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Abstract— In order to successfully climb challenging stair-
cases that consist of many steps and contain difficult parts,
humanoid robots need to accurately determine their pose. In
this paper, we present an approach that fuses the robot’s
observations from a 2D laser scanner, a monocular camera,
an inertial measurement unit, and joint encoders in order
to localize the robot within a given 3D model of the envi-
ronment. We develop an extension to standard Monte Carlo
localization (MCL) that draws particles from an improved
proposal distribution to obtain highly accurate pose estimates.
Furthermore, we introduce a new observation model based on
chamfer matching between edges in camera images and the
environment model. We thoroughly evaluate our localization
approach and compare it to previous techniques in real-world
experiments with a Nao humanoid. The results show that
our approach significantly improves the localization accuracy
and leads to a considerably more robust robot behavior. Our
improved proposal in combination with chamfer matching can
be generally applied to improve a range-based pose estimate
by a consistent matching of lines obtained from vision.

I. INTRODUCTION

While climbing stairs, robots require a highly accurate
pose estimate to avoid dangerous falls resulting from walking
against a step, bumping into a handrail, or slipping off the
stair edge after climbing up a step.

Previously, we presented a Monte Carlo localiza-
tion (MCL) technique that integrates data from a 2D laser
scanner, an inertial measurement unit, and joint encoders
to estimate a robot’s 6D pose in a given 3D model of the
environment [1]. This approach yields good results when the
robot is walking on flat ground. However, it is not accurate
enough for safe stair climbing on complex staircases where
the robot frequently has to re-align itself with the next steps.
Climbing stairs usually poses higher challenges on the lo-
calization system because complex whole-body motions are
executed and the feet may slip on the ground. As we showed
before, an extension of the system that additionally uses
visual observations can improve the pose estimation and the
success rate for stair climbing [2]. In this previous approach,
the laser-based pose estimate was refined by locally matching
edges detected in camera images. However, incorrect data
associations can lead to inconsistencies and thus to wrong
pose estimates that still result in falls of the robot on a
staircase.

In this paper, we present a new localization technique that
uses an improved proposal distribution in the particle filter
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Fig. 1. Our approach uses chamfer matching between a known edge
model of the environment and edges in camera images (a) to obtain the
observation likelihood of the image ((b), projected into the xy-plane). Fusing
this information with laser data and proprioception yields a peaked improved
proposal distribution for Monte Carlo localization (c). This results in a
highly accurate pose estimate, which enables a humanoid to reliably climb
challenging staircases (d).

of MCL. In our new system, visual observations are directly
integrated in the observation model of the particle filter in
addition to range measurements. To this end, we developed
a consistent observation model based on chamfer matching
between a given edge model of the environment and a set
of observed edges in camera images. By calculating an
improved proposal based on range and vision observations,
the particle filter generates highly focused particle sets that
lead to an accurate pose estimate. This approach is illustrated
in Fig. 1. Our approach can be applied in a similar way to
augment stereo or RGBD-data (e.g., from the Kinect) in close
ranges where these sensors cannot provide depth data due to
the stereo baseline.

We provide experimental results obtained with a Nao
humanoid robot equipped with a 2D laser range finder and a
monocular camera on a challenging staircase. As the experi-
ments show, our new approach significantly outperforms the
previous techniques and leads to a highly robust navigation
behavior.

II. RELATED WORK

Previous approaches for stair climbing with humanoid
robots used specialized hardware for the stair climbing task,
e.g., 6D force/torque sensors in the robot’s feet that allow
to estimate the ground reaction forces ([3], [4]), flexible toe
joints [5], impact damping mechanisms [4], or force sensors
protruding from the bottom of the robot’s feet [6]. In contrast
to those approaches, we use a standard, low-cost humanoid



robot platform.
For sensing the staircase, Chestnutt et al. [6] attached a

nodding laser scanner to the robot’s hip that provides 3D
range data of the steps ahead of the robot. Gutmann et al. [7]
used stereo vision to reconstruct the next steps of a staircase
and climb them. Both approaches incrementally build a local
map of the environment containing staircases of only few
steps. In contrast, our technique determines a highly accurate
pose estimate in a given model of the environment where also
complex staircases are present.

