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In this article, we present an efficient approach to obstacle detection for humanoid robots

based on monocular images and sparse laser data. We particularly consider collision-free
navigation with the Nao humanoid, which is the most popular small-size robot nowadays.

Our approach first analyzes the scene around the robot by acquiring data from a laser

range finder installed in the head. Then, it uses the knowledge about obstacles identified
in the laser data to train visual classifiers based on color and texture information in a

self-supervised way. While the robot is walking, it applies the learned classifiers to the

camera images to decide which areas are traversable. As we show in the experiments, our
technique allows for safe and efficient humanoid navigation in real-world environments,

even in the case of robots equipped with low-end hardware such as the Nao, which has not
been achieved before. Furthermore, we illustrate that our system is generally applicable

and can also support the traversability estimation using other combinations of camera

and depth data, e.g., from a Kinect-like sensor.

1. Introduction

Collision-free navigation is an essential capability for mobile robots since most tasks

depend on robust navigation behavior. Reliable navigation with humanoid robots is

still challenging for several reasons. First, most humanoids have significant payload

limitations and thus need to rely on compact and light-weight sensors. This size and

weight constraint typically affects the precision and update rates of the sensors that

can be employed. Second, while walking, the robot’s observations are affected by

noise due to the shaking motion of humanoids. Third, depending on the placement

of the individual sensors on the robot, the area in front of the robot’s feet may

not be observable while walking. That raises the question of whether the robot can
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safely continue walking without colliding with unanticipated objects. This is crucial

as collisions easily lead to a fall. In this paper, we address these three challenges

by developing an effective approach to obstacle detection that combines monocular

images and sparse laser data. As we show in the experiments, this enables the robot

to navigate more efficiently through the environment.

Since its release, Aldebaran’s Nao robot quickly became the most common hu-

manoid robot platform. However, this robot is particularly affected by the afore-

mentioned limitations and problems, due to its small-size and the installed low-end

hardware. This might be a reason why, up to today, there is no general obstacle

detection system available that allows reliable, collision-free motion for that type of

robot outside the restricted domain of robot soccer. Accordingly, useful applications

that can be realized with the Nao system are limited. In this work, we tackled this

problem and developed an obstacle detection system that relies solely on the robot’s

onboard sensors. Our approach is designed to work on a standard Nao robot with

the optional laser head (see left image of Fig. 1), without need for further modifi-

cations. Our system is, however, not limited to the Nao platform but can be used

on every robot platform that provides camera and range data.

To detect obstacles, our approach interprets sparse 3D laser data obtained from

the Hokuyo laser range finder installed in the robot’s head. Given this installation

of the laser device, obstacles close to the robot’s feet cannot be observed since they

lie out of the field of view while walking. Hence, the robot needs to stop occasionally

and adjust its body pose before performing a 3D laser sweep by tilting its head for

obtaining distance information to nearby objects. This procedure robustly detects

obstacles from the proximity data but is time-consuming and thus leads to inefficient

navigation.

To overcome this problem, we present a technique to train visual obstacle detec-

tors from sparse laser data in order to interpret images from the monocular camera

installed in the robot’s head. Our approach projects detected objects in the range

scans into the camera image and learns classifiers that consider color and texture

Fig. 1. Left: Humanoid Nao equipped with a laser range finder and a camera in its head. Middle:
The robot is navigating in a cluttered scene. Right: Corresponding image taken by the robot’s
onboard camera together with traversability labels estimated by our approach (bright/green refers
to traversable, dark/red to non-traversable areas).
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information in a self-supervised fashion. While the robot is walking, it then ap-

plies the learned classifiers to the current camera image to decide which areas are

traversable. Using this classification, the robot updates a local 2D occupancy grid

map of the environment which it uses for path planning.

The main contribution of this paper is a full obstacle avoidance system that uses

camera and sparse laser data for obstacle detection allowing for safe and efficient hu-

manoid navigation, even in the case of a robot equipped with low-end hardware. The

experiments carried out with a Nao humanoid illustrate that our approach enables

the robot to reliably avoid static and moving obstacles while walking. We further-

more present results demonstrating that, using our technique, the robot reaches

its goals significantly faster than with an approach that extracts obstacles solely

based on 3D laser data acquired while stopping at certain intervals. Note that our

technique is not limited to a specific setup but can be used with any combination of

camera and depth data and improve the results. Often, not all of the environment

in the robot’s vicinity might be observable with a depth sensor. Reasons might be

that the sensor data is sparse, e.g., from a sweeping laser, or because the sensor

cannot operate under the prevailing conditions, e.g., because the obstacles are too

close or illuminated by direct sunlight in case of the Kinect. Here, our approach can

be used to identify obstacles in camera images and support the depth data, as we

show in an experiment.

