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Speeding-Up Robot Exploration
by Exploiting Background Information

Stefan Oßwald1, Maren Bennewitz1, Wolfram Burgard2 and Cyrill Stachniss3

Abstract—The ability to autonomously learn a model of an
environment is an important capability of a mobile robot. In
this paper, we investigate the problem of exploring a scene
given background information in form of a topo-metric graph of
the environment. Our method is relevant for several real-world
applications in which the rough structure of the environment
is known beforehand. We present an approach that exploits
such background information and enables a robot to cover
the environment with its sensors faster compared to a greedy
exploration system without this information. We implemented
our exploration system in ROS and evaluated it in different
environments. As the experimental results demonstrate, our
proposed method significantly reduces the overall trajectory
length needed to cover the environment with the robot’s sensors
and thus yields a more efficient exploration strategy compared to
state-of-the-art greedy exploration, if the additional information
is available.

Index Terms—Mapping; motion and path planning; explo-
ration.

I. INTRODUCTION

ROBOTS that are able to acquire a map of their surround-
ings on their own fulfill a major precondition of truly

autonomous mobile vehicles. Assuming that a robot has means
for solving the underlying SLAM problem, i.e., they can learn
a map and track their pose in this map given sensor data, the
exploration task is to generate motion commands that guide
the robot to build a complete model of the environment.

Typical approaches to mobile robot exploration assume zero
prior knowledge about the world. Accordingly, the robot starts
with an empty map and seeks to find a sequence of motion
commands to cover the full environment with its sensors. Only
few approaches consider additional background knowledge,
such as semantic information [1] or information retrieved from
dialog with a human user [2].

In this paper, we take a different approach to exploration
than the majority of existing methods. We investigate means
that allow a robot to explore an environment faster if additional
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Fig. 1. Based on the graph given by the user (a), our algorithm computes
an exploration tour for visiting the nodes using a traveling salesman problem
solver (b). While the greedy nearest-first exploration scheme has to revisit
rooms (c), our approach exploits the background knowledge by using the
computed exploration tour as a guideline for minimizing the overall traveled
distance (d).

information is available. We seek to answer the question: How
much faster can a robot cover an environment with its sensors
if it knows the rough layout of the environment beforehand?
This problem is relevant for a large number of real-world
exploration problems, as in several application scenarios the
approximate layout of the environment is known beforehand.
This holds, for example, when exploring underground struc-
tures such as abandoned mines [3], archaeologically relevant
tunnels such as ancient catacombs [4], but also for inspection
tasks such as mapping visually intact but possibly unstable
buildings after an earthquake [5]. Thus, we do not address the
problem of exploring a completely unknown environment in
this paper. Instead, we provide an efficient exploration strategy
given prior information about the layout of the environment.

Our work relies on a topo-metric map. This can be seen as
a simplified Voronoi-style graph modeling the environment.
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Fig. 1a shows an example of such a user-provided graph.
Using this information, our approach seeks to find an efficient
exploration strategy (see Fig. 1b) to cover the scene with the
robot’s proximity sensor as fast as possible. Such a topo-metric
graph can be provided by humans or can be automatically
derived from floor plans, from previously built maps, or
from hand-drawn maps. By knowing the topology of the
environment including an estimate of the metric distances,
the robot can generate more effective exploration trajectories
that avoid redundant work. The robot typically explores dead
ends, small loops, and similar structures first so that it will not
have to return to these locations later during the mission. In
the environment in Fig. 1, for example, it is advantageous to
explore the rooms on the outside first, as the robot then has
to traverse the corridor only once. We formulate the problem
as a traveling salesman problem and use its solution to guide
the robot through the environment. The length of the path that
our approach generates (d) is significantly shorter than the
one resulting from greedy exploration (c) because it avoids
traversing the corridor multiple times. Finally, our approach
combines the TSP solution with frontier-guided exploration.
This combination avoids redundant work on a global scale
and at the same time ensures that all areas are covered by
the robot’s sensors. In addition to that, exploiting such a
graph structure also allows operators to easily exclude parts of
the environment that the robot should not explore by simply
labeling nodes or edges in the graph as “no go areas”. As we
will show in our experimental evaluation, our approach leads
to significantly shorter overall exploration trajectories and thus
significantly reduces the time needed to cover the terrain.