If the steps are small in relation to the size of the robot,
the robot can plan a sequence of footsteps and use a parame-
terized walking controller to follow the planned footsteps [6]
or use a walking pattern generator based on the zero moment
point to generate a motion sequence [8]. In our environment,
the step size proportionally relates to steps designed for
humans and are 7 cm high. This is rather challenging to
climb for the humanoid robot, so it has to execute full-body
motions learned by kinesthetic teaching [2].

Cupec et al. [4] proposed a vision-based approach to step
upon obstacles. The obstacle detection technique relies on
the assumption that obstacles and floor are clearly distin-
guishable to simplify edge detection. The authors presented
experiments in which their robot climbed two steps.

Michel et al. [9] track objects with the robot’s monocular
camera by matching detected lines to a given 3D model
of the object after a manual pose initialization. While their
method can only determine the pose of the robot relative
to the tracked object, our localization estimates the robot’s
global pose within the environment.

Our technique combines observations from laser and vi-
sion for localizing the robot globally in a known environment
and enables our robot to reliably climb up challenging
staircases. In contrast to our previous work that locally
refines the laser-based pose estimate with edge detections [2],
we now present improved proposals as an extension to Monte
Carlo localization and a new vision observation model based
on chamfer matching. Thus, the vision data can be consis-
tently used directly in the particle filter, which significantly
improves the robot’s localization accuracy and stair climbing
reliability.

III. OVERVIEW

Our approach augments standard laser-based 6D MCL,
described in the next section, with the integration of visual
observations from multiple images. The new observation
model uses chamfer matching [10] with a given environment
edge model and is introduced in Sec. V. We furthermore ex-
tend the standard MCL algorithm with an improved proposal
distribution in Sec. VI so that the combination of laser and
vision observations leads to a highly accurate pose estimate.

IV. STANDARD LASER-BASED 6D MCL

The complete 6D pose x = (x, y, z, ϕ, θ, ψ) consists of
the 3D position (x, y, z) as well as the roll, pitch, and yaw
angles (ϕ, θ, ψ) of the robot’s body reference frame in a
world frame. A humanoid’s body frame is usually located in

its torso. We first introduce Monte Carlo localization (MCL)
based on laser range data to determine the humanoid’s full
6D pose in a 3D world model [1].

MCL or particle filtering [11] recursively estimates the
robot pose at time t with a distribution of weighted par-
ticles p (xt | m,u1:t−1,o1:t) given an environment model
m, executed motions u1:t−1, and observations o1:t. The
algorithm draws a new generation of particles from the
proposal distribution π (x1:t | m,u1:t−1,o1:t) and adapts the
particles’ importance weights to account for the discrepancy
between the proposal distribution and the target distribution:
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where δ is the Dirac delta function and x
(i)
t is a single

particle pose at time t.
Commonly, the odometry motion model is used as the pro-

posal distribution, which leads to particle weights computed
based on the observation model. We compute odometry from
measured leg joint angles with forward kinematics and use
a Gaussian motion model.

In the observation model, laser-based 6D MCL as pro-
posed by Hornung et al. [1] combines the data of the
sensors into one observation ot: the 2D laser range mea-
surements lt corresponding to a complete scan, the height z̃t
of the humanoid’s torso above the current ground plane as
a measurement of its joint encoders, and the angles for
roll ϕ̃t and pitch θ̃t as estimated by the IMU. Since all
these measurements are independent, the observation model
decomposes to the product

p(ot | m,xt) = p(lt, z̃t, ϕ̃t, θ̃t | m,xt) =
p(lt | m,xt) · p(z̃t | xt) · p(ϕ̃t | xt) · p(θ̃t | xt).

(3)

We use ray casting in a given 3D representation of the
environment [12] to compute the likelihood of individual
beams p(lt,k | m,xt) and apply a Gaussian noise model.
Hereby, we consider the individual measurements lt,k to be
conditionally independent and compute the product of the
corresponding beam likelihoods to determine p(lt | m,xt).

Similarly, we integrate the sensor measurements z̃t, ϕ̃t,
and θ̃t as Gaussian distributions based on the measured
values and the predicted ones.

