and stored in the reachability map as described
in Sec. IV. In our experiments, the inverse reachability map
contained 1514 robot configurations in 277 database records.
For more complex robots with more degrees of freedom, the
pose sampling density can be reduced to keep the algorithm
efficient while still covering the full configuration workspace.

B. Coverage of Simulated Environments

We tested our approach first in simulation experiments with
a Nao humanoid simulated using SoftBank’s Choregraphe
framework. To generate footstep plans, we used the anytime
search-based footstep planner by Hornung et al. [24]. To study
our algorithm’s behavior in realistic settings, we downloaded
openly available models of indoor rooms and apartments
provided by the Blender community and rendered the models
as OctoMaps [18]. Fig. 4 shows an example scene in a
bathroom based on a model from [23]. The red surfaces
are the relevant environment regions that the user selected
for the robot to inspect. The figure in the middle visualizes
the utility map generated with the algorithm described in
Sec. VI-A. Light blue voxels are traversed by many conic
rays emitted from the user-selected surfaces, thus these voxels
are panoramic view points from where large parts of the
environment are visible. The algorithm considers these voxels
first when sampling view poses. The bottom figure of Fig. 4
shows the resulting robot poses and the areas covered by the
robot’s camera in green. Some surfaces are unobservable for

[|high utility

Fig. 4. Bathroom scene, model based on [23]. Top: Overview of the scene.

Middle: Utility of candidate viewing poses (see Sec. VI-A). Light blue
voxels indicate panoramic view points from where large parts of the scene
are visible. The robot’s task is to observe the red parts of the environment,
whereas the gray objects are only considered for collision checking and path
planning, but do not have to be observed. Bottom: Resulting set of poses
and areas covered by the robot’s camera (green). The maximum viewing
range of the camera is 3m.

the robot due to its body height, e.g., the top face of shelves.
Fig. 5 shows additional experiments in other environments.

The top figure visualizes a living room scene and highlights
that the robot also has to lean back and look up to inspect
the ceiling lamp. The middle and bottom figure of Fig. 5
show the same living room scene covered with different
numbers of view poses. By choosing the threshold for the
candidate view utility appropriately, the user can trade off
between completeness of coverage versus runtime. A low
utility threshold (Fig. 5 middle image) leads to 26 view
poses that cover all observable details of the scene. A higher
threshold on the utility, in contrast, leads to a small set
of high-utility poses that already cover large parts of the
environment. The bottom image of Fig. 5 shows the coverage
of the three highest utility poses that already cover most of

Fig. 5. Coverage results of further simulation experiments. Top: “The
White Room” model based on [25]. Note that the robot inspects the ceiling
lamp by leaning backwards and looking up. Middle: “Living Room” model
based on [26] fully covered by 26 robot poses. Bottom: Same environment
as above covered by only 3 high-utility robot poses. By adapting the utility
threshold, the user can trade off between completeness of coverage versus
the number of poses and thus the time for task completion.

the environment. In object search tasks, a planner should be
used that executes these highest utility poses first, thus the
robot searches for the object from panoramic view points
first and proceeds with lower utility, close-up view points of
smaller details until the object has been found.

C. Coverage of a Real Scene

We conducted experiments with a Nao humanoid in a
real-world environment with children’s toys and furniture
that matches the size of the robot. Fig. 6 shows an example
scenario of such an environment where the robot successfully
covers all objects.

VIII. CONCLUSIONS

In this paper, we presented a framework for planning
view points and full-body postures for covering a known

Fig. 6. Real-world experiment. Top: Overview of the scene. Bottom:
Resulting set of poses and covered surfaces (green). The computed strategy
contains both panoramic view points where large parts of the scene are
visible and close-up view poses for peaking into the cupboard. The maximum
viewing range of the camera is 1.5m.

environment with the camera of a humanoid robot. We
introduced a novel representation for inverse reachability
maps that supports fast sampling and validation of robot
poses. Integrating our inverse reachability map representation
with a sampling-based next-best-view algorithm allows us to
interleave view point planning with full-body pose planning
for a humanoid robot. Our algorithm produces a set of full-
body postures that are feasible and energy efficient and allow
the robot to cover the whole observable 3D environment with
its camera. In combination with a travelling salesman problem
solver, our algorithm generates an efficient plan that can be
used in a wide range of applications including inspection,
surveillance, mapping, and search tasks. In future work, we
intend to narrow down the interesting surfaces further, based
on object affordances and geometric constraints on where
searched objects can be placed.

ACKNOWLEDGMENT

The authors would like to thank Christian Dornhege for
providing his implementation of 3D coverage search.

REFERENCES

[1] C. Dornhege, A. Kleiner, and A. Kolling, “Coverage search in 3D,”
in Proc. of the Int. Symp. on Safety, Security and Rescue Robotics
(SSRR), 2013.

[2] J. O’'Rourke, Art Gallery Theorems and Algorithms.
USA: Oxford University Press, Inc., 1987.