The remainder of this paper is organized as follows. In the next section, we

describe our approach in detail. We first show how to acquire training data from

a laser range finder, and then describe the visual classifiers that we developed, as

well as our technique to use the classifiers’ output for robot navigation. In Section 3

we present the experiments carried out to evaluate the approach. In Section 4 we

discusses related work, before we conclude in Section 5.

2. Obstacle Detection Using Vision and Sparse Laser Data

In this section, we describe our approach to obstacle detection that is based

on monocular images and sparse 3D laser data. Our robot continuously receives

2D range data from the laser sensor in its head with a frequency of approx. 10 Hz.

To obtain 3D data of obstacles in the surroundings, the robot can stop walking,

adopt a scanning pose, and tilt its head. In this way, a sweeping laser line is ob-

tained that can be used to detect obstacles. Since the process of acquiring 3D laser

data is time-consuming, we propose to additionally use the continuous stream of

image data to identify the traversable areas in front of the robot. In particular,

we present an approach to learn vision-based classifiers using the 3D laser data for

training. Fig. 2 sketches the overall approach.

2.1. Traversability Classification Based on Laser Data

As a first step during the self-supervised training, our approach determines the

traversable area in its surroundings by classifying the 3D laser range data. This



Int. Journal of Humanoid Robotics (2013) Vol. 10 (2) Author’s preprint

infrequently frequently

laser sensor camera

laser-based

classifier

vision-based

classifier

mapper

planner

robot

motion commands

laser readings images

traversable area

labeled image

map

online generated
training data

Fig. 2. Overview of the proposed system. During self-supervised training, sparse 3D laser data are

interpreted to identify traversable and non-traversable areas and train the visual classifiers. These
classifiers are then applied to detect obstacles in the images during navigation.

is achieved by analyzing the scan in a two-step procedure: (i) identify the ground

plane and (ii) label areas as non-traversable which show a significant difference in

height to the ground plane. Here, we insert the 3D end points measured by the laser

scanner into a 2D grid structure (xy plane) and compute the mean elevation for

each cell. All points in cells that show a deviation from the ground plane that is not

compatible with the walking capabilities of the robot, are labeled as non-traversable

and the remainder as traversable.

2.2. Traversability Classification Based on Image Data

The idea of our approach is to use the laser data whenever it is available to train

image classifiers that are consequently used for traversability estimation during nav-

igation. Our system automatically generates training data by considering a camera

image and labels from the classified 3D scan. Each pixel in the training image is

assigned the traversability label of the corresponding laser data, based on its pro-

jection into the camera frame. This data is then used to train the classifiers as

described in the following.
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Fig. 3. Left: Basis functions of the 2D DCT for an 8 × 8 image. Right: Scheme for texture fea-

ture extraction using DCT coefficients. The illustration shows the matrix D composed of DCT
coefficients for an 8× 8 image. The Ci mark a subset of the DCT coefficients in D.

2.2.1. Traversability Estimation Based on Color Information

In most indoor environments, color information provides a good estimate about

traversability. To be less sensitive to illumination changes, we consider only the

hue and saturation values of image pixels and drop the value component. From

the training data, our system first learns a distribution of color values for each

traversability class, i.e., we compute normalized color histograms for the two classes.

Once the histograms are learned, we can easily determine the likelihood that a

certain color value occurs in a pixel given the individual classes by considering the

respective bin.

Let t be the variable indicating traversability of the area represented by a pixel,

hence t ∈ {traversable,non-traversable}, and let ih and is be the pixel’s intensity

values of the hue- and saturation-channels, respectively. If we assume an uniform

distribution of P (t), P (ih), and P (is) and independence of ih and is, we can apply

Bayes’ theorem to evaluate the likelihood of traversability for each pixel as

P (t | ih, is) = P (ih | t, is)P (t | is)P (ih | is)−1 (1)

= P (ih | t, is)P (is | t)P (t)P (ih)−1P (is)
−1 (2)

∝ P (ih | t)P (is | t). (3)

Hence, the likelihood that a pixel with intensities ih and is belongs to class t is

proportional to the product of the two histogram values for class t, evaluated at the

corresponding bins for ih and is.

2.2.2. Texture-Based Classification

Additionally, we use texture information to identify obstacles in the images. To

do so, we classify rectangular patches in the image, based on their representation

in the frequency-domain. In particular, we employ the discrete cosine transforma-

tion (DCT) to extract texture information1. For an input image, the DCT computes

a set of coefficients which can be regarded as weights of a set of two-dimensional
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basis functions. Each basis function is an image constructed from a two-dimensional

cosine function with a different frequency. As an illustration, the basis functions for

an 8× 8 image are shown in the left image of Fig. 3. The DCT transforms an input

image into a matrix of DCT coefficient representing the amount of presence of a

certain frequency in the original image. The frequencies increase horizontally to the

right and vertically to the bottom. Accordingly, the lower-right part of the matrix

contains information about the high frequency content of the image and is often

dominated by noise. By considering only a small subset of the coefficients, mainly

the low to mid frequency parts, an input image can already be reconstructed quite

accurately.