V. OBSERVATION MODEL FOR VISION DATA

While laser-based localization is highly accurate when
walking on the ground [1], translational errors can be larger
while climbing a staircase due to inaccurate motion execution
and slippage on the steps. This may even lead to a fall of
the robot. Furthermore, the placement of the laser sensor may
inhibit directly observing the area in front of the feet, which
is crucial for an accurate positioning relative to the next step.
Similarly, stereo and RGBD-sensors have a dead spot at close



(a) Raw camera image. (b) Canny edge detection algo-
rithm applied to camera image.

(c) Distance transform: Gray values
represent the Euclidean distance to
the nearest line.

(d) Orientation transform: Gray
values represent the orientation of
the nearest line.

Fig. 2. Individual steps of the chamfer matching approach: Starting with the raw camera image (a), the Canny algorithm marks edges (b) and the Hough
filter extracts straight line segments shown as red lines in (c)–(d). Convolving these lines yield the distance (c) and orientation (d) transformation arrays
that are used for matching edges in the observation model.

range due to their cameras’ baseline. We therefore propose
to augment the observation model in the particle filter with
vision data in the form of detected edges, which are present
in all kinds of complex environments.

The new observation model for vision data p(Ct | m,xt)
defines the likelihood of capturing the scene in a set of
images Ct = {ct,1, ct,2, . . . } given a 3D edge model of the
environment m and the estimated pose xt of the robot. We
assume that the individual image observations are condition-
ally independent:

p(Ct | m,xt) =
∏
ct∈Ct

p(ct | m,xt) (4)

Our approach for estimating the observation likelihood
is based on chamfer matching [10] and relies on a con-
sistent matching of the given edge model of the staircase
to lines detected in the camera images. Fig. 2 summarizes
the individual steps for computing the observation likelihood
based on the raw camera image shown in Fig. 2(a). First, the
algorithm applies the Canny edge detection algorithm [13]
and a probabilistic Hough transform [14] in order to extract
line segments (Figs. 2(b) and 2(c)). Afterwards, a distance
transformation is applied to the detected lines so that the
value of each pixel indicates the Euclidean distance between
the pixel and the nearest detected line (Fig. 2(c)). Similarly,
we compute an orientation transformation that maps each
pixel to the orientation of the nearest detected line (Fig. 2(d)).

To determine the observation likelihood for a given esti-
mate of the robot’s pose, the algorithm projects the edges
of the given staircase model from the camera pose onto
the image. By iterating over all visible pixels u = (u, v)
of the model edges l projected onto the camera image, the
algorithm computes the cost function

cost =
∑
l∈m

∑
u∈l

[α · dist(u,d(u)) + β · ∠(d(u), l)] . (5)

Here, d(u) denotes the detected line nearest to pixel u,
dist(u,d(u)) denotes the Euclidean distance between the
pixel u and the nearest detected line, ∠(d(u), l) is the angle
between the nearest detected line and the projected model
line, and α, β are constant weighting factors.

We assume the observation likelihood to be distributed
according to an exponential distribution over the cost func-
tion where the distribution parameter λ was determined

experimentally:

p(ct | m,xt) = λ e−λ·cost (6)

VI. IMPROVED PROPOSALS FOR HIGHLY ACCURATE
POSE TRACKING

During stair climbing, the odometry information gets
highly unreliable and noisy, leading to a flat proposal dis-
tribution. In contrast, the observation likelihood is peaked
so only a small number of particles have high weights and
cover the meaningful areas of the target distribution. Hence, a
large number of particles is required to sufficiently represent
the posterior distribution. In order to achieve more focused
particle sets, which require fewer particles to represent the
posterior, we therefore use an improved proposal that takes
the latest laser and vision observations into account.

A. Improved Proposal Distribution

According to Doucet et al. [15], the following distribution
is the optimal proposal in terms of minimizing the variance
of the importance weights:

p(xt | m,x(i)
1:t−1,o1:t,u1:t−1) =

p(ot|m,xt)·p(xt|x(i)
t−1,ut−1)

p(ot|m,x(i)
t−1,ut−1)︸ ︷︷ ︸

=:η(i)

(7)
However, computing this proposal analytically requires to
evaluate the integral

η(i) =

∫
p(ot | m,xt) · p(xt | x(i)

t−1,ut−1) dxt, (8)

for which there is no closed-form solution in the general
case. Grisetti et al. [16] introduced improved proposals in the
context of grid-based SLAM (simultaneous localization and
mapping) and proposed to approximate the integral in Eq. (8)
as a finite sum:

