
The Synchronized Holonomic Model:
A Framework for Efficient Generation of Motion

Marcell Missura1, Daniel D. Lee2, Oskar von Stryk3, and Maren Bennewitz1

Abstract— We present a simple and efficient mathematical
framework suitable for generating motion in the context of a
variety of robotic motion tasks ranging from low-level motor
control up to high-level locomotion planning. Our concept is
based on a one-dimensional second-order model that allows
analytic computation of its inverse dynamics while respecting
physical constraints. This makes it a particularly useful tool
for tasks that are expressed only as a start and goal state,
such as animation key frames or way points in path planning.
By means of time synchronization, the model extends easily to
an arbitrary number of dimensions in a way that the target
is reached in all dimensions at the same time. The framework
excels in terms of execution time, which lies in the microsecond
range even for high-dimensional trajectory generation tasks.
We demonstrate our method in two different settings—full-body
trajectory generation and path planning—and show its benefits
in comparison with current state-of-the-art algorithms.

I. INTRODUCTION

Modern research in robotics is strongly focused on the
development of autonomous robots that move about in
indoor and outdoor environments to aid us in our every
day lives. However, human-populated areas are vibrant with
motion and full of unforeseen events that require immediate
reaction. Fast and predictive control of motion is crucial
for autonomous agents to operate in dynamic environments.
Unfortunately, the high complexity of robotic systems and
their nonlinear dynamics are rarely analytically tractable and
make the development of such controllers a challenging task.
Abstract models are needed that are fast to compute, even at
the cost of being only approximately correct.

We propose a simple, decoupled holonomic model as a
generic concept to approximate and generate dynamic mo-
tion. The mathematical simplicity of the embedded equations
gives rise to very efficient computations of forward and in-
verse dynamics in closed form. The computational efficiency
of the model allows it to scale up into the high-dimensional
spaces of complex bodies of many degrees of freedom,
whereby a time synchronization is possible such that the
target state is reached in all dimensions at the same time.
This can be a crucial feature when for example the target
state is a whole-body pose of a robot, or a way point where
all coordinates have to be reached at the same time. The low
complexity of the output of the model, which is a small
set of quadratic polynomials, provides a convenient basis

1Marcell Missura and Maren Bennewitz are with Humanoid Robots Lab,
University of Bonn, Germany

2Daniel D. Lee is with the GRASP Laboratory, University of Pennsyl-
vania, USA

3Oskar von Stryk is with SIM, Department of Computer Science,
Technische Universität Darmstadt, Germany

for further processing, e.g., collision checking or smoothing.
Possible applications for this framework are the computation
of whole-body trajectories for servo motors or within search-
based motion planning algorithms where a fast model is
needed to evaluate a vast number of candidate trajectories
in a short time.

We argue that using a second-order formulation comes
with a computational advantage over higher degrees and
enables analytic access to important concepts such as root
finding and inverse dynamics. Yet, a second-order system
approximates physically feasible motion with a continuous
velocity profile. We show experiments that highlight the
computational performance of our system when it comes
to computing inverse dynamics and compare it with the
Reflexxes Motion Library [1]. Furthermore, we leverage the
analytic capabilities of our formulation to implement a basic
motion planning algorithm that outperforms the state-of-the-
art Global Dynamic Window approach [2].

II. RELATED WORK

Cubic splines [3] and Bezier curves [4] are standard math-
ematical methods of key frame interpolation. They are fast to
compute and produce C2 motion trajectories. However, it is
in general not possible to impose bounds on their derivatives
in order to guarantee physically feasible motion.

The Reflexxes Motion Library [1], which we compare
our method with in Section IV, addresses this problem. It
is a successful implementation of a third-order system that
has matured to industrial application and is commercially
available as a product. It produces velocity-, acceleration-,
and jerk-bounded trajectories that connect a start state and a
target state, for both of which the position and velocity can
be specified. The output of the library is represented as a
sequence of up to seven pieces of third-order polynomials.
Despite using numerical methods, the Reflexxes Motion
Library guarantees a finite number of computation steps in
the worst case and executes in the sub-millisecond range.

Beul et al. [5] presented a similar approach to computing
jerk-bounded splines of third-order to control aerial vehicles.
The authors formulate the equations of motion for a set of
eight different motion templates to cover a wide range of
motion tasks, and find an analytical solution for each case
using a Matlab toolbox. The most generic case is a seven
piece spline. In comparison to our framework, this work
shows very clearly the increase in complexity from second-
order to third-order systems for motion generation.

