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Abstract— Reliable and efficient navigation with a humanoid
robot is a difficult task. First, the motion commands are
executed rather inaccurately due to backlash in the joints or
foot slippage. Second, the observations are typically highly
affected by noise due to the shaking behavior of the robot.
Thus, the localization performance is typically reduced while
the robot moves and the uncertainty about its pose increases.
As a result, the reliable and efficient execution of a navigation
task cannot be ensured anymore since the robot’s pose estimate
might not correspond to the true location. In this paper, we
present a reinforcement learning approach to select appropriate
navigation actions for a humanoid robot equipped with a cam-
era for localization. The robot learns to reach the destination
reliably and as fast as possible, thereby choosing actions to
account for motion drift and trading off velocity in terms of fast
walking movements against accuracy in localization. We present
extensive simulated and practical experiments with a humanoid
robot and demonstrate that our learned policy significantly
outperforms a hand-optimized navigation strategy.

I. INTRODUCTION

Completing navigation tasks reliably and efficiently is one
of the most essential objectives for an autonomous robot.
While this problem is mainly solved for wheeled robots,
it is still a challenging problem for humanoid robots. The
reasons are, first, that the motion commands are executed
rather unreliably due to backlash in the joints and foot
slippage on the ground. Second, there is considerable noise
in the observations according to the shaking movements of
the humanoid. As a result, the estimate about the pose of
the robot typically gets highly uncertain while navigating in
the environment. However, as a precondition for finding the
way to a designated navigation goal, the robot needs accurate
knowledge about its pose.

In the case of small humanoid robots, which have only a
limited payload, compact and lightweight cameras are often
used as sensor for localization. The problem which arises
when applying visual localization is that the movements of
the humanoid robot typically introduce motion blur in the
acquired images. As an example, Fig. 1 depicts an image
acquired with a small, walking humanoid robot equipped
with a camera observing the floor in front of the robot. As can
be seen, the image is highly affected by motion blur, typically
resulting in a decreased localization accuracy because of
non-detection of features and matching failures. Thus, the
robot may be prevented from executing the navigation task
successfully due to a wrong pose estimate.

In this paper, we present an approach for reliable and
efficient vision-based navigation with a humanoid. We use
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Fig. 1. The Nao robot [1] walking in our corridor environment (left).
The robot observes floor patches from which it extracts features for
localization. While walking, significant motion blur is introduced in the
captured image (right), resulting in non-detection of features.

reinforcement learning (RL) to learn which navigation ac-
tions to chose in order to reach the destination as fast as
possible and with a sufficient accuracy. In particular, we
apply Sarsa(λ) RL [2] to determine the optimal action for
each state, i.e., the humanoid decides in each step whether
it should stop to integrate new observations extracted from
sharp images, walk towards the goal, or rotate on the spot
to re-align with the goal or to observe more features. We
use an unscented Kalman filter (UKF) to track the pose of
the robot and include the uncertainty of the filter as one
component in the state representation of the Markov decision
process (MDP) modeling the navigation task.

According to the learned policy, the robot automatically
chooses actions so as to account for motion drift and for
trading off velocity, i.e., fast walking movements against
accuracy in localization. In this way, an efficient and reliable
navigation strategy is generated. We provide experiments
evaluating the learned policy in both simulated and real-
world experiments with a humanoid. The experimental re-
sults show that our learned navigation behavior significantly
outperforms a hand-optimized navigation strategy.

Several techniques for humanoid robots have been devel-
oped that aim at optimizing properties such as speed [3],
[4], [5] or torso stability [6], [7] during walking. The
corresponding authors were mainly interested in the resulting
gait and did not consider the effects on the execution of
motion commands, on the quality of the pose estimate of
the robot, and on the resulting time to finish a navigation
task. In contrast to all these techniques, our goal is to choose
navigation actions so that the robot reaches the destination
fast and reliably.

In this work, we extend the learning framework presented
by Hornung et al. [8]. This includes, e.g., defining appropri-
ate navigation actions for the humanoid. Our system directly
learns which actions to choose so as to reach the goal reliably



and fast. We do not require an additional controller steering
the robot towards the goal, which was applied to the wheeled
robot used in [8].