For texture-based classification, we divide the input image’s hue-channel into

overlapping patches of size 16 × 16 computed at the fixed distance of 8 pixels in

vertical and horizontal directiona. Each patch is assigned a traversability label t,

based on the percentage of labeled pixels inside the patch using the classified laser

data. If more than a certain percentage θP (in our experiments 90%) of the pixels in

that image patch are labeled as traversable, we label it as an example for traversable

texture. Analogously, if more than θP percent of the pixels in the patch are labeled

non-traversable, we assign the label non-traversable to the patch. If neither con-

dition holds, for example at the boundaries of obstacles, the patch is not used for

self-supervised training. From the labeled image patch, we then compute a feature

vector fDCT based on the DCT transform.

The feature vector fDCT is based on the multi-resolution decomposition of

the DCT transform similar to Huang and Chang 2 and Nezamabadi-Pour and

Saryazdi 3 . Let P be a patch of size 16 × 16 and D be the DCT of P . Further,

let Ci represent the set of all the DCT coefficients in the correspondingly marked

region of D, as per Fig. 3b. For example, C0 is the DCT coefficient located at D1,1

and C5 is the set of the DCT coefficients located at D1,3, D1,4, D2,3, and D2,4, etc.

Let Mi and Vi be the mean and the variance over all coefficients in Ci, respectively.

Based on Mi and Vi we define the 13-dimensional feature vector fDCT as

fDCT = (M0,M1,M2,M3, V4, V5, . . . , V12). (4)

Accordingly, we represent the visually significant low frequency coefficients directly

and accumulate the less significant high frequency components by their variance.

Our approach then trains a support vector machine (SVM) that best separates

the feature space given the labeling from the training data. The SVM learns a

function pT : R13 7→ [0, 1], where pT (fDCT) is the likelihood that the feature vector

fDCT represents traversable area.

aWe also tested the saturation-channel and combinations of hue- and saturation channel. However

we found the hue-channel to provide the most reliable results.
bFig. 3 sketches the DCT basis functions and the feature extraction scheme for patches of size
8× 8. The generation of an analogue illustration for patches of size 16× 16 is straightforward.
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2.3. Incorporation of Neighborhood Information

Obviously, the resulting classification of an image based on either of the classifiers

presented above is not perfect. It might happen that spurious classification errors

exist which can actually prevent the robot from safe navigation towards its goal.

To account for such cases, we consider dependencies between nearby areas. We in-

vestigated two different labeling methods to take neighborhood information into

account and to combine the result of both classifiers introduced above. In the re-

mainder of this section, we introduce these techniques and show how they are used

in our approach to model dependencies between neighboring areas.

Both algorithms operate on a graph G = (V, E) consisting of nodes V =

{v1, . . . , vN} and edges E between pairs of nodes. In our setting, the nodes cor-

respond to small rectangular image patches of size 5× 5 in the image and the edges

describe their neighborhood relationsc. Let T be the set of possible labels, in our

case traversable and non-traversable. Both algorithms iteratively compute new es-

timates for the nodes vi based on local neighborhood information and an initial

estimate. For each node vi, the neighborhood N (vi) ⊂ V refers to the nodes vj
that are connected to vi via an edge. Here, we assume an eight-connected graph of

neighborhood relations. That means that each node only influences its eight neigh-

bors. Furthermore, we assume that each of the eight neighbors of vi are equally

important for estimating the label of vi. We obtain the initial estimate for a node

by computing the weighted average over the estimates from the color classifier and

the texture classifier.

2.3.1. Probabilistic Relaxation Labeling

Probabilistic relaxation labeling4 assumes that each node vi stores a probability

distribution about its label, represented by a histogram Pi. Each bin pi(t) of that

histogram stores the probability that the node vi has the label t. For two classes,

Pi can efficiently be represented by a binary random variable.

Each neighborhood relation is represented by two values: rij describes the com-

patibility between the labels of nodes vi and vj and cij represents the influence

between the nodes. C = {cij | vj ∈ N (vi)} is the set of weights indicating the

influence of node vj on node vi. In our case, the weights cij are set to 1
8 . The

compatibility coefficients R = {rij(t, t′) | vj ∈ N (vi)} are used to describe neigh-

borhood relations. Here, rij(t, t
′) with t, t′ ∈ T defines the compatibility between

the label t of node vi and the label t′ of vj by a value between -1 and 1. A value

rij(t, t
′) close to −1 indicates that the label t′ is unlikely at the node vj given that

the node vi has label t. Values close to 1 indicate the opposite. For computing the

cIn theory, a node could be created for each pixel. This, however, is computationally too demanding
for our online application so that small images patches are used.
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compatibility coefficients, we follow the approach suggested by Yamamoto 5

rij(t, t
′) =

 1
1−pi(t)

(
1− pi(t)

pij(t|t′)

)
if pi(t) < pij(t | t′)

pij(t|t′)
pi(t)

− 1 otherwise,
(5)

where pij(t | t′) is the conditional probability that node vi has label t given that

node vj ∈ N (vi) has label t′, and pi(t) is the prior for label t. We determined these

probabilities by counting given the training data.