Mellinger et al. [6] used C4 splines and minimized the
integral of the squared fourth derivative in order to compute

minimum snap trajectories for aggressive maneuvers for
quadrotors. Their QP formulation is real-time capable as long
as the number of degrees of freedom is relatively low.

Lau et al. [7] used quintic Bézier splines to plan a
curvature continuous trajectory for a synchrodrive robot. A
high-level straight line planner provides a heuristical guess
for the curve parameters, which are then optimized along
with the velocity profile of the vehicle by an anytime opti-
mization algorithm. The choice of the C4 quintic splines was
motivated by a number of requirements such as continuous
curvature even in the control points where two spline pieces
are joined, and locality that would allow the effect of a
parameter to be limited to a few neighbouring segments
rather than the entire curve.

Purwin et al. [8] have already attempted to formulate a
second-order motion generator similar to ours for wheeled
omnidirectional vehicles. However, their formulation is more
complex in terms of case differentiation and less complete,
as it restricts the velocity in the target state to be zero.

Classic feedback controllers such as PID-controllers and
Linear Quadratic Regulators [11] from optimal control theory
are an alternative method to generate motion. They produce
good results and they are widely used in industrial applica-
tions. However, the trajectories they produce are not time-
optimal and it is impossible to specify a time to reach a
target, which renders the time synchronization of multiple
dimensions impossible.

Dynamic Motion Primitives [9], [10] are in principle PD-
controllers which are augmented with a forcing function that
is formulated as a weighted sum of radial basis functions.
The basis functions are well suitable for machine learning
and this is the context in which this approach has been
investigated. However, since a large number of exponential
functions may need to be evaluated, the method is not well
suited for execution in the sub-millisecond range. It also
lacks the ability to specify a target time or velocity.

III. THE SYNCHRONIZED HOLONOMIC MODEL

We introduce the mathematical formulation of our model
in a one dimensional setting. We discuss the implementation
of forward dynamics and inverse dynamics functions, and
then extend the formalism to two dimensions using a time
synchronization technique.

Let x = [x, ẋ]
T describe the position and the velocity of

a dynamic system in a one-dimensional space. We assume a
linear second-order model given by

ẍ = a, (1)

meaning that the motion of the system is characterized
by constant acceleration. We control this system with a
bang-bang control signal C = {(tk, ẍk)k=0,...,N−1}, which
is a set of N control tuples, where tk are time intervals
and −A ≤ ẍk ≤ A are piecewise constant accelerations
bounded by parameter A. Furthermore, we also assume the
velocity −V ≤ ẋ ≤ V to be bounded by parameter V at
all times.

Let x0 = [x0, ẋ0]
T be the initial state. The future states

at the discrete times by the ends of each bang are given by
the recursive relation

xk+1 =

[
1 tk
0 1

]
xk +

[
t2k/2
tk

]
ẍk. (2)

A continuous forward dynamics function for a real-valued
time 0 ≤ T ≤

∑N
i=0 ti is computed as

F (x0, C, T) =

[
1 t
0 1

]
xm +

[
t2/2
t

]
ẍm, (3)

where m is such that
∑m
i=0 ti ≤ T <

∑m+1
i=0 ti, and

t = T −
∑m
i=0 ti.

A. Time-Optimal Inverse Dynamics

We are typically interested in the inverse setting and want
to compute the set of controls that steer the point mass
from its initial state x0 to a goal state x1 = [x1, ẋ1]

T .
We define the inverse dynamics function Co = G (x0,x1)
which computes the control sequence Co that accomplishes
the motion from x0 to x1 in a time-optimal fashion. As
postulated by Pontryagin’s Maximum Principle, a time-
optimal motion would consist of accelerating towards the
target at the acceleration limit up to a switching time where
the sign of the acceleration is flipped, and the point mass
would decelerate and reach the target position exactly with
the right velocity. An example of such a motion sequence
is depicted in Figure 1 on the left. In hard cases when
either the point mass cannot possibly accelerate to the desired
velocity before it reaches the target location (undershoot), or
the point mass cannot decelerate to the desired velocity over
the available distance (overshoot), negative acceleration must
be used first before switching to a positive one at the right
time in order to accelerate and reach the target precisely
with the desired velocity. Examples of both hard cases are
shown in Figure 1. Hence, we assume the control sequence
Co = {(t0, σA) , (t1,−σA)} to consist of two bangs of
opposite signs, both performed at the acceleration limit. The
unknowns are the time intervals t0 and t1—the durations of
the two bangs—and the approach sign σ.