The remainder of this paper is structured as follows.
We first discuss related work in the next section. Sec. III
shortly describes the humanoid with which we performed
our experiments. In Sec. IV, we present our vision-based
localization system. The navigation task and our learning
approach are detailed in Sec. V. Finally, experimental results
are provided and discussed in Sec. VI.

II. RELATED WORK

In the past, various frameworks were presented which
employ active methods in the context of localization and nav-
igation with wheeled robots or flying vehicles equipped with
laser range scanners. Kollar and Roy [9] use reinforcement
learning to optimize the robot’s trajectory, i.e., they learn
the translation and rotation behavior which minimizes the
uncertainty in laser-based SLAM (simultaneous localization
and mapping). Similarly, Huynh and Roy [10] generate navi-
gation control laws to minimize the uncertainty by combining
global planning and local feedback control. A different
approach to minimize the pose uncertainty is planning a path
which takes the information gain into account [11], or to plan
paths such as to maximize the quality of the resulting SLAM
estimate [12]. Strasdat et al. [13] developed a reinforcement
learning approach for the problem of landmark selection in
visual SLAM. They learn a policy on which new landmark
to integrate into the environment representation in order to
improve the navigation capabilities of a lightweight robot
with memory constraints. Kwok and Fox [14] apply rein-
forcement learning to increase the performance of soccer-
playing robots by active sensing. The robots learn where to
point their camera at in order to localize relevant objects.

Regarding humanoid robots equipped with cameras for
localization, few approaches exist that consider the effects
of movements on the quality of the observations and on the
pose estimate of the robot. Bennewitz et al. [15] developed
a localization method based on visual features and mention
the impact of motion blur on the feature extraction. To
obtain clear observations, the robot interrupts its movement
at fixed intervals. Seara et al. [16] developed an approach
for intelligent gaze control for self-localization and obstacle
avoidance of a humanoid robot. They avoid motion blur with
an active view stabilization. Ido et al. [17] explicitly consider
the shaking movements of the head and acquire images only
during stable phases of the gait. Such an approach is not
applicable with our humanoid robot, since there is some
unsystematic delay in getting an image after a request.

Pretto et al. [18] propose an additional image processing
step prior to feature extraction, in particular for humanoid
robots. The authors estimate the direction of the motion blur
for image patches and developed a feature detection and
tracking scheme which is superior to standard techniques.
While their approach increases the matching performance,
motion blur cannot be completely removed by filtering.
However, such a pre-processing technique could be easily

combined with our learning approach in order to further
improve the performance of the robot.

III. THE HUMANOID ROBOT NAO

The humanoid robot Nao (see Fig. 1) is 58 cm tall and
has 25 degrees of freedom [1]. To observe its surroundings,
two monocular cameras of webcam quality are located in its
head. One of them points to the ground in front of the robot
and is used for vision-based localization in our work. Nao
is also equipped with two ultrasound sensors, which can be
used for obstacle avoidance during navigation.

Nao has pre-configured walking behaviors for walking
forward, sideways, on circles, and for turning. Internally,
each walking behavior creates footstep placement patterns.
From these, the zero-moment point (ZMP, [19]) is obtained
through sampling, which is finally transformed into a trajec-
tory of the center of mass. The joint angle trajectories which
result from the executed walking pattern are hand-optimized
and generate a smooth and stable walking movement. In
our work, we use these default walking behaviors to walk
forward or turn on the spot (API version 1.2). The default
step length when walking is 5 cm, the default angle per step
when turning is 11.5◦.

IV. LOCALIZATION

A. The Unscented Kalman Filter

In this work, we apply the unscented Kalman filter (UKF)
to estimate the pose of the robot in a given map of the envi-
ronment. The UKF is a recursive Bayes filter to estimate the
state xt of a dynamic system [20]. This state is represented as
a multivariate Gaussian distribution N(µ, Σ). The estimate is
updated using nonlinear controls and observations ut and zt.
The key idea of the UKF is to apply a deterministic sampling
technique that is known as the unscented transform to select
a small set of so-called sigma points around the mean.
Then, the sigma points are transformed through the nonlinear
functions and the Gaussian distributions are recovered from
them thereafter. Compared to the extended Kalman filter, the
UKF can better deal with the nonlinearities inherent to the
motion of a humanoid, and leads to more robust estimates.