Given an initial estimation for the probability distribution over traversability la-

bels p
(0)
i (t) for the node vi, the probabilistic relaxation method iteratively computes

estimates p
(k)
i (t), k = 1, 2, . . . , based on the initial p

(0)
i (t) in the form

p
(k+1)
i (t) =

p
(k)
i (t)

[
1 + q

(k)
i (t)

]
∑
t′∈T p

(k)
i (t′)

[
1 + q

(k)
i (t′)

] , (6)

where

q
(k)
i (t) =

∑
vj∈N (vi)

cij

[∑
t′∈T

rij(t, t
′)p

(k)
j (t′)

]
. (7)

On the equations above, the term q
(k)
i represents the change of the probability

distribution p
(k)
i for node vi in iteration k based on the current distribution for its

neighbors, the compatibility coefficients and the weights cij .

After convergence, we obtain for each pixel in the image the probability that it

is traversable from the probabilities of the corresponding nodes.

2.3.2. Label Propagation

In the label propagation algorithm6, neighborhood relations in G are encoded in the

affinity matrix W ∈ RN×N . Here, Wij ≥ 0 represents the strength of the relation

between vi and vj , where Wij = 0, if vi and vj are not related. We set Wij = 1 if

vj is in the eight-neighborhood of vi, and 0 otherwise.

The algorithm iteratively computes new estimates for the labels of the nodes in

V based on the previous estimate and the initial estimate. Let ŷ
(k)
i ∈ [−1, 1] be the

estimate for node vi after iteration k of the algorithm and ŷ
(0)
i denote the initial

estimate for vi, which we obtain by averaging the outputs from the color and texture

classifiers, as explained before. To meet the condition that the values are from the

interval [−1, 1], we multiply the averaged probability by two and subtract 1. The

classification for the node vi after iteration k is then given by the sign of ŷ
(k)
i , where

a positive value corresponds to classification as traversable and a negative value the

opposite. We iteratively compute ŷ
(k+1)
i from ŷ

(k)
i , starting with k = 0, by

ŷ
(k+1)
i =

∑N
j=1Wij ŷ

(k)
j + 1−α

α ŷ
(0)
i∑N

j=1Wij + 1−α
α

, (8)
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where α ∈ (0, 1) is a weight, describing the influence of the initial estimate on the

classification in each iteration. For our setup, we determined α = 0.05 yielding the

best results in terms of accuracy during a series of preliminary experiments with

hand-labeled image data. After termination, we transform the ŷi back to probabil-

ities and proceed as with the probabilistic relaxation labeling algorithm.

2.4. Map Update and Motion Planning

To integrate the traversability information from the camera images, we maintain a

2D occupancy grid map where every cell is associated with the probability that it is

occupied, i.e., not traversable. All cells are initialized with 0.5. The map is updated

whenever a camera image has been classified. For the update step, we use the

recursive Bayesian update scheme for grid maps to compute the probability p(c | z1:t)
that a cell c is occupied at time step t7:

p(c | z1:t) = 1−
[
1 +

1− p(c | zt)
p(c | zt)

1 + p(c | z1:t−1)

p(c | z1:t−1)

p(c)

1− p(c)

]−1
. (9)

Here, zt is the observation (i.e., the labeled camera image) at time t and z1:t is

the sequence of observations up to time t. For the inverse sensor model p(c | zt), we

employ a projection of the labeled camera image onto the ground plane. The camera

pose is hereby computed from the robot’s pose estimation system8. For planning

the robot’s collision-free motion towards a goal location, we apply the A∗-algorithm

on the 2D grid map.

2.5. Retraining the Classifiers

The approach for estimating the traversable area in the surroundings of the robot

assumes that the scene does not change substantially – otherwise the floor or the

obstacles may not be reliably identified anymore. Thus, whenever the robot notices

that the appearance of the scene has changed, the classifiers are retrained from the

current observations. Our system discards all previous training data to adapt to the

new environment.

To detect changes, we monitor heuristics that indicate the need for retraining

the image classifiers. We currently consider three heuristics: First, the correlation

between the color histogram computed over the current image and the one obtained

during the last learning step. Second, the consistency between the color classifier

and the texture classifier. Finally, we use the certainties of the individual classifiers.