η(i) '
K∑
j=1

p(ot | m,x(i)
j ) · p(x(i)

j | x
(i)
t−1,ut−1), (9)

where {x(i)
1 , . . . ,x

(i)
K } is a set of sample points drawn around

the particle’s pose. This sampling technique can be used to
efficiently approximate the proposal if the sampled points
cover meaningful regions of the proposal and these regions
are sufficiently small. The proposal distribution typically



only has one mode, which we determine with scan matching
of the laser scan in the 3D environment model. By sampling
within a fixed radius around the computed mode, we can
cover the meaningful area of the proposal distribution with
a low number of samples and finally approximate the distri-
bution by fitting a Gaussian to the weighted sample points.

B. Improved Proposals Using Laser and Vision Observations

The original algorithm [16] was used in the context of
grid-based SLAM for integrating laser scans and odometry
measurements, whereas we adapted the algorithm to be
used for localization in known environments with additional
sensors. In our case, the proposal is

1

η(i)
· p(lt, Ct | m,xt) · p(xt | x(i)

t−1,ut−1), (10)

and we evaluate it in points sampled in x, y, and θ direction.
According to Eq. (9), this results in an approximation of η(i):

η(i) := p(lt, Ct | m,x(i)
t−1,ut−1)

'
K∑
j=1

[
p(lt, Ct | m,x(i)

j ) · p(x(i)
j | x

(i)
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]
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For each of the particles in the improved proposals MCL,
our algorithm performs the following steps:

1) Transform the particle’s pose according to the odometry
information accumulated since the last integration. Starting
from this initial pose estimate, a scan matcher based on
gradient descent improves the particle pose by fitting the
current laser scan in the given 3D environment model.

2) As the most likely pose returned by the scan matcher
already provides a good estimate of the robot’s pose, we as-
sume that the meaningful regions of the proposal distribution
will be in the vicinity. Hence, we sample {x(i)

1 , . . . ,x
(i)
K }

from a uniform distribution within a fixed range around the
pose returned by the scan matcher.

3) At each sample point x
(i)
j , the algorithm evaluates

the observation likelihood p(lt, Ct | m,x(i)
j ) based on the

current laser scan lt and the set of camera images Ct. We
assume that the laser measurement and the measurements
from the individual images are conditionally independent:

p(lt, Ct | m,x(i)
j ) = p(lt | m,x(i)

j )
∏
ct∈Ct

p(ct | m,x(i)
j )

(12)
The laser observation p(lt | m,x(i)

j ) is computed according
to the raycasting model (Sec. IV) and the vision observations
p(ct | m,x(i)

j ) according to chamfer matching (Sec. V).
4) As the algorithm can evaluate the proposal distribution

only at sample points, it has to fit a continuous distribution to
the sample values. Thus, a multivariate Gaussian distribution
is fitted to the proposal distribution, from which it then draws
the new particle poses in the resampling step.

5) The importance weights of the new particles are com-
puted as

w
(i)
t ∝ w

(i)
t−1 · η(i) · p(ϕ̃t, θ̃t, h̃t | m,x

(i)
t ), (13)

where ϕ̃ and θ̃ are the current roll and pitch angles from the
inertial measurement unit in the robot’s chest, h̃ is the torso
height estimated from the joint encoder values, and η(i) is
the sum defined in Eq. (11) for particle i.

VII. EXPERIMENTS

We use the standard laser-based MCL approach presented
in Sec. IV while the robot navigates on one level within
the environment. When the robot climbs a step, highly
precise localization is required and we also integrate vision
information using the improved proposals as introduced in
Secs. VI and V. In laser-based MCL, we use 200 particles
(a higher number of particles did not result in significantly
higher localization accuracy). For our new approach, we use
20 particles from which we draw 500 samples to compute
the improved proposal.

We apply a stratified resampling technique based on
k-means clustering to reduce the number of particles when
switching from laser-based MCL to the new improved
proposals approach. Afterwards, the algorithm restores the
original number of particles by drawing ten samples from a
single proposal distribution corresponding to each particle.