In general, the sign of the approach σ is determined by
the direction of the target relative to the start state given by
σd = sgn(x1 − x0). In case of an undershoot or overshoot,
this sign needs to be flipped. The hard cases can be detected
efficiently using

σh =

−1, if σdẋ1 > 0 ∧ ẋ21 − ẋ20 > 2A|x1 − x0|
−1, if σdẋ0 > 0 ∧ ẋ20 − ẋ21 > 2A|x1 − x0|
1, otherwise.

(4)

Then, the approach sign is given by σ = σdσh.
Now for computing the bang times t0 and t1, we expand

equation (2) using Co and obtain

x1 =

(
x0 + ẋ0t0 +

1

2
σAt20

)
+ (ẋ0 + σAt0) t1 −

1

2
σAt21,

(5)
ẋ1 = ẋ0 + σAt0 − σAt1. (6)

-4
-2
 0
 2
 4
 6
 8

 10
 12
 14

 0 0.5 1 1.5 2

Time [s]

acc vel pos

-30
-20
-10

 0
 10
 20
 30

 0 1 2 3 4 5 6 7 8 9 10

Time [s]

acc vel pos

-10
-5
 0
 5

 10
 15
 20
 25
 30

 0 1 2 3 4 5 6 7 8

Time [s]

acc vel pos

Fig. 1: Time-optimal motions generated by our bang-bang controller for a system with acceleration and velocity bounds A = 4m/s2 and
V = 20m/s. Left: Ideal motion between the states x0 = [0, 5]T and x1 = [10, 2]T . The system accelerates towards the target at the
acceleration limit up until the switching time at 0.6 s where it flips the sign of the acceleration and brakes to reach the target location with
the target velocity. Center: When the target velocity is changed to 15m/s, the available distance (10m) is not enough to accelerate to
the target speed and a run up motion is computed that begins with a negative bang. Right: When the start velocity is changed to 12m/s,
the maximal deceleration is not sufficient to prevent the system from overshooting.

Solving for t0 and t1 yields

K = σ

√
1

2
(ẋ20 + ẋ21) + σA(x1 − x0) (7)

t0 =
1

σA
(K − ẋ0) , (8)

t1 =
1

σA
(K − ẋ1) . (9)

The velocity limit V is imposed after the bang-bang
sequence has been computed. We require that the input
velocities are already within bounds such that −V ≤ ẋ0 ≤
V and −V ≤ ẋ1 ≤ V . Then, if the absolute value of
the velocity at the end of the first bang exceeds V , the
solution has to be replaced with a bang-coast-bang sequence
C ′o = {(t0, σA) , (t1, 0) , (t2,−σA)}, where after accelerat-
ing to maximum velocity, the point mass would travel some
amount of time at the velocity limit before decelerating to
reach the target state. The approach sign σ remains the same
as before. The bang times t0, t1, and t2 can be computed
directly as

t0 =
1

σA
(σdV − v0) , (10)

t2 =
1

σA
(σdV − v1) , (11)

t1 =
(x1 − x0)−

(
ẋ0t0 +

1
2σAt

2
0

)
−
(
σdV t2 − 1

2σAt
2
2

)
σdV

.

(12)

By handling the initially mentioned hard cases and the
velocity constraint explicitly, the time-optimal function G
guarantees a precise solution for any given motion task
without violating the physical constraints.

B. Timed Inverse Dynamics

Aside from the time-optimal motion, we also define a
timed inverse dynamics function CT = H (x0,x1, T) which
computes a control sequence CT that steers the point mass in
a way that the target state x1 is reached exactly at time T ≥ 0
unless this would violate the acceleration and the velocity
constraints. This is the case if and only if the requested
motion time T is less than the optimal time computed by
the G function.