B. Vision-based Pose Estimation

To estimate the robot’s pose in the 2D plane as state
xt = (xt, yt, θt) with an UKF, controls ut and observations
zt need to be available. Wheeled robots usually have rather
accurate odometry information available from their wheel
encoders, yielding a good estimate of the relative movement.
However, this information is not directly available on hu-
manoid robots. Nevertheless, the executed motion command
can be used as control ut together with an appropriate
high covariance according to the considerable noise in the
executed motion resulting from foot slippage.

To integrate observations zt in the UKF, we extract the
state of the art Speeded-Up Robust Features (SURF, [21])
from camera images as visual landmarks (see Fig. 2). Ex-
tracted descriptors of these features are matched to landmarks



Fig. 2. A floor patch observed by the camera while the robot was standing
still. The detected SURF features are marked with circles.

in a map which was constructed beforehand. This map con-
tains the global 2D positions and descriptors of the landmarks
on the floor. Whenever the robot matches a perceived feature
to a landmark in the map, it integrates the relative 2D position
of the landmark as observation zt = (rt, ϕt) in the UKF.

To improve performance and robustness, we only regard
features within a local area around the current pose estimate
for feature matching. The size of this area depends on the
uncertainty given by the covariance of the UKF localization.
An additional matching robustness is achieved by removing
outliers using RANSAC [22] on the 2D positions of the
matched landmarks and by limiting the maximum number
of features to be integrated per frame.

V. LEARNING A RELIABLE AND EFFICIENT NAVIGATION
STRATEGY

A. Navigation Task

The task of the robot is to walk to a designated target
location with the objective of reaching it reliably and as fast
as possible. We assume that a path planner such as A∗ plans a
path towards the target location yielding waypoints the robots
has to traverse. During learning, we consider the scenario
of the humanoid walking from its current pose to such an
intermediate goal location, which is in viewing distance. The
task is completed as soon as the distance between the robot’s
true pose and the goal location is below a certain threshold.
After learning, the policy can then be applied to a scenario
containing several waypoints on a longer path.

As mentioned in Section III, we use the default walk-
ing patterns of the Nao robot, which are optimized for
smoothness and stability. While walking, two problems arise.
First, there is typically a high noise in the executed motion
commands due to backlash in the joints and foot slippage.
The robot’s inertial sensors do not provide a motion estimate
which could be used to correct the drift by considering
it directly in the walking pattern generator. Second, the
movement influences the perception of landmarks since
motion blur is introduced in the images. Thus, the robot
may be prevented from robustly detecting and matching
visual features. An accurate localization, which is crucial for
reaching the destination reliably and without delays caused
by localization errors, is often not possible.

By adjusting its movement accordingly, e.g., by stopping
from time to time to acquire sharp images from which
features can be extracted and matched reliably, or by turning
around to observe more features or to re-align with the goal,

the robot learns to trade off an accurate localization versus
movement velocity and to compensate for motion drift. This
trade-off is hard to assess manually, but poses a typical
problem that can be solved with reinforcement learning.

B. Reinforcement Learning
In reinforcement learning, an agent seeks to maximize its

reward by interacting with the environment. Formally, this is
defined as a Markov decision process (MDP) using the state
space S, the actions A, and the rewards R. By executing
an action at ∈ A in state st ∈ S, the agent experiences a
state transition st → st+1 and gets a reward rt+1 ∈ R. The
overall goal of the agent is to maximize its return

Rt =
T∑

i=t+1

ri , (1)

where T is the time when the final state is reached. One
finite sequence of states s0, . . . , sT is called an episode.

The action-value function, also called Q-function, for the
policy π is defined as

Qπ(s, a) = Eπ{Rt|st = s, at = a} , (2)

which denotes the expected return of taking action a in
state s and following policy π afterwards. The optimal
policy maximizes the expected return, which corresponds to
choosing the action with the maximum Q-value in each state.

We apply Sarsa RL to update the current estimate of the
Q-function based on its old value, the new reward, and the
new value:

Q(st, at)← Q(st, at)+α
(
rt+1+γQ(st+1, at+1)−Q(st, at)

)
(3)

The parameters α and γ are the step size and the discounting
factor, respectively. This form of Sarsa uses only the imme-
diate reward rt+1 for the update. By looking further into
the future, a more accurate estimate of Rt can be obtained.
We use Sarsa(λ), an extension of Sarsa which averages over
a number of future rewards [2]. The parameter λ ∈ [0, 1]
determines the decay of the impact of future rewards.