II. RELATED WORK

Typical approaches to mobile robot exploration aim at
selecting view points that minimize the time needed to cover
the whole terrain. The most popular approach is probably
frontier-based exploration by Yamauchi [6] in which the robots
always move towards the closest unexplored location. Another
option is using stochastic differential equations for goal-
directed exploration [7]. The idea is to seed particles in the
workspace and subject them to forces so that they move toward
unexplored areas. The particles themselves follow molecular
dynamics and eventually enter unknown areas and provide
candidate goal positions for the exploring robot. A usual
assumption in exploration systems is the knowledge about
the pose of the robot during the mission, but there exist also
exceptions such as information-theoretic methods that seek to
minimize the uncertainty in the belief about the map and the
trajectory [8], [9] simultaneously. In a similar way, Sim et
al. [10] select vantage points to optimize the map accuracy by
striving for loop closures.

The majority of exploration approaches start from scratch,
i.e., they do not exploit background information or any as-
sumptions about the structure of the environment. There are
only a few techniques that incorporate background information
into the decision-making process of where to move next. An
interesting approach by Fox et al. [11] aims at incorporating
knowledge about other environments into a cooperative map-
ping and exploration system for multiple robots. Related to

that, Perea et al. [12] exploit already explored spaces to predict
future loop-closures and to guide the exploration in this way.
Others use semantic information [13], [1] or an environment
segmentation [14] as background knowledge to optimize the
target location assignment. Such approaches received con-
siderable attention in multi-robot exploration. In addition to
that, Zlot et al. [15] propose a multi-robot target assignment
architecture that follows the ideas of a market economy. The
assignment considers sequences of potential target locations
and trades individual tasks among the robots using single-
item first-price sealed-bid auctions. Similar approaches using
auctions for task allocation processes have been applied by
Gerkey and Matarić [16]. In contrast to that, Ko et al. [17]
present an approach that uses the Hungarian method [18] to
compute the optimal assignments of open frontier cells to
robots in a given instance. The work of Ko et al. furthermore
focuses on aligning the robot trajectories in case the start
locations of the robots are unknown. Wurm et al. [14] proposes
a coordinating technique for teams of robots using a segmen-
tation of the environment to determine exploration targets for
the individual robots. This is related to the spatial semantic
hierarchy introduced by Kuipers and Byun [19]. Thus, seman-
tic information [1] or segmentations [14] approaches show
that by assigning robots to unexplored segments instead of
frontier targets, a more balanced distribution of the robots
over the environment is obtained. A related approach has been
presented in the work by Holz et al. [20], which first analyses
different exploration approaches and then proposes heuristics
for improving the performance of the exploration strategies.

In this paper, we investigate means for allowing robots
to explore an environment faster if additional information
is available. We target application scenarios in which the
approximate layout of the environment to explore is known
beforehand. This is also related to coverage techniques [21],
[22] but we do not assume a grid map or polygon to be
given beforehand for planning view points. In contrast to
purely graph-based coverage techniques as in [23], we also
consider the surroundings around the graph nodes in a lo-
cal exploration strategy. Patrolling approaches such as [24],
[25] focus on multi-robot coordination and global exploration
strategies, while our approach combines global with local
strategies. Exploiting abstracted map information has also
been investigated in other navigation problems. For example,
Chronis and Skubic [26] exploit hand-drawn sketch maps for
navigation, which enables robots to derive and use qualitative
spatial relations to move along the given path. Related to
that, Freksa et al. [27] use schematic maps to derive qual-
itative spatial relations for supporting navigation. Our work
also exploits topo-metric information in form of a graph but
the user is not expected to specify the path for the robot.
Instead, the environment information is used for computing
an optimal exploration strategy at a global scale once in the
beginning, which is then used for visiting the individual areas
in the environment. Our approach is also related to works by
Brummit and Stentz [28] as well as Faigl et al. [29] as both
approaches formulate the problem of coordinating multiple
robots during exploration as a multiple traveling salesman
problem (MTSP). Our approach also uses the TSP formulation
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but on the user-provided graph and combines the solution with
local exploration at the individual locations.

III. GUIDING EXPLORATION
BASED ON BACKGROUND KNOWLEDGE

In this section, we describe our approach to generating
navigation actions for acquiring sensor data about the complete
environment. We hereby exploit background knowledge in
form of a graph-structure provided to the robot. We model the
global navigation problem as a traveling salesman problem in
order to find a tour that covers the whole area and is as short as
possible. Our approach solves the TSP once in the beginning
and uses the TSP tour to guide a frontier-based exploration.
In case the robot detects changes in the environment, it re-
computes the TSP solution.