[3] O. Stasse, T. Foissotte, D. Larlus, A. Kheddar, and K. Yokoi,
“Treasure hunting for humanoids robot,” in Proc. of the IEEE-RAS
Int. Conf. on Humanoid Robots (Humanoids), ser. Workshop on
Cognitive Humanoid Vision, Daejeon, South Korea, 2008.

New York, NY,

[4] T. Foissotte, O. Stasse, A. Escande, P.-B. Wieber, and A. Kheddar, “A
two-steps next-best-view algorithm for autonomous 3D object modeling
by a humanoid robot,” in Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 2009.

T. Foissotte, O. Stasse, P.-B. Wieber, A. Escande, and A. Kheddar,

“Autonomous 3D object modeling by a humanoid using an optimization-

driven next-best view formulation,” Int. Journal on Humanoid Robotics,

Special issue on Cognitive Humanoid Vision, vol. 7, no. 3, 2010.

[6] C. F. Bissmarck, M. Svensson, and G. Tolt, “Efficient algorithms for
next best view evaluation,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots & Systems (IROS), 2015.

[7]1 M. Krainin, B. Curless, and D. Fox, “Autonomous generation of
complete 3D object models using next best view manipulation planning,”
in Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2011.

[8] S. Kriegel, T. Bodenmiiller, M. Suppa, and G. Hirzinger, “A surface-
based next-best-view approach for automated 3D model completion
of unknown objects,” in Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 2011.

[9]1 A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon “next-best-view” planner for 3D exploration,” in
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2016.

[10] E. Palazzolo and C. Stachniss, “Information-driven autonomous explo-
ration for a vision-based MAV,” in Proc. of the ISPRS Int. Conf. on
Unmanned Aerial Vehicles in Geomatics (UAV-g), 2017.

[11] J. I. Vasquez-Gomez, L. E. Sucar, R. Murrieta-Cid, and E. Lopez-
Damian, “Volumetric next-best-view planning for 3D object reconstruc-
tion with positioning error,” Int. Journal of Advanced Robotics Systems,
vol. 11, no. 10, p. 159, Oct. 2014.

[12] C. Dornhege and A. Kleiner, “A frontier-void-based approach for
autonomous exploration in 3D,” Journal of Autonomous Robots, vol. 27,
no. 6, pp. 459468, 2013.

[13] J. Daudelin and M. Campbell, “An adaptable, probabilistic, next best
view algorithm for reconstruction of unknown 3D objects,” in Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA), 2017.

[14] S. Isler, R. Sabzevari, J. Delmerico, and D. Scaramuzza, “An infor-
mation gain formulation for active volumetric 3D reconstruction,” in
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2016.

[15] S. OBwald, M. Bennewitz, W. Burgard, and C. Stachniss, “Speeding-
up robot exploration by exploiting background information,” /IEEE
Robotics and Automation Letters (RA-L), vol. 1, no. 2, 2016.

[16] F. Burget and M. Bennewitz, “Stance selection for humanoid grasping
tasks by inverse reachability maps,” in Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), Seattle, USA, 2015.

[17] N. Vahrenkamp, D. Muth, P. Kaiser, and T. Asfour, “IK-Map: An
enhanced workspace representation to support inverse kinematics
solvers,” in Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids), 2015.

[18] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard, “OctoMap: An efficient probabilistic 3D mapping
framework based on octrees,” Autonomous Robots, vol. 34, no. 3, pp.
189-206, Feb. 2013, software available at http://octomap.github.com.

[19] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library
for collision and proximity queries,” in Proc. of the IEEE Int. Conf.
on Robotics & Automation (ICRA), 2012.

[20] K. Helsgaun, “An effective implementation of the Lin-Kernighan trav-
eling salesman heuristic,” European Journal of Operational Research,
vol. 126, pp. 106-130, 2000.

[21] Aldebaran Robotics. (2015) NAO documentation. [Online]. Available:
http://doc.aldebaran.com/2-1/home_nao.html

. (2015, Aug.) Whole body control - Aldebaran 2.1.4.13
documentation. [Online]. Available: http://doc.aldebaran.com/2-
1/naogi/motion/control-wholebody.html

[23] Blendswap user “cenobi”. (2012) “Bathroom”. Blender model,
available under a Creative Commons Attribution (CC-BY 3.0) license.
[Online]. Available: https://www.blendswap.com/blends/view/52486

[24] A. Hornung, A. Dornbush, M. Likhachev, and M. Bennewitz, “Anytime
search-based footstep planning with suboptimality bounds,” in Proc. of
the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2012.

[25] J. Hardy. (2012) “The White Room”. Blender model, available under
a Creative Commons Attribution (CC-BY 3.0) license. [Online].
Available: https://www.blendswap.com/blends/view/41683

[26] T. Nguyén. (2013) “Living Room”. Blender model, available under
a Creative Commons Zero (CCO 1.0) license. [Online]. Available:
https://www.blendswap.com/blends/view/70842

[5

—

[22]