The control sequence CT = {(t0, a) , (t1,−a)} consists
again of two bangs, but this time with a variable magnitude a

of the acceleration. We set

T = t0 + t1, (13)

x1 = (x0 + ẋ0t0 +
1

2
at20) + (ẋ0 + at0)t1 −

1

2
at21, (14)

ẋ1 = ẋ0 + at0 − at1, (15)

and eliminate t0 and t1 to solve for a

a =
±
√

4 (δ2 − Tδγ) + 2T 2 (ẋ20 + ẋ21) + 2δ − Tγ
T 2

, (16)

using δ = x1 − x0, and γ = ẋ0 + ẋ1. When com-
puting a, both the negative and the positive result of the
square root in (16) must be computed and the one with
the larger absolute value is used. This results in the ac-
celeration a with the correct sign. In the exceptional case
that ẋ0 = ẋ1 = (x1 − x0) /T , a evaluates to zero and the
solution is CT = {(0, T)}. Otherwise the acceleration bound
−A ≤ a ≤ A is applied before the bang times t0 and t1 are
computed.

The next step is the computation of t0 and t1 with the
now known and bounded a using

t0 =

{
T −

√
T ẋ0−δ
a + T 2

2 , if T ẋ0−δ
a + T 2

2 > 0

T, otherwise
, (17)

t1 = T − t0. (18)

Note that (14) should be solved for t0 rather than (15). This
makes sure that if an infeasible motion time T is given, an
error will first occur in the target velocity, but the position
will still be reached at the right time. Only if t0 turns out
to be larger than T—this is what the case differentiation in
(17) protects against—the target position can no longer be
reached. In this case, the entire motion time T is used for the
first bang. This way, even if an infeasible motion time was
requested, the equations robustly produce a sensible motion
that attempts to reach the target by giving the target position
priority over the target velocity.

The velocity limit V is imposed in the same manner
as with the time-optimal function G. Assuming valid input
parameters −V ≤ ẋ0 ≤ V and −V ≤ ẋ1 ≤ V , if
the absolute value of the velocity at the end of the first
bang exceeds V , the solution is a bang-coast-bang sequence
C ′T = {(t0, a) , (t1, 0) , (t2,−a)}. Using the acceleration a

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10

V
el

 [m
/s

]

Pos [m]

5.5 s
4.5 s
3.5 s

Fig. 2: Timed motions generated by our bang-bang controller from
the start state x0 = [2, 0]T to the target state x1 = [8, 0]T at
desired times T = 3.5 s (red), T = 4.5 s (green), and T = 5.5 s
(blue), respectively. The acceleration and velocity constraints were
set to A = 1m/s2 and V = 2m/s. In the first case, 3.5 s are not
sufficient to reach the target position. Accelerating at the limit, the
system hits the velocity bound after 2.0 s and keeps moving towards
the target until the motion time runs out. In the second case, the
correct position is reached, but with a higher than desired velocity.
In the third case, 5.5 s are long enough for all target conditions to
be fulfilled without having to use maximum acceleration.

and the first switching time t0 that we determined for
the bang-bang sequence, we compute the peak velocity
v∗ = ẋ0 + at0 at the end of the first bang. The sign of
this velocity σd = sgn(v∗) is needed for the following
computations, in particular because the velocity limit V is
given as a positive parameter. We set

T = t0 + t1 + t2, (19)

t0 =
V − v0
a

, (20)

t2 =
V − v1
a

, (21)

x1 = (x0 + ẋ0t0 +
1

2
at20) + V (t1 + t2)−

1

2
at22, (22)

and solve for a with the correct sign

a = σd

∣∣∣∣2V (V − ẋ1 − ẋ0) + ẋ20 + ẋ21
2 (T V − x1 + x0)

∣∣∣∣ . (23)

Then, after applying the acceleration bound −A ≤ a ≤ A,
we compute the switching times

t0 = min{σd V − v0
a

, T}, (24)

t2 = min{

√
− (σd V − ẋ0)2 + 2a (Tσd V − δ)

a
, T − t0},

(25)
t1 = T − t0 − t2. (26)

Similar to the bang-bang case when the velocity limit has
not been reached, we use the technique of bounding the
switching times in order to ensure that the motion stops at
time T . For obtaining equation (25), we solve the spatial
equation (22) in order to give the target position priority
over the velocity. This failure mode behavior is visualized in
Figure 2.