A. Humanoid Robot Platform

In our experiments, we use a Nao humanoid equipped
with a Hokuyo URG-04LX laser range finder. The laser is
mounted on top of the head and provides 2D range data
within a field of view of 240◦. By tilting its head, the
robot can obtain 3D range data to build a model of its
environment [17]. However, due to hardware constraints, the
robot cannot observe the area directly in front of its feet,
which is essential for accurate and reliable stair climbing. To
this end, we use data of the Nao’s lower monocular camera,
which points 40◦ downwards. While standing on a step, the
robot therefore turns its head and captures three images from
different camera poses to cover the whole next step and
integrates the line observations in addition to laser range
measurements into the particle filter as described before.

We performed our experiments on a spiral staircase of
ten steps (see Fig. 1), each step has a height of 7 cm. We
apply kinesthetic teaching to learn a single stair-climbing
motion that enables the humanoid to climb a step [2]. To
avoid falling, e.g., due to bumping into the next step or
the handrail of the staircase, the robot needs to accurately
position itself in front of each step.

B. Qualitative Localization Result with Improved Proposals

As an illustrating example, Fig. 3 shows the robot’s view
of the staircase when standing on the second step and
looking to the left, center, and right with its bottom-facing
camera. Fig. 4 shows the resulting observation likelihoods
in the horizontal plane for these camera observations and
Fig. 5 (left) shows the likelihood of the corresponding
laser observation. The coordinate system is identical for all
distributions and is centered at the odometry pose. The dis-
tributions of the left and right camera image are both focused
and have similar modes while the distribution of the center



Fig. 3. Camera view of the robot when looking to the left, center, and
right. Overlayed in red is the projected stair model from the best particle
pose after integrating all observations. The localization is highly accurate.

1 cm 1 cm 1 cm

Fig. 4. Observation likelihood p (ct | m,xj) for left, center, and right
camera image in the horizontal plane as returned by chamfer matching.
Brighter areas correspond to a higher likelihood.

1 cm 1 cm

Fig. 5. Left: Observation likelihood p (lt | m,xj) of the laser data.
Right: Final improved proposal distribution by combining laser and vision
observations (Fig. 4) with the 95% confidence ellipse of the Gaussian
approximation (white). Brighter areas correspond to a higher likelihood.

camera image is spread in horizontal direction due to high
uncertainty in lateral direction. The final improved proposal
and fitted Gaussian distribution resulting from combining the
distributions for vision and laser is shown in Fig. 5 (right).
As can be seen, the pose estimate is highly focused. Fig. 3
shows the edge model projected from the best particle’s pose
after localizing on this step. The projected lines on the left
and right camera image closely fit the corresponding edges
of the staircase; the errors in lateral direction and in the
orientation are only small. The error in forward direction is
slightly higher, which is caused by the strong lines in the
wood texture parallel to the stair edge.

C. Comparison to Previous Techniques

We quantitatively compared our new approach with stan-
dard laser-based MCL [1] and our previous system [2]. In this
previous approach, line segments are matched to model edges
in a local area around the pose estimate from the laser-based
MCL. From the intersections of the matched edges the front
face of the next step is computed, and from this the relative
pose of the robot to the step can be inferred. In contrast
to that, our new approach with improved proposals fits the
edge model as a whole to the observed edges and integrates
the observation back into the particle filter. In this way,

TABLE I
MEAN AND STANDARD DEVIATION OF THE ERROR BETWEEN ESTIMATED

POSE AND GROUND TRUTH AFTER LOCALIZING ON EACH STEP.

Laser Local Impr. proposals
Error only edge matching w. chamfer

Translation [mm] 25.6± 15.5 13.3± 8.8 10.9± 5.6
Yaw [◦] 1.3± 1.1 1.4± 1.9 0.6± 0.6

the improved proposals approach avoids data association
failures that can lead to inconsistent edge matchings and a
degradation of the pose estimation.

For the quantitative evaluation of the localization algo-
rithms, we used a MotionAnalysis Raptor-E motion capture
system to provide ground truth data for six runs carried out
with each technique on a spiral staircase with ten steps. In
each run, the robot climbs the staircase until it either falls
or reaches the top level.

As a performance measure for the quality of the local-
ization, we evaluate the pose returned by each of the three
localization approaches and compare it to the ground truth
on each single step. In Table I, we evaluate the mean and
standard deviation of the translational error in the plane as
well as the absolute yaw error. The other values (roll, pitch,
height above ground level) were omitted for clarity since
they are directly observable from the sensors in all three
algorithms. The results are aggregated over the number of
successful steps the robot climbed in six runs (N = 23
for laser-only localization, N = 60 for the other two
approaches).