A. Representation of the Background Information About the
Environment

We represent the background knowledge as a graph G(V,E)
consisting of nodes V = {v1, . . . , vn} and undirected edges
E ⊆ V × V . The nodes represent rooms or other con-
vex regions in the environment and the edges indicate the
connections in between, for example doors or passages. We
hereby assume that each room to be explored contains at
least one node and corridors contain a node in front of each
door and intersection (note that the terms “room”, “corridor”,
“intersection”, etc. are only used for illustrative purposes in
this paper, the algorithm itself does not contain any notion
of these concepts). The lengths of the edges need to reflect
only roughly the true metric distances (see Sec. IV-E for
robustness against noise). The resulting graph is a topo-metric
representation of the environment and is used to optimize the
exploration tour with the starting position and orientation of
the robot with respect to the graph given by the user.

In order to guide the exploration, the user may wish to
explicitly exclude regions from the exploration. We represent
the user’s instructions by annotating the nodes of the graph
with labels A : V → {explore, skip} indicating whether the
region close to the node should be explored or not.

B. Representation of the Exploration Problem

The robot’s objective is to optimize the tour length given
the user-provided graph. The tour must visit each node at least
once in order to cover the surrounding region. In most cases,
there will be rooms that the robot has to pass through more
than once, for example, the robot will have to enter the corridor
multiple times to access the individual rooms. Hence, our goal
is to find the shortest path T in the graph G that visits all nodes
at least once and returns to the start node. This problem is
closely related to the well-known traveling salesman problem
(TSP): Given a list of cities and the distances between each
pair of cities, find the shortest tour that visits all cities exactly
once and finally returns to the starting point. A TSP solver is
able to provide the optimal solution to this problem.

To represent this problem as a traveling salesman problem,
we complete the graph G to a clique by adding edges be-
tween each pair of nodes. We define the length of the new

edge (vi, vj) as the length of the shortest path between the
positions of nodes vi and vj and use Johnson’s algorithm [30],
[31] to compute the shortest path distances between all pairs
of nodes in time O(|V |2 log|V |+ |V ||E|).

The resulting graph G′ is symmetric and the triangle in-
equality holds, as the length of newly inserted edges between
two nodes is never longer than the distance of the shortest path
between these nodes. G′ is a clique, thus there exists a shortest
tour T ′ in G′ that visits each node exactly once and returns to
the start node. The shortest tour T in the original graph G that
visits all nodes at least once cannot be shorter than T ′ due to
the triangle inequality. The tour T with revisiting nodes can
be easily retrieved from T ′ by replacing the edges added using
Johnson’s algorithm by the shortest path between the edge’s
end nodes.

In some scenarios, it might not be required that the robot
returns to the starting location after completing the exploration
task. In this case, the robot only requires a shortest path from
the given start node vs that visits all nodes and leads to an
arbitrary end node. This case can also be modeled as a TSP by
setting the length of the edges from vi to vs to zero for all i ∈
{1, . . . , n}, so the robot can “teleport” from an arbitrary node
back to the start node. After determining the shortest tour, the
zero-length edge (ve, vs) is removed so that the remaining path
leads from vs to the arbitrary end node ve without returning.
Note that the graph modified with the zero-cost edges is not
symmetric and consequently not metric anymore.

C. Solving the TSP

Unfortunately, solving the TSP is NP-complete in the gen-
eral case. For metric TSPs, however, there exist polynomial-
time approximation schemes. For example, the Christofides
algorithm [32] is able to find a tour that is guaranteed to be at
most 1.5 times longer than the optimal solution and requires
a run time of O(|V |3).

The problem instances we consider, however, typically
generate TSP instances of moderate complexity. State-of-the-
art TSP solvers such as Concorde [33] can determine the
exact solution to such problems within a few seconds. As our
algorithm has to solve a TSP only once at the beginning of the
mission, this step only adds a marginal amount to the overall
run time in comparison to the time the robot needs to actually
move through the environment and acquire sensor data. Thus,
we use the Concorde solver in our implementation.