To estimate that, we consider the number of pixels that have uncertain label as-

signments in both classifiers, i.e., their membership probabilities are close to 0.5.

We trigger retraining in case any of these heuristics indicate that the current clas-

sification might contain failures due to substantial changes in the scene.

For our experimental setup, we observed that training the visual classifiers takes

only about 0.16 s in average on a standard desktop computer, with the majority

of the time consumed by the texture feature extraction. The SVM applied as a
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Fig. 4. Example for phantom obstacles resulting from moving objects. Top: Sequence of onboard

camera images at different head pitch angles while taking a 3D scan. The red robot moves in

the scene. The (yellow) points illustrate laser measurements projected into the image. Bottom:
3D scan from integrating the laser measurements classified with the approach from Sec. 2.1 into

traversable (green) and non-traversable (red). Laser measurements of the red robot’s trajectory

form a phantom obstacle that would lead to incorrect training data for the visual classifiers.

texture-based classifier uses 300 features (for texture patches of size 16× 16 and a

camera resolution of 320× 240) of dimensionality 13, resulting in training data of

size 3900. LIBSVM9 requires only about 0.03 s for training the SVM. Therefore, we

did not investigate incremental learning and instead apply simple re-training using

the new training data. In this way, the robot can adapt to the appearance of the

environment.

2.6. Moving Obstacles during Training

The approach presented so far cannot deal with moving obstacles during training,

i.e., while the robot is acquiring the 3D laser scan. If an object moves in front of the

robot, the 3D points belonging to its surface are spread along its trajectory (phan-

tom obstacle). If we classify such 3D scans using the method described in Sec. 2.1,

we will end up labeling the whole trajectory of the object as non-traversable. An

example for such a situation is shown in Fig. 4. If we used this information for train-

ing the visual classifiers as described in Sec. 2.2 we would learn from incorrectly

labeled data. This would lead to wrong estimates for free and occupied space.

To deal with such situations, we therefore use dense optical flow to identify mov-

ing obstacles in the images while taking the 3D range scan. In particular, we apply

large displacement optical flow to the camera images10. This algorithm computes

the movement of individual pixels between two consecutive images and thus can

identify moving objects.

While tilting the head for obtaining 3D range data, the camera moves in vertical

direction and so our approach identifies all pixels whose movement deviates from
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Fig. 5. Illustration of the Nao robot indicating the top camera’s field of view and the laser’s scan

plane. The head of the robot is pitched to a maximum extend of 29.5◦. With this setting, the

closest region of the floor still observable with the laser is 0.84 m away from the robot’s feet. By
using the camera, this distance can be reduced to 0.45 m.

this direction. We identify the respective points in the laser scan that should be

ignored for labeling the static scene because they hit moving objects. The remaining

laser points are classified into traversable and non-traversable as before and used

for learning the visual classifiers. Additionally, the pixels identified as belonging to

moving obstacles are used as non-traversable examples.

3. Experiments

The experimental evaluation has been designed to show that our robot reliably

detects and avoids obstacles during walking in real-world environments using the

learned image classifiers and that our method enables the robot to efficiently nav-

igate in the environment. For all experiments, we use a Nao humanoid equipped

with a Hokuyo URG-04LX laser range finder and a camera as can be seen from

Fig. 5. When maximally tilting the head while walking, the closest region that is

observable with the robot’s camera is at a distance of 45 cm to the feet, whereas

the laser plane is 84 cm away.

The computation is done off-board on a standard dual core desktop PC, because

the Nao’s onboard CPU is almost at full load when executing motion commands

and reading the sensor data. Our system runs in real-time.

3.1. Classification Accuracy

To evaluate the accuracy of the vision-based classifiers, we performed extensive

experiments in three environments with different floor surfaces and various obsta-

cles on the ground. The scenarios can be seen in Fig. 6 top row (experiment 1),

Fig. 1 (experiment 2), and Fig. 6 bottom row (experiment 3). In each experiment,

the robot’s task was to navigate without collision through the scene towards a given
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external camera view classifier result (internal view)

external camera view classifier result (internal view)

Fig. 6. Two examples of obtained classification. Left: external camera view for reference, right:

classified onboard camera image (bright/green refers to traversable, dark/red to non-traversable

areas). This image is best viewed in color.

goal location. First, the robot took a 3D range scan, trained its visual classifiers,

and then used only the classified camera images for navigation and mapping of

traversable and non-traversable areas.

For the evaluation, we recorded an image every 10 s while the robot was navigat-

ing along with the traversability probabilities computed by the visual classifiers and

the combined approach which also considers neighboring information. Whenever the

probability for a pixel corresponding to an obstacle was bigger than 0.5, we counted

it as non-traversable and traversable otherwise. Fig. 1 and Fig. 6 show qualitative

classification results achieved in different environments using our system.