C. Two-Dimensional Model

When modelling a two-dimensional system, we
simply regard two decoupled, one-dimensional systems
X0 = [x0,y0]

T . The control input is extended to two

sets of tuples C2 = (Cx, Cy), one for each respective
dimension such that Cx = {(txk

, ẍk)k=0,...,Nx−1} and
Cy = {(tyk , ÿk)k=0,...,Ny−1}. The two dimensions are
synchronized in the sense that the target states are reached
at the same time, i. e.,

∑Nx−1
i=0 txi

=
∑Ny−1
j=0 tyj . Note

that only the total time is synchronized. Cx and Cy can
still contain different switching times and even a different
number of bangs, if one of the dimensions reaches the
velocity limit and the other does not.

The extension of the forward dynamics to the two-
dimensional case is trivially given by

F2 (X0,C2, T) =

[
F (x0, Cx, T)
F (y0, Cy, T)

]
. (27)

The two-dimensional time-optimal inverse dynamics func-
tion G2 warrants further attention. We implement the two-
dimensional function by computing both time-optimal con-
trol sequences

Cx = G (x0,x1) , (28)
Cy = G (y0,y1) , (29)

independently for each dimension. Then, we determine the
greater of the two optimal motion times

Tmax = max{
Nx−1∑
i=0

txi
,

Ny−1∑
j=0

tyj} (30)

and use the timed inverse dynamics function

Cx = H (x0,x1, Tmax) (31)

to recompute the motion of the faster dimension to match
the time Tmax of the dimension that takes longer time to
complete. Here we used x as an example for the faster
dimension. Since the time Tmax is always greater than or
equal to the time needed for the time-optimal motion, it is
guaranteed that the motion task is feasible in time Tmax and
H produces a control signal that reaches the target precisely
at the right time.

The two-dimensional timed inverse dynamic function

H2 (X0,X1, T) =

[
H (x0,x1, T)
H (y0,y1, T)

]
(32)

is again a trivial composition of two one-dimensional ones.
The Synchronized Holonomic Model can easily be ex-

tended to an arbitrary number of dimensions by composing
one-dimensional functions and synchronizing with the di-
mension that requires the most time. The computation time
scales linearly with the number of dimensions. The con-
catenation of multiple way points Xk to compose complex
motions arises naturally by computing the pairwise control
sequences Ck=0,...,N−1 = G (Xk,Xk+1). The computation
time scales linearly in the number of way points as well.

IV. EXPERIMENTAL RESULTS

We present experiments performed in the context of two
distinct settings of robotic motion. The first context is whole-
body motion generation, where motion tasks typically take
place in the high-dimensional spaces of many degrees of

freedom. We compare the performance of our Synchronized
Holonomic Model with the Reflexxes Motion Library [1] and
common cubic splines. The second context is locomotion
planning, where we embed our method in a custom motion
planner and evaluate it with respect to the Global Dynamic
Window algorithm [2].

A. Whole-Body Motion Generation

In the whole-body motion generation context the task is
the generation of motor commands with a high frequency
on a low level of abstraction. Especially when it comes to
humanoid robots, a large number of actuators (>20) must
be provided with a set point at a frequency of roughly
100 Hz. A common strategy is to express the motion in terms
of key frames, i. e., snapshots of positions, velocities, and
sometimes accelerations, at discrete times in the future. Then,
a key frame interpolation technique is used to obtain fine-
grained intermediate motion states in the gaps in between the
frames. In most cases such motion controllers are feedback
controllers and the measured position is fed back during the
motion as the first key frame while he target key frame stays
fixed. This way the system can automatically account for drift
and disturbances, and the target can potentially change during
the motion, but it requires recomputing the entire motion
trajectory in every iteration. This is when computational
efficiency becomes particularly important.