D. Frontier-Based Exploration Exploiting the TSP Solution

The tour determined by the TSP solver provides a global
strategy for visiting all regions of the environment by ordering
the corresponding nodes. Although the tour is the optimal
solution to the TSP, the resulting trajectory is likely to be a
suboptimal exploration trajectory for a real robot. The reason
for that is the fact that the TSP formulation does not consider
visibility information of the robot’s sensor. For example, parts
of the environment may be visible from multiple nodes, so
that the robot only has to visit one of the nodes. At the same
time, the exploration system must ensure that the surroundings
of a node in the TSP is fully explored.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LRA.2016.2520560

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY 2016

Therefore, we combine the TSP and the problem of ex-
ploring the surroundings of each node taking into account
the sensing capabilities of the platform. To this end, we
use a frontier-based exploration approach [6] for the local
exploration but using the TSP solution on the global scale.
In order to incorporate the sensor information into the world
model, we rely on a standard graph-based SLAM system for
2D range sensing. It builds a grid map while moving through
the environment and acquiring sensor data. The robot’s grid
map consisting of cells that are initially labeled as unknown.
While traveling, the robot updates the cells within its field
of view towards free or occupied with a standard occupancy
model. Cells on the border between free and unknown space
that have not been covered yet are called frontier cells. The
robot can extend its knowledge about how the environment
looks like by navigating to frontier cells in order to inspect
the cells laying beyond the frontier. During this exploration,
multiple frontiers appear and the robot has to decide to which
frontier to move next. A common approach for choosing a
frontier is to apply a cost function to the frontiers that takes
into account cost factors such as the distance between the
robot’s current pose r and the frontier position f , the relative
orientation, and the expected information gain (IG):

cost(f) := α1 · distance (r, f)
+ α2 · orientation (r, f)
− α3 · IG (f) (1)

For applications which require additional or more complex
cost terms, in particular probabilistically dependent or synergic
cost terms, a multi-criteria decision making framework [34]
could be used to design a suitable cost function. The robot
updates the map based on the perceptions, computes the
frontiers, and decides to navigate to the frontier with the lowest
cost at a fixed frequency of 1Hz.

In order to account for the global navigation strategy deter-
mined by the TSP tour, we add another cost factor to the cost
function. Whenever a new frontier appears, we determine the
nearest node v? using Dijkstra’s algorithm on the grid map,
see Fig. 2 for an illustration of the assignment process.

The robot may explore the frontier at any time when passing
by that node. When the robot passes by v? for the last time
while following the global tour computed by the TSP, however,
our strategy enforces that the robot explores the frontier in
order to avoid having to return to the node another time, as
that would increase the tour length unnecessarily. Hence, we
follow the TSP tour from the robot’s original start node vs up
to the point when the TSP tour passes through v? for the last
time:

p := ((vs, vk1) , (vk1 , vk2) , . . . , (vkm , v
?)) (2)

We then sum up the lengths of the edges along the tour

d :=
∑

(vi,vj)∈p

length ((vi, vj)) (3)

and add this distance d to the cost function in Eq. (1) with a
high weight α4 so that it dominates the cost function. In this
way, the robot explores the frontiers in the order determined by

Fig. 2. The graph is used to guide the exploration and this requires an
assignment of frontiers to graph nodes. The algorithm assigns each new
frontier (green) to the nearest graph node (green arrow) by considering the
length of the shortest path from the frontier to any node of the graph. The
areas for the assignment are illustrated through the dashed lines and walls
of the map. In unexplored areas, only the graph can be used to estimate the
assignment. While the explored region grows, the assignment of a frontier to
a node can change due to newly sensed walls. The thickness of the frontiers
has been increased artificially in this figure to improve visibility.

the solution of the TSP and applies the original cost function
within each room, as d is the same for all frontiers within the
neighborhood of the nearest node.

During exploration, the robot might encounter frontiers
that are unreachable because of obstacles. If the robot’s path
planner determines that it cannot navigate to a frontier, the
robots adds this frontier to a blacklist. If the user has annotated
nodes to be skipped during exploration, the algorithm adds all
frontiers associated with those nodes to the blacklist. When
the association of frontiers to nodes changes, the algorithm
modifies the blacklist accordingly.

E. Replanning

Our approach relies on the assumption that the user-
provided graph correctly represents the topology of the en-
vironment. If the graph contains non-traversable edges, the
resulting global strategy will be suboptimal as the robot would
make a detour around the obstacle and continue to explore
the frontiers in the order as planned originally. To avoid such
detours, the robot has to replan the global strategy once it
detects that the planned path is obstructed:

1) Correct the user’s graph according to the observations.
2) Complete the graph to a clique G′ as explained above.
3) Remove the nodes that have already been visited and do

not have any frontiers associated with them, except for
node vs to which the robot has to return after exploring
(if applicable) and the robot’s current node vr.