Throughout the learning phase, we use an ε-greedy action
selection. This selection method chooses the action with the
highest Q-value with probability ε and all non-greedy actions
with equal probability in each step.

C. Augmented Markov Decision Process
We use an augmented MDP [23] to model our learning

task. The difference is that in a standard MDP, it is assumed
that the state of the agent is known. This is not the case in our
application, where the belief about the state is represented
by a unimodal distribution. In an augmented MDP, the belief
about the state is represented by its most-likely estimate and
the task is modeled as a MDP. As measure of the uncertainty
of the belief distribution, the entropy is included in the state
representation.

The probability distribution over the robot pose given all
previous odometry information and visual observations is
estimated by an UKF. For the MDP, we define the state
space S, the set of actions A, and the rewards R as follows.



D. State Space S
We define a set of features which characterizes the

state sufficiently detailed and general as needed for learn-
ing. Based on the current, most-likely pose estimate
xt = (xt, yt, θt) and the goal location, we compute the
following features:
• The Euclidean distance to the goal location (gx, gy)T

d =
√

(gx − xt)2 + (gy − yt)2 . (4)

• The relative angle to the goal location

ϕ = atan2(gy − yt, gx − xt)− θt . (5)

In combination with d, this completely characterizes the
relative position of the destination.

• The uncertainty of the localization, computed as entropy
over the pose covariance Σ of the UKF:

h =
1
2

ln
(
(2πe)3 · |det (Σ)|

)
. (6)

We represent the state-action space by a radial basis
function (RBF) network, which is a linear function ap-
proximator [24]. The continuous features of the state are
hereby approximated by a discrete, uniform grid with linear
interpolation in between.

E. Action Set A
As explained in Section III, we use the hand-optimized

walking behaviors of the robot for navigation. The behavior
of the humanoid robot can be influenced by changing the
navigation action. We define the following set of actions for
the reinforcement learning task:
• Walk forward: The robot walks 10 cm in forward

direction.
• Rotate left / rotate right: The robot rotates 23◦ on the

spot in the given direction.
• Stand still: The robot interrupts its movement and waits

for 0.7 seconds to acquire a good quality image for its
localization (after the robot has stopped, it needs some
time until its body stabilizes from shaking).

We chose these actions since they proved to yield the most
reliable and predictable behavior.

The actions all influence the quality of the state estimation
differently. For example, walking forward generally increases
the uncertainty due to the imprecise motion and a reduced
probability of obtaining good landmark observations. Stop-
ping to acquire a sharp image or turning around to possibly
observe more features may result in a more accurate pose
estimate. The rotate action is furthermore needed to re-align
the robot with the goal when the robot lost its way.

If the robot is in danger of colliding with a wall due to
temporary delocalization, a collision detection mechanism
stops the robot. In this case, the robot is only allowed to
rotate on the spot.

Note that in contrast to the approach by Hornung et al. [8]
which only determines the maximum velocity for a separate
navigation controller, we do not need such an underlying
controller that steers the robot towards the goal. Instead, we
directly learn the actions which are executed in each state.

dest.
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Fig. 3. Evolution of the robot’s behavior throughout the 1500 learning
episodes (each 10th episode is drawn). At the beginning, random exploratory
actions are chosen and the robot does not reach the goal within a maximum
of 700 seconds (light gray trajectories). Towards the end, the robot navigates
successfully and efficiently towards the destination (black trajectories). Note
that there is a high noise in the executed motion commands.

F. Rewards R
We define the immediate reward at time t as

rt =

{
200 if t = T

−∆t otherwise ,
(7)

where T is the final time step and ∆t is the time interval
in between the update steps. The final state is reached when
the robot’s true pose is sufficiently close to the destination.
This has the effect that the agent is driven to reach the des-
tination as fast as possible, thereby avoiding delays caused
by delocalization. Each episode has a maximum duration of
700 seconds. If the robot has not reached the goal within
that time, the episode is aborted, resulting in a total reward
of -700.