Perhaps the most commonly known such interpolation
technique is the cubic spline. A spline, however, does not
respect physical constraints. The Reflexxes Motion Library
Type IV [1] computes a third order “spline of splines” that
adheres to bounds on the first, second, and third derivatives.
Our Synchronized Holonomic Model computes second order
polynomials and enforces bounds on the first and second
derivatives. We measured the performance of all three al-
gorithms on a 2.16 GHz Intel CPU by presenting each of
them a large number (10,000) of key frame pairs with an
increasing number of dimensions and having them compute
their output. We averaged the computation times over all key
frame pairs and recorded the data in Table I. The cubic spline
is a baseline for computation times as it does away with
a small number of multiplications, additions, and divisions.
However, it entirely ignores the velocity and acceleration
constraints. The computation time of our method is domi-
nated by the square root function appearing in equations (8),
(9) and (16), (17), which is a more costly operation than for
example division. Still, while fully respecting the velocity
and acceleration constraints, the Synchronized Holonomic
Model manages to achieve computation times that lie clearly
in the range of a few microseconds and are competitive
with the cubic spline. The data in Table I reflects the
fact that computing in more than one dimension incurs
the additional cost of time synchronization, meaning that
the time-optimal inverse dynamics function is computed for
all dimensions first, and then the timed inverse dynamics
function is computed for all but the slowest dimension. The
Reflexxes Motion Library includes numerical methods and
takes about two orders of magnitude more time to finish. The

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10

P
os

 [m
]

Time [s]

Cubic Spline
Reflexxes Motion Library

Sychnronized Holonomic Model

Fig. 3: Position trajectories over four key frames generated by
the Synchronized Holonomic Motion Model, the Reflexxes Motion
Library, and a cubic spline. The second key frame has been
placed intentionally out of reach of the acceleration and velocity
constraints. The cubic splines ignores the constraints and touches
the key frame nonetheless while the other two methods respect the
constraints and miss the second key frame.

results of our performance measurement match the numbers
given in the documentation of the library. All three methods
can potentially be used as feedback controllers, but of course,
a shorter execution time allows a higher control frequency.

Furthermore, the nature of the output of these trajectory
generators has an influence on the processing times of
algorithms that post-process their result. Collision checking,
for example, is an integral part of motion planning algorithms
that can make good use of an efficient representation. All
three methods output the coefficients of polynomials. A
cubic spline is exactly one cubic polynomial between two
key frames. Our method computes two or three quadratic
polynomials between two key frames, depending on whether
the velocity constraint has to be enforced or not. The Re-
flexxes Motion Library computes in most cases seven cubic
polynomials. Collision checking in a polygonal or polyhedral
environment means intersecting these polynomials with lines
or surfaces, which boils down to computing the roots of
such polynomials. It is much faster to compute the roots
of quadratic polynomials than cubic ones, even more so if
there are few polynomials to begin with.

Figure 3 shows a plot of the output of all three methods
after receiving the same four key frames as input, the second
of which has been intentionally placed out of reach of the
physical constraints. The cubic spline is not aware of these
constraints and touches each key frame precisely, thereby
producing potentially infeasible motion. Our algorithm and
the Reflexxes Motion Library both generate a sensible and
feasible motion that attempts to, but does not reach the sec-
ond key frame. Both methods manage to recover by the third
key frame and continue on to the fourth. Notably, the position
curve produced by our method has a larger spatial footprint

1D 2D 6D 20D
Cubic Spline 0.1µs 0.21µs 0.63µs 2.08µs

Synch. Holonomic Model 0.2µs 0.54µs 2.02µs 7.16µs
Reflexxes Motion Library 35.4µs 77.6µs 220.3µs 778.8µs

TABLE I: Computation times of a cubic spline, our Synchronized
Holonomic Model, and the Reflexxes Motion Library for a motion
signal between two key frames with an increasing number of
dimensions.

than the one produced by the Reflexxes Motion Library. The
reason for this is a key difference in the implementation of
these algorithms. While the Synchronized Holonomic Model
computes the minimal peak acceleration in equation (16) that
is needed to reach the next key frame at the desired time and
accelerates as little as possible over the entire motion, the
Reflexxes Motion Library ramps up the acceleration to the
limit at first and then spends a considerable amount of time
travelling with constant velocity. This effect can be seen for
example between 6 and 10 seconds in Figure 3. This way,
the peak velocity is minimized rather than the peak accel-
eration. The same behavior can easily be implemented in
our framework by always using a bang-coast-bang sequence
when computing the timed inverse function H in Section III-
B, but so far it is unclear which type of behavior is more
advantageous. Last but not least, the authors of the Reflexxes
Motion Library report on the existence of gaps in time
where the synchronization of multiple dimensions fails due
to the nature of the jerk bounded third-order polynomials.
With our acceleration bounded second-order method there is
only a minimal time below which a motion is not feasible.
Otherwise a solution always exists.