We then compared the results of our visual classification system to a manual

labeling of the pixels. The classification rates in terms of confusion matrices and

accuracy are shown in Table 1. As the table illustrates, the achieved accuracy of

the combined approach was above 91 % in all three environments. The combined

approaches especially improved the results in experiment 1. Here, the accuracy went

up from 89% to 95% for label propagation and up to 96% for probabilistic relaxation

labeling. This is mainly because the color classifier failed to identify the floor reliably

in this experiment, due to shadows and the unsaturated color of the parquet floor

under the prevailing lighting conditions. In the HSV color space, hue is unstable for
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Table 1. Evaluation of the image classifiers. Confusion matrices for all classifiers during
three experiments along with accuracy values.

Experiment 1 Experiment 2 Experiment 3

Number of images 102 38 31

TEXTURE CLASSIFIER

Estimated as Estimated as Estimated as

True class Obstacle Floor Obstacle Floor Obstacle Floor

Obstacle 0.87 0.13 0.99 0.01 0.83 0.17
Floor 0.10 0.90 0.09 0.91 0.03 0.97

Accuracy 0.89 0.97 0.90

COLOR CLASSIFIER
Estimated as Estimated as Estimated as

True class Obstacle Floor Obstacle Floor Obstacle Floor

Obstacle 0.97 0.03 0.99 0.01 0.91 0.09

Floor 0.19 0.81 0.04 0.96 0.09 0.91
Accuracy 0.89 0.98 0.91

COMBINED APPROACH USING LABEL PROPAGATION

Estimated as Estimated as Estimated as

True class Obstacle Floor Obstacle Floor Obstacle Floor

Obstacle 0.99 0.01 1.00 0.00 0.92 0.08

Floor 0.10 0.90 0.07 0.93 0.09 0.91

Accuracy 0.95 0.98 0.91

COMBINED APPROACH USING PROB. RELAX. LABELING

Estimated as Estimated as Estimated as

True class Obstacle Floor Obstacle Floor Obstacle Floor

Obstacle 0.98 0.02 0.99 0.01 0.88 0.12
Floor 0.06 0.94 0.05 0.95 0.07 0.93

Accuracy 0.96 0.98 0.91

unsaturated colors. Regarding all the experiments, we observed that probabilistic

relaxation labeling and label propagation gave approximatively the same error rates.

We chose probabilistic relaxation labeling as the method for classifying the image

and used it in all the experiments presented in the following.

3.2. Qualitative Results on Traversability Estimation

The second experiment illustrates the functionality of our visual obstacle avoidance

system. A video of this experiment is available onlined. We placed several obstacles

on the floor and changed the obstacle positions while the robot was walking through

the scene. The robot first took a 3D range scan to train its classifiers, and then

dhrl.informatik.uni-freiburg.de/maierd11ijhr.mp4
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goal new obstacles

Fig. 7. Left: scene from the robot’s view, 2nd left: top view, 3rd left: scene changed while navigating,
right: labeled image from the robot’s camera.

new obstacles

Fig. 8. Maps and planned trajectories while navigating. Left: initially built map (corresponds to

the 1st and 2nd image in Fig. 7), middle: map after new obstacles have been detected (corresponds

to the 3rd and 4th image in Fig. 7), right: updated map while approaching the goal.

started navigating to the goal location at the end of the corridor while updating its

map based on the visual input. Fig. 7 and Fig. 8, illustrate snapshots taken during

this experiment. The left image of Fig. 7 shows the initial scene during training.

The second image shows a top view of the partial scene. The third image shows

the same scene after placing the ball in the way of the robot and also changing the

position of the blue basket. In the meanwhile, the robot approached the left corner

of the top view image (only the feet are visible). The last image of Fig. 7 shows the

correctly labeled image.

In addition to that, Fig. 8 illustrates the updated grid map at the different time

steps and the recomputed collision-free trajectories. The first image shows the map

right after training along with the initial trajectory. The second image shows the

map after the red ball and the blue basket have been placed. This blocked the initial

trajectory and forced the robot to detour. The last image shows the map while the

robot is approaching the goal location. The dark area at the right corresponds to

the wall visible in the first and last image of Fig. 7.

3.3. Advantage of Considering Texture for the Classification

In this section, we demonstrate that in some situations it is not sufficient to solely

rely on color information while estimating traversability in an image, even if the

color classifier often provides good classification results as can be seen from Table 1.

Fig. 9 shows a scenario where obstacles and floor have similar color distributions

but differ in texture. In this experiment, the robot trained its classifiers as before

and started to navigate to a predefined goal location behind the small table. While

walking, a second obstacle appeared and blocked the robot’s path, thus forcing the
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goal

Fig. 9. Example scenario in which a classification based on color is not sufficient to distinguish

between obstacles and the floor. Here, obstacles and floor have a similar color distribution but

differ in texture. The robot’s task was to navigate to the marked goal location.

robot to take a detour.