For the standard laser-based localization, the mean trans-
lational error in the horizontal plane is 25.6 mm, which is
clearly outside the tolerance range for safe stair climbing.

In comparison to that, refining the pose estimate by locally
matching edges in the camera images decreases the mean
translational error to 13.3 mm. This difference is statistically
highly significant (t-test with 99.9% confidence). However,
the standard deviation of the angular error is slightly higher
because of inconsistently estimated models of the next step.
The data association between detected edges and model
edges is done individually for each camera image, so incon-
sistent assignments cannot be detected. When inconsistently
assigned edges are projected back into 3D space, the corners
of the front face of the step calculated by intersections of
edges are incorrect and lead to errors both in the orientation
and in the translation within the horizontal plane.

Our approach, Monte Carlo localization with improved
proposals and consistent edge matching based on chamfer
matching, outperforms the other algorithms. The mean error
in the orientation of the robot is 0.6◦, so the robot is able
to align itself accurately with the next step. The difference
of the angular error is highly significant (t-test, 99.9%).
The improved proposals approach also decreases the mean
translational error from 13.3 mm to 10.9 mm, which is
statistically significant (t-test, 95%). Note that the accuracy
is in many cases higher than the map resolution (1 cm) used
for laser-based MCL, which additionally demonstrates the
advantages of integrating vision information.



D. Success Rates

We now compare the success rate of climbing the com-
plete staircase with ten steps when relying on the different
localization approaches.

Using only laser-based MCL, the robot succeeded in
climbing all ten steps of the staircase in only one out of six
runs and fell five times. During these six experiments, the
robot successfully climbed 23 steps in total. This corresponds
to a success rate of 82% for climbing a single step.

Using our previous approach of matching detected edges
in the camera images, the robot successfully climbed the
complete staircase in seven out of ten runs. In these runs,
successfully climbing 86 out of 89 single steps results in
a success rate of 97%. The robot also touched handrails
and bumped into the next step several times, in some cases
leading to critical situations where the robot almost fell.

In contrast to that, our new approach with improved pro-
posals leads to more accurate localization results and less in-
terference with the environment. The robot always positioned
itself precisely in front of the next step and reliably executed
the stair climbing motion. Over all, the robot had a success
rate of 100%, i.e., it successfully climbed the whole staircase
in ten out of ten runs. A video in which the robot climbs
the spiral staircase using our approach is available online at
http://hrl.informatik.uni-freiburg.de.

E. Robustness of the Approach

Our approach is robust against unmodeled objects and
texture on the surfaces, as the vision observation model
only tests if the predicted edges are present in the camera
images. The robot can detect self-occlusions and exclude the
affected regions from the observation model. However, the
localization performance may degrade if other unmodeled
objects occlude significant parts of the predicted model
edges, or if the texture contains strong lines running parallel
to the modeled edges (such as the horizontal lines in the
wood texture in Fig. 2).

The visual observations originate from the edges of the
next step. Integrating this information enables the robot
to align accurately with the next step. Our approach can
compensate for small errors in the model of the staircase and
still leads to reliable stair climbing in these cases. However,
the localization accuracy clearly depends on a sufficiently
accurate model of the environment.

VIII. CONCLUSIONS

In this paper, we presented a new approach for highly
accurate Monte Carlo localization based on informed propos-
als. Our approach uses 2D laser data and monocular vision
to estimate the robot’s 6D pose in a given 3D model of
the environment. We developed a new observation model
based on globally consistent chamfer matching between an
edge model of the 3D world and lines detected in camera
images. We evaluated our localization technique on a Nao
humanoid in a two-level environment connected by a spiral
staircase with ten steps. The experiments show that our
approach leads to a highly accurate localization of the robot

and, thus, to robust navigation capabilities. We furthermore
carried out comparative experiments that demonstrated the
superior performance of our localization in comparison to
previous techniques. Our method based on improved pro-
posals and chamfer matching can be generally applied to
robot localization whenever lines detected in images can be
used to refine an initial pose estimate. For example, current
RGBD-sensors such as the Microsoft Kinect or Asus Xtion
yield no depth data at close ranges due to the stereo baseline.
Localization with these sensors could be enhanced with our
approach.
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