4a) If the robot has to return to the original start node vs:
After exploring the last remaining node, the robot has
to return to vs instead of the current node vr. Hence, we
replace the edge lengths (vi, vr) for all i ∈ {1, . . . , n}
by the shortest path costs between the positions of
nodes vi and vs, making the TSP asymmetric.
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(a) Original exploration tour (b) Unexpected obstacle

(c) Modified graph (d) New plan

Fig. 3. Based on the graph given by the user, the algorithm computes an
exploration tour, in this case without returning to the start location (a). While
traveling, the robot encounters an unexpected obstacle blocking the planned
path (b). The algorithm modifies the graph by removing the blocked edge
(magenta) and already visited nodes without open frontiers (green) (c). Solving
the TSP on the new graph then yields a global strategy for exploring the
remaining parts of the environment (d).

4b) If the robot does not have to return to the start node:
Set the edge lengths of (vi, vr) to zero for all i ∈
{1, . . . , n} to allow the path to end at an arbitrary node
as explained in Sec. III-B.

5) Solve the TSP to get a tour T ′ for the remaining nodes.
6) Replace the edges added by Johnson’s algorithm by

the shortest paths, passing previously visited nodes if
necessary.

The resulting tour lets the robot explore the remaining areas
on the shortest path assuming that the rest of the topology is
correct. Fig. 3 shows an example of a replanning step.

IV. EXPERIMENTAL EVALUATION

For testing our approach, we implemented our system in
ROS [35] and simulated the exploration in Player/Stage [36].
We based our exploration implementation on the ROS explo-
ration stack [37] that already implements frontier-based explo-
ration. We keep the default cost function, except for setting the
weight for the expected information gain to zero (see Sec. IV-F
for a discussion). This ROS greedy exploration strategy serves
as a baseline for the evaluation of our approach.

A. Environments

For our evaluation, we use a set of different maps, contain-
ing artificial maps, real maps recorded with mobile robots, and
maps created from hand drawings of archaeological sites. See
Fig. 4 for an overview of the maps used in the experiments.
Maps 1– 4 are artificial maps for studying the behavior of our

(a) Map 1 (b) Map 2 (c) Map 3

(d) Map 4 (e) Intel research lab Seattle

(f) Priscilla catacomb sketch map

(g) Priscilla catacomb SLAM map

Fig. 4. Maps and graphs used in the experiments. (a)– (d): Artificial
maps. (e): Interior of the Intel research lab in Seattle, courtesy of D. Fox.
(f): Map drawn by archaeologists of the Priscilla Catacomb in Rome, Italy.
(g): Corresponding map built by a real robot.
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approach in environments with different levels of connected-
ness. We furthermore used a map of the Intel research lab in
Seattle (Fig. 4e). This map contains a high amount of clutter,
which poses a challenge to exploration algorithms in general.

Finally, we evaluated our approach using the data from
a real-world application for digitizing cultural heritage sites.
Within the ROVINA project, we plan to digitize the Catacomb
of Priscilla in Rome, Italy [4]. During previous expeditions,
archaeologists created hand-drawn maps of the catacombs.
Based on these maps, we created a graph of the catacomb’s
topology (see Fig. 4f).

We then used this information as background knowledge for
our exploration system. As the access to the catacomb is quite
restrictive, we used a map (see Fig. 4g) built in the Catacomb
of Priscilla during a previous robotic mission with the SLAM
system. In this previous mission, the robot was joysticked
through the environment and we used the map from this run
for the simulation, so that multiple exploration runs can be
simulated and evaluated with statistical tests. Please note that
the SLAM map deviates from the sketch map in some parts.
For example, some corridors that are straight on the hand-
drawn map appear curved on the SLAM map. Our experiments
show that our approach compensates for such inaccuracies as
long as the frontiers can be assigned correctly to graph nodes.

B. Background Information

We created the graphs resembling the background informa-
tion manually by placing one node per room and connecting
the nodes according to the map topology. In general, one node
per convex region is sufficient, as the greedy exploration then
dominates the exploration strategy in the convex regions, for
which it is well-suited. If the user places more than one node
in a convex region, the global tour strategy gains influence,
giving the user more control on the exploration strategy.