We recorded the classification based on color information with relaxation la-

beling and the classification with our combined approach, considering also texture

information. We then learned occupancy grid maps from both classifications. Ex-

amples of the obtained classification results and the corresponding maps are shown

in Fig. 10. As can be seen, the map created from the classification based on color

is not usable for navigation due to the many phantom obstacles.

Fig. 11 illustrates why the color-based classifier failed. As one can see in the

right image, neither obstacles nor floor are clearly identified as either traversable

or non-traversable. In fact, most of the pixels are undecided with a probability of

approximately 0.5. This is due to the similar color distributions for obstacles and

floor in the training image. The fact that the classified image is not homogeneous

but contains some brighter and darker spot comes from the fact that the color dis-

tribution for obstacles and floor are not completely identical as a result of reflections

from the lighting, different viewing angles, etc. Texture on the other hand, allows to

differentiate obstacles from traversable floor area. In conclusion, we achieve a more

robust classification considering the two visual clues.

3.4. Detecting and Avoiding People

In the following experiment, we show that our approach is able to identify people as

obstacles and to plan safe paths around them. As can be seen in Fig. 12, people were

traversing the area in front of the robot and were correctly classified as obstacles in

the camera images. Accordingly, the robot updated its map and planned a detour

to its target location, thereby avoiding collisions with people blocking its way.

3.5. Comparison to Laser-Only Observations

In this section, we compare the overall travel time for the humanoid using only laser

data for obstacle detection with the results obtained when applying the proposed

method. When relying on laser data only, the robot has to record a 3D laser scan
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for comparison:
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Fig. 10. Demonstration that relying solely on color information can be insufficient. In this ex-

periment, the robot was navigating on a checkerboard floor. The columns show the scenario at

different points in time. The green paths in row four is the planned path from the robot to the
goal location, generated from the current map. As can be seen, the map generated by the color

classifier is unusable for robot navigation due to the many phantom obstacles.
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Fig. 11. Example for the classification results using only color in the environment shown in Fig. 9.
The image corresponds to the scene shown in the first column of Fig. 10. The gray value in the

right image corresponds to the probabilities for traversable area, where brighter values indicate

higher probabilities.

Table 2. Travel time with the laser-based system and with our

combined approach.

Technique Travel time (5 runs) Avg.

3D laser only 219s 136s 208s 135s 135s 167s

Vision & Laser 136s 94s 120s 96s 87s 107s

Scenario 1 2 3 4 5

at least every 1.3 m to 1.4 m. For larger distances, typical floors (wood or PVC)

provide poor measurements with the Hokuyo laser due to the inclination angle.

In the following set of experiments, the task of the robot was to travel through

an initially empty corridor. We first uniformly sampled the robot’s goal location, the

number of obstacles (from 1 to 3) and their positions. After placing the obstacles

in the scene, we measured the time it took the robot to navigate through the

corridor with and without our vision-based system. The experiment was repeated

five times. The travel times for each experiment are depicted in Table 2 and, as

can be seen, our vision-based approach required on average 107 s compared to 167 s

with the laser-based system. We carried out a paired two sample t-test with a 0.995

confidence level. The test shows that this result is statistically significant (tvalue =

5.692 > t-table(conf=0.995; DoF=4) = 4.604). Hence, our vision-based approach

is significantly faster and hence more efficient than the laser-based approach with

fixed 3D scanning intervals.

Furthermore, note the laser-based approach is not applicable in changing envi-

ronments, e.g., scenarios with moving objects. Since taking a 3D scan during walking

is not possible, the robot gathers only laser 2D data in-between two 3D scans and

is thus not able to sense all objects blocking its way. Our vision-based approach on

the other hand, updates the environment representation at a frequency of 3.5 Hz

and can thus quickly react to changes in the environment.
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Fig. 12. Experiment with moving people. People traverse the area in front of the robot and are
classified as obstacles in the camera images. In the left column, one can observe one error in the

classification. The white shoe of the person is more similar to the previously seen background than

to the obstacles and thus is classified wrongly. Nevertheless, given the detected leg of the person,
the robot updates its map correctly and replans the trajectory (green) to avoid collisions.

3.6. Comparison to Ground Truth

Table 3. Path execution times when planning the path in a perfect map
versus in a map created by our vision-based system.

Technique Travel time (10 runs total) Avg. and std.