VI. EXPERIMENTS

The practical experiments were carried out with a Nao
humanoid robot, as described in Sec. III. The experimental
environment is a hallway with parquet floor and a distance
of approximately 5 meters between the starting pose of the
robot and the destination. Since the robot has no knowledge
about its true pose, we use a special marker to allow the
robot to identify when it has reached the goal location. This
artificial landmark can be reliably detected even while the
robot is walking.

A. Learning the Navigation Policy in Simulation

The policy was learned in simulations. This allowed us
to evaluate different parameter settings for the learning
algorithms and to run a large number of learning and testing
episodes without putting too much strain on the real robot.
The simulated robot and its environment are modeled as
close to reality as possible. We use a map of artificial
landmarks whose positions are randomly distributed with an
average density matching the real map (40 landmarks/m2).
To avoid an adaption of the robot’s behavior to a specific
environment, landmark positions are randomized in each new
learning and evaluation episode.

We model motion blur in the simulated experiments as
an effect on the probability of an observation, i.e., of a
successful feature match, given the currently executed action
(walk forward, rotate left/right, or stand still). The probability
of observing a landmark for each action was experimentally
determined with the humanoid in the real environment.



0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400

E
pi
so
d
e 
du

ra
ti
on

 [
se
c]

Episode number

failed episode
successful episode

Fig. 4. The duration of the learning episodes shows the convergence of
the policy after about 700 episodes.

The motion noise parameters in the simulations are also
set to the parameters learned with the real robot. The only
difference is the systematic drift to one side which can
be observed on our humanoid. We randomly alternate the
direction of the drift in each learning episode to avoid an
adaption of the learned policy. While a policy adapted to the
drift direction would demonstrate an even better performance
in our test episodes, it would no longer be general enough
to be used on a different robot with the same hardware.

As parameters for Sarsa(λ), we used α = 0.2, γ = 0.95,
λ = 0.85, and ε = 0.1 in 1500 learning episodes. Fig. 3
shows the evolution of the robot’s behavior throughout the
learning process. As can be seen, in the beginning the robot
chose random exploratory actions. It did not reach the goal
so that the episodes were aborted after a maximum of 700
seconds (the resulting trajectories are colored light gray).
After a certain number of learning trials, however, the robot
successfully navigated towards the destination (dark gray /
black trajectories). The trajectories were getting more and
more efficient towards the end of the learning process. Note
that the robot had a systematic error in the executed motion
command in each of the episodes. Fig. 4 shows the time
to reach the goal throughout the learning episodes. After
about 800 learning cycles, the average time to destination
converges.

B. Comparison with a Hand-optimized Controller
We now compare our learned policy with a hand-optimized

navigation controller. Using this policy, the robot walks
forward while the estimated orientation towards the goal
is smaller than some threshold ϕ̂. Whenever the estimated
angular distance to the goal is larger than ϕ̂, the robot stops
its forward motion and turns towards to goal. We chose the
threshold of ϕ̂ = 35◦ since smaller values lead to an oscillat-
ing behavior of the robot near the destination, whereas larger
values lead to frequent collisions with the walls bounding
the corridor. Similar to the dual-mode controllers introduced
by Cassandra et al. [25], the robot stops in order to obtain
a good quality image whenever the uncertainty about its
pose exceeds a threshold. This threshold was empirically
determined to minimize the time to reach the destination
while still achieving a success rate of 100%. Thus, we
optimized the parameters of this controller so as to perform
best in our test environment.

start 1 m
destination

Fig. 5. Estimated trajectory of the Nao executing the learned navigation
policy in our hallway. The robot walks forward with an error resulting from
a drift to the left. Whenever it seems appropriate according to its belief, the
robot executes a rotation action to re-align with the goal. The robot stops
as soon as it recognizes the goal landmark.

Throughout the evaluation phase, the learned policy re-
mained fixed and in each time step the action with the highest
reward was chosen. We performed 100 evaluation episodes
for each of the two navigation strategies in simulation and
measured the average time it took to reach the destination
from the starting pose. It took 117.18 s ± 8.41 s to reach
the destination with the hand-optimized controller, and only
106.66 s ± 10.05 s using our learned policy. A t-test with
95% confidence reveals that the learned policy performs
significantly better.