B. Motion Planning

We demonstrate the potential of the Synchronized Holo-
nomic Model in the context of locomotion planing in a two-
dimensional scenario. We consider a simple box world as
shown in Figure 4. A holonomic vehicle referred to as the
“taxi” has the task of collecting a passenger waiting in drop
zone 2 without colliding with the obstacle in the center of the
scene. When the passenger is collected, the taxi delivers the
passenger to drop zone 1. Then, a new passenger is spawned
and asks to be picked up. We implemented this game with
the help of the Box2D rigid body simulation engine [12].

We created a simple motion planning algorithm using the
Synchronized Holonomic Model by computing the time-
optimal trajectory directly from the taxi to the passenger,
and also the three-point trajectories from the taxi over each
way point associated with the corners of the obstacle to the
passenger. We sort these trajectory candidates by their total
motion time and check them for collision in ascending order.
The first collision-free trajectory is the fastest solution. The
acceleration in the starting point of the best trajectory is
then converted to a force which is applied in the Box2D
simulation to move the taxi. The entire motion planning
algorithm averages at about 220µs computation time, which
allows us to use it as a feedback controller with fast re-
planning capabilities. In this simple setting, this algorithm
is sufficient to reliably maneuver the taxi between the drop
zones without colliding with the obstacle. Figure 4 shows a
screen shot of our simulation and illustrates the computed
trajectory candidates. The fastest collision-free trajectory is
highlighted in blue. In fact, we can be sure that this algorithm
drives the taxi in a time-optimal fashion through the given
way point.

When using the Synchronized Holonomic Model to gen-
erate a trajectory, collision checking is an easy task. First

we expand the obstacle by the size of the taxi using the
Minkowski sum of the two rectangles. This way, the taxi can
be considered to be a point. Now we consider a vertical edge
of the expanded obstacle given by its end point coordinates
(xr, yu, xr, yl). Given the motion state of our robot in the
x-dimension x0 = [x0, ẋ0]

T and a bang (t, ẍ), a collision
between the taxi and the edge can be computed with the
equation x0 + ẋ0t+

1
2 ẍt

2 = xr. Solving for t will provide
up to two possible solutions in time, out of which we are only
interested in the positive one with the smaller value. If such
a solution exists, and yu ≥ y(t) ≥ yl, we have a collision
between the taxi and the edge. Performing this computation
for every bang in the control sequence and for every edge
in the scene yields a complete and efficient collision check.
If the edge is not vertical, a rotation is applied in order to
transform the taxi and the edge into a vertical edge situation.
Consequently, this collision checking method can be applied
to arbitrary complex polygons with slanted edges.

We compare our solution with an implementation of the
Global Dynamic Window Approach (DWA) [2], one of the
best performing state-of-the-art algorithms. We tuned the pa-
rameters and profiled the code of our DWA implementation
to get the most of its performance. It does drive the taxi
remarkably well. It executes in 650µs after a preprocessing
time of 6.5 ms for a navigation table that only needs to be
computed once. Figure 5 shows the DWA algorithm perform-
ing in our box world simulation. Neither the DWA, nor our
way point based algorithm ever collide with the obstacle.
However, while our algorithm delivers 36 passengers per
minute, DWA only manages to deliver 29. Figure 6 visualizes
the trajectories produced by these algorithms. The near
optimal trajectories of our Synchronized Holonomic Model-
based algorithm are shown in red. The DWA trajectories are
shown in blue. The DWA trajectories are less consistent and
less ideal than the ones produced by our method. Another
not so obvious place where DWA loses time is the stopping
phase in the drop-off zone where DWA decelerates and
stops a bit too smoothly, while our method performs near
perfect landings exploiting the full dynamics of the vehicle.
Furthermore, a noteworthy advantage of our method is that
it is predictable in the sense that it computes a complete plan
to the target. The DWA algorithm only follows local rules
and the only way to predict the future trajectory of the taxi
is to simulate it.

Certainly, if the complexity of the environment increases,
the computation time of our algorithm will increase with
the number of edges and way points present in the scene,
while the computation time of the DWA will always remain
constant. However, when moving obstacles come into play
that cannot be included in its navigation table, the DWA
will have to rely on its limited preview horizon and produce
suboptimal behavior, or even collide. Our algorithm has the
potential to compute three-point trajectories among moving
obstacles, but this is future work.