With our approach, the human operator can easily limit
the exploration area by marking nodes that the robot should
not explore. In the Priscilla catacomb shown in Fig. 4f, for
example, we marked the nodes that should be explored in blue
and the nodes to be skipped in red. The robot then deliberately
leaves frontiers open that get assigned to the red parts of the
graph, so the robot only explores the desired region.

Depending on the application scenario, the robot may be
required to return to its starting position after completing the
exploration. For the Priscilla map, we run experiments both
with returning to the starting location and without.

C. Traveled Distance

The distance that a robot has to travel to explore the whole
environment depends on the start location. Hence, we chose a
set of start locations for each map and executed our approach
and the baseline approach once for each start location.

Fig. 5 visualizes the mean length of the exploration trajec-
tory together with the corresponding 95% confidence intervals.
Tab. I shows the results of a paired t-test at the 0.05 level
for the exploration tour length for 10 respectively 5 runs in
the environments. The trajectories generated by our approach
are significantly shorter than the trajectories generated by the

TABLE I
COMPARISON OF TRAVELED DISTANCE

Map Runs Mean difference Gain p value
Map 1 10 40.6m 13.9% 0.019
Map 2 10 50.1m 17.3% 0.002
Map 3 10 9.0m 4.0% 0.051
Map 4 10 30.6m 15.2% 0.004
Intel lab 10 164.5m 16.5% 0.001
Priscilla with return 5 49.3m 10.6% 0.020
Priscilla without return 5 101.8m 24.5% 0.004

Priscilla
w/o return

Priscilla
with return

Intel lab

Map 4

Map 3

Map 2

Map 1

0 % 20 % 40 % 60 % 80 % 100 % 120 %

Greedy nearest frontier first Our approach

Fig. 5. Mean and 95% confidence interval of the traveled distance. The
distances are normalized so that the greedy approach equals 100%.

baseline approach on all maps except Map 3. On Map 3, the
greedy strategy is already near-optimal in many cases, as the
map is similar to a large freespace area.

For the Priscilla map, we run experiments both with return-
ing to the starting location and without. Our approach uses the
knowledge about whether or not to return to the starting loca-
tion to optimize the exploration tour as described in Sec. III-B.
In case the robot has to return to the starting location, the TSP
tour generated by our approach is independent of the starting
location of the robot. The robot explores the rooms always in
the same sequence, hence the variance of the exploration tour
length is small. In the baseline approach of greedy exploration,
by contrast, the order in which the robot explores the rooms
strongly depends on the starting location, leading to a higher
variance in the tour length. In case the robot does not have to
return to the start, the overall tour length depends on the start
location, leading to a higher variance in the tour length for both
approaches when averaged over different starting locations.

As can be seen in Tab. I, our approach outperforms frontier-
based exploration in all settings. The gain in exploration time
is achieved by better planning the exploration. For example,
on the Priscilla map when the robot does not have to return to
the starting location, our approach always explores the corridor
system in the left half of the map last (or first in case the robot
starts already in the corridor) so that the robot does not have
to traverse the corridor system for a second time. On a local
scale, our approach enforces that the robot finishes exploring
a room completely before moving on to the next room, such
that the robot will not have to enter the room again.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LRA.2016.2520560

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



OSSWALD et al.: SPEEDING-UP ROBOT EXPLORATION BY EXPLOITING BACKGROUND INFORMATION 7

TABLE II
TIME REQUIRED FOR SOLVING THE TSP

Nodes to Time required
Map explore to solve TSP
Maps 1–4 16–36 (0.013± 0.006) s
Intel lab 65 (0.84± 0.43) s
Priscilla catacomb with return 94 (5.92± 2.57) s
Priscilla catacomb without return 94 (0.38± 0.11) s

D. Runtime

For computing the global exploration strategy, our approach
has to solve a traveling salesman problem once at the be-
ginning of the exploration. In our experiments, we use the
Concorde solver [33], which attempts to find the optimal
solution of the TSP using branch-and-cut strategies. Tab. II
shows the time required to solve the TSP for the individual
maps. As the TSP has to be solved only once in the beginning
(or when changing the graph leads to replanning), the required
time adds only marginally to the total exploration time.

During exploration, our algorithm needs to maintain a
distance information for assigning each frontier to the nearest
graph node (see the illustration in Fig. 2). For this purpose,
a low resolution map is sufficient. As this shortest path
information changes whenever new walls appear during the
exploration, we recompute it at a frequency of 1Hz at a grid
resolution of 15 cm, which can easily be done online during
the exploration.