C. Evaluation on the Real Robot

We then performed experiments with our real Nao robot
navigating in our hallway environment to evaluate whether
the results from simulations can be transferred to the real
system. We conducted test runs both with the hand-optimized
controller and with the policy learned in simulation. The
robot needs 93.16 s ± 10.14 s using the hand-optimized
controller compared to 86.53 s ± 8.60 s using the learned
policy, so the learned policy outperforms the hand-optimized
controller by 7.1%. Again, a t-test with 95% confidence
shows that the learned policy performs significantly better.

Figure 5 depicts a typical trajectory of the Nao robot while
executing the learned navigation strategy (the drawn poses
were estimated by the localization system). As can be seen,
the robot rotates from time to time to compensate for its
motion drift and to re-align with the goal. As mentioned
before, the learned policy is not adapted to the specific drift
direction.

Note that in all experiments presented so far, we used
slow walking patterns as the Nao’s stability is highly reduced
when walking faster. Accordingly, the aquired images are
only moderately blurred. The robot can still match an aver-
age of 3.25 features per frame while moving, and actions
to reduce the uncertainty are rarely executed. Thus, the
efficiency gain of the learned controller compared to the
hand-optimized controller results mainly from choosing the
navigation actions more foresightedly, which leads to shorter
paths.

D. Analysis with Respect to Motion Blur

In future implementations, we will optimize the hu-
manoid’s gait, so faster walking patterns will be used. Faster
movements increase the amount of motion blur, thus seri-
ously reducing the average number of successfully matched
features while walking or rotating on the spot. To evaluate the
impact of motion blur, we learned policies for a different set



-5

0

5

0 20 40 60 80 100
time [sec]

walk
turn right

turn left
stand

0 20 40 60 80 100
time [sec]

entropy

est. distance to target [m]
est.  angular distance to target [rad]

Fig. 6. The state features over time during typical runs with a hand-
optimized controller (left) and the learned navigation policy (right) in simu-
lation. The hand-optimized controller stops the robot in regular intervals to
decrease the uncertainty, whereas the learned policy adapts the observation
frequency according to the current state.

of estimated observation probabilities in the simulator, i.e.,
we decreased the probability of a successful feature match
by 80% during walking and rotating.

Again, we compared the learned policy to a hand-
optimized dual-mode controller that stops the robot whenever
the entropy exceeds a fixed threshold. For each of the
different observation probabilities, we selected the hand-
optimized controller leading to the smallest average time to
destination while still achieving a success rate of 100 %. The
results show that the learned policy is significantly faster (9%
gain) than the hand-optimized policy.

Figure 6 shows two typical runs with the hand-optimized
controller (left image) and the learned policy (right image).
The hand-optimized controller stops the robot in regular
intervals to obtain good observations. In contrast to that, the
learned policy accepts higher uncertainties as long as the
distance to the destination is high, whereas it increases the
robot’s stand frequency when approaching the destination.

VII. CONCLUSIONS

We presented an approach to learn a reliable and efficient
navigation strategy for a humanoid robot. Typically, the qual-
ity of the pose estimate seriously decreases during walking
due to inaccurately executed motion commands and high
noise in the observations. A wrong pose estimate, in turn,
may prevent the robot from accomplishing its navigation task
efficiently and successfully.

We formulate the task of navigating to a target location
reliably and, at the same time, as fast as possible as a
reinforcement learning problem. In our approach, the robot
learns which navigation actions to choose in order to reach
its goal efficiently. Increasing the speed of the gait typi-
cally leads to a higher amount of blurred images during
walking and an uncertain localization. Our learned strategy
then forces the robot to stop from time to time, so that
it obtains good observations and avoids delays or failures
caused by localization errors. In simulated and real-world
experiments with a humanoid robot equipped with a camera
for localization, we showed that our learned navigation
policy significantly outperforms a hand-optimized navigation
strategy.

REFERENCES

[1] Aldebaran Robotics, “The Nao humanoid robot,”
http://www.aldebaran-robotics.com/eng/Nao.php, 2009.

[2] M. Wiering and J. Schmidhuber, “Fast online Q(λ),” Machine Learn-
ing, vol. 33, no. 1, pp. 105–115, October 1998.

[3] F. Faber and S. Behnke, “Stochastic optimization of bipedal walking
using gyro feedback and phase resetting,” in Proc. of the IEEE-RAS
Int. Conf. on Humanoid Robots (Humanoids), 2007.
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