Motion capture 92.5s 93.0s 90.0s 89.0s 93.5s 91.6s ± 1.8s

Vision & laser 91.5s 105.0s 91.0s 95.0s 99.0s 96.3s ± 5.2s

The next experiment was designed to evaluate the efficiency of the trajectories

through a cluttered scene by comparing the ones generated by our system with
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1
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3

Fig. 13. Nao navigating in the course for the comparison with perfect observations. The boxes

have been equipped with white ball-shaped markers so that they can be tracked with our real-
time motion capture system.

start

poles 1

2
3 start

pole 1

2
3

Fig. 14. Left: Map created from perfect observations along with the path taken by the robot (teal).

The map shows the obstacles (dark red) along with the safety margin respecting the robot’s radius
used for navigation (light red). Right: Map created for a similar scene using our vision-based

approach, along with the robot’s trajectory. The left-most and right-most poles are not mapped
because they were out of the field of view of the camera. Tall obstacles occupy more space in this

map due to the inverse perspective mapping. This effect resolves if the perspective changes, e.g.,

if the robot gets closer to the object or observes it from another side.

the output of a system that has perfect knowledge about the robot’s environment

from an external motion capture system. In this experiment, the robot first navi-

gated through a corridor using our vision-based approach. The robot initially took

a 3D range scan to train its classifiers, and then started navigating to a fixed goal

location at the end of the corridor, while updating its map based on the visual input.

While the robot was moving, we placed three box shaped obstacles in the robot’s

path, thereby blocking the direct path to the goal and forcing the robot to take a

detour twice. We measured the time it took the robot to walk to the goal from its

starting location. We carried out 5 runs of such navigation tasks. Then, we repeated

the experiment with a map constructed by tracking the obstacles with an motion

capturing system. With this setup, we repeated the navigation task described above

another 5 runs, but using the ground truth map for path planning. An image of

the scenario is shown in Fig. 13, while Fig. 14 show an example map for each of
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Fig. 15. Left: Scene during training (robot outside the camera’s field of view). Middle: New but

similar-looking objects do not trigger retraining. Right: The newly appeared carpet is correctly

interpreted as a substantial change and retraining is triggered.

the two approaches. Note that the obstacles appear larger on the map created by

our vision-based approach due to the re-projection of the classification from the

image plane to the ground plane. However, once the robot observes the floor that

is erroneously occupied by the obstacle, the free space is updated properly.

The average travel time using the motion capture system was 91.6 s. Our ap-

proach took 131.3 s for the same setup including 35 s for obtaining the 3D scans

to train the classifiers. The training phase is obviously not needed if ground truth

information is available. The pure travel time by our approach was 96.3 s, i.e. less

than 5 s more than the setup with perfect knowledge on the environment. The

path execution times for the experiments are shown in Table 3. The slightly longer

travel times are explained by the fact that minor pose inaccuracies in the mapping

phase lead to obstacles that are slightly larger than in reality and thus produce

marginally longer trajectories. In one experiment using our proposed approach, the

planned path “oscillated” for a short while (once planned a left and a right detour

around an obstacle) which causes the single outlier in the data reported in Table 3.

3.7. Retraining the Classifiers to Cope with Appearance Changes

This following experiment shows that the robot can adapt to changes in the envi-

ronment using the retraining heuristics presented in Sec. 2.5. Initially, two obstacles

were placed in the scene. After the robot took a 3D scan to train its visual classi-

fiers and started walking towards the goal location while avoiding newly detected

obstacles. Afterwards, we placed a carpet in front of the robot.

Without the retraining heuristic, the robot correctly detected and avoided all ob-

stacles. However, it also detected the carpet as an obstacle and hence, did not cross

it. As it was blocking the passage, the robot could not reach the goal. We repeated

the experiment with the retraining heuristics, Fig. 15 illustrates this scenario. Again,

the robot detected and avoided the obstacles blocking its path. When we placed

the carpet in the scene, retraining was triggered due to a different color distribution

in the current image. Accordingly, the robot stopped walking and took a 3D scan

to retrain its visual classifiers. Because the carpet was classified as traversable in
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Fig. 16. Identification of moving obstacles during acquisition of training data. The scene corre-

sponds to Fig. 4. The top row illustrate our approach without exploiting optical flow information.
In the bottom row we consider optical flow for identifying moving obstacles during training. The

first three columns depict the training data and the last column show the classification results

obtained with our approach. Considering optical flow leads to better classification results.

the 3D scan, the visual classifiers also learned that the carpet is traversable. So the

robot continued walking and crossed the carpet to reach its goal location.

3.8. Learning Traversability Classification in Dynamic Scenes

This experiment demonstrates that using our approach, the robot is able to acquire

valid training data even in the presence of moving obstacles. While our robot was

taking a 3D scan for training, a wheeled robot navigated in front of the humanoid,

as shown in the top row of Fig. 4. Once the humanoid completed the 3D scan,

our algorithm identified the traversable and non-traversable areas in the scan, and

projected them into the camera image to train the visual classifiers.

The top row in Fig. 16 depicts the