Fig. 4: Visualization of our Synchronized Holonomic Model-based
motion planner. Trajectory candidates originate from the “taxi” (the
yellow box) that is already in motion towards the passenger. The
set of trajectory candidates includes a direct way from the taxi to
the goal and three-point trajectories over each way point associated
with the corners of the obstacle. The direct trajectory collides with
the obstacle and is marked in red. The grey trajectories did not need
to be collision checked as the blue trajectory is collision-free and
has the shortest travelling time among all candidates.

Fig. 5: Visualization of the Dynamic Window Algorithm performing
in our simulation. The color coded trajectories are sampled in
acceleration space and evaluated according to an objective function
that includes information from the NF1 table in the background and
the collisions with the obstacle. The best trajectories are marked in
yellow.

Fig. 6: Trajectories as they happened in simulation. The red
trajectories were produced by our Synchronized Holonomic Model-
based algorithm, the blue trajectories by the Dynamic Window
Approach. Our method consistently follows one of two symmetrical
time-optimal solutions. The Dynamic Window Approach is less
consistent and follows suboptimal paths.

V. CONCLUSIONS

We presented a mathematical framework that computes
the inverse dynamics of a holonomic system in order to
generate a smooth motion trajectory from a given initial state
to a goal state. Time-optimal and timed motions are both
available. Apart from motion tasks that are infeasible due
to acceleration and velocity bounds, the formalism is guar-
anteed to find a solution. It can accommodate an arbitrary
number of dimensions by synchronizing them in a way that
all dimensions reach the target state at the same time. We
argue that using a second-order model offers the benefits of
high computational efficiency and analytic convenience in
both calculating the inverse dynamics and post-processing
the output. We demonstrated these advantages in experiments
where our method outperformed the state-of-the-art solu-
tions in two distinct areas of motion planning: whole-body
motion generation and locomotion planning. In the former
we highlighted the computational edge of our equations in
comparison with the Reflexxes Motion Library, while in the
latter we used our method to implement a simple motion
planning algorithm that outperformed the Dynamic Window
Approach in terms of task efficiency and computation time.

Perhaps the most compelling question that arises when
comparing our method to other works using third or higher
degree polynomials as basis functions is whether the steep
increase of complexity and computation time is a necessary
cost in order to circumvent the discontinuities in the accel-
eration profile of second-order systems.

REFERENCES

[1] Torsten Kröger and Friedrich M Wahl. Online trajectory generation:
Basic concepts for instantaneous reactions to unforeseen events. IEEE
Transactions on Robotics, 26(1):94–111, 2010.

[2] Oliver Brock and Oussama Khatib. High-speed navigation using the
global dynamic window approach. In In IEEE Int. Conf. on Robotics
and Automation (ICRA), pages 341–346, 1999.

[3] Michiel Hazewinkel. Spline interpolation. In Encyclopedia of Math-
ematics, 2001.

[4] Michiel Hazewinkel. Bézier curves. In Encyclopedia of Mathematics,
2001.

[5] Marius Beul and Sven Behnke. Analytical time-optimal trajectory
generation and control for multirotors. In International Conference
on Unmanned Aircraft Systems (ICUAS), 2016.

[6] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory gener-
ation and control for quadrotors. In In IEEE Int. Conf. on Robotics
and Automation (ICRA). IEEE, 2011.

[7] Boris Lau, Christoph Sprunk, and Wolfram Burgard. Kinodynamic
motion planning for mobile robots using splines. In In IEEE Int.
Conf. on Intelligent Robots and Systems (IROS), 2009.

[8] Oliver Purwin and Raffaello D’Andrea. Trajectory generation and
control for four wheeled omnidirectional vehicles. Robotics and
Autonomous Systems, 54(1):13–22, 2006.

[9] Stefan Schaal. Dynamic movement primitives: A framework for motor
control in humans and humanoid robotics. In The International
Symposium on Adaptive Motion of Animals and Machines, Kyoto,
Japan, March 2003.

[10] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and
Stefan Schaal. Dynamical movement primitives: learning attractor
models for motor behaviors. Neural computation, 25(2):328–373,
2013.

[11] Karl Johan Astrom and Richard M. Murray. Feedback Systems: An
Introduction for Scientists and Engineers. Princeton University Press,
Princeton, NJ, USA, 2008.

[12] Erin Catto. Box2d: A 2d physics engine for games. http://box2d.
org, 2010.