E. Robustness

To evaluate the robustness of our approach, we added
Gaussian noise with increasing standard deviation to the node
positions of the user-provided graphs shown in Fig. 4, which
consequently also changes the edge lengths, and evaluated
the effect on the overall tour length. Fig. 6 shows that our
approach still works even if the graph provided by the user is
considerably inaccurate. For Gaussian noise with a standard
deviation of σ = 1m as shown in the top of the figure, our
approach still performs significantly better than the greedy
approach according to a paired t-test at the 0.05 level. This
robustness is mainly achieved by dynamically updating the
assignment between frontiers and graph nodes using Dijkstra’s
algorithm as explained in Sec. III-D.

F. Influence of Information Gain

Many exploration approaches use the estimated information
gain in the cost function for selecting the next goal. The
rationale of this approach is to greedily explore the largest
frontiers first in order to cover largest possible area within a
given time limit. However, this strategy tends to leave smaller
frontiers unexplored, which would be counterproductive in
our scenario as the robot would have to come back later to
complete the exploration.

Fig. 7 illustrates how fast the presented approaches make
progress during exploration. The nearest frontier strategy
explores greedily, while our approach explores thoroughly.
Consequently, the greedy approach covers more area per time
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Fig. 6. Robustness of the exploration strategy when Gaussian noise is added
to the human-provided graph. The figure shows the experiments for Map 4
on the left and Map 2 on the right (see Fig. 4 for the original graphs provided
by the human user). Top: Gaussian noise of σ = 1m added to the original
graph. Bottom: Mean and 95% confidence interval of the traveled distance
for different amounts of Gaussian noise (n = 10 for each condition). The
distances are normalized so that the greedy approach equals 100% for the
respective map.
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Fig. 7. Comparison of the exploration progress for different strategies for a
run on map 4 shown in Fig. 4d. While the nearest frontier approach makes
faster progress at first, our approach explores more thoroughly and avoids
having to backtrack, thus our approach finishes in a shorter total time.

frame than our approach in the beginning. After exploring
the biggest frontiers, however, the greedy approach has to
backtrack to explore the smaller areas and rooms that it left
out, which is time-consuming and causes the total exploration
time to be longer than with our approach. Considering the
information gain in the cost function increases this effect even
further, leading to longer overall exploration times.

Our goal is to explore a map completely without having a
fixed time limit after which the mission is stopped. Hence, our
approach without considering the information gain is the best
choice for covering the complete environment.
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V. CONCLUSIONS

We presented a novel approach to autonomously learning
a model of the environment under the assumption that the
layout of the environment is known beforehand in form of a
topo-metric graph. Such a graph can be provided by humans
or automatically derived from existing floor plans or other
maps. Our system exploits the given topo-metric graph to
generate shorter navigation trajectories that cover the terrain.
We represent the problem as a traveling salesman problem and
derive a global exploration strategy from its solution. Locally,
a frontier-based approach is used that exploits the TSP solution
and fully covers the environment with the robot’s sensors. Ac-
cordingly, the overall trajectory length is reduced as the robot
will move to dead ends, small loops, and similar structures
first and thus does not need to return to these locations later
on. We implemented and thoroughly tested our approach in
different environments. The results show that our approach
significantly reduces the time needed to cover the terrain with
the robot’s sensors requiring a negligible amount of additional
computational resources. Our approach is valuable for several
real-world exploration problems, for example, when exploring
abandoned mines or archaeological sites, or for inspection
tasks where the layout of the environment is not completely
unknown.
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D. Naddef, Eds. Springer, 2001, vol. 2241, pp. 261–303.

[34] N. Basilico and F. Amigoni, “Exploration strategies based on multi-
criteria decision making for searching environments in rescue opera-
tions,” Autonomous Robots, vol. 31, no. 4, pp. 401–417, 2011.

[35] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[36] B. Gerkey, R. T. Vaughan, and A. Howard, “The Player/Stage project:
Tools for multi-robot and distributed sensor systems,” in Proc. of the
Int. Conf. on Advanced Robotics (ICAR), 2003, pp. 317–323.

[37] C. DuHadway, “The ROS exploration stack,” 2012. [Online]. Available:
http://wiki.ros.org/exploration

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LRA.2016.2520560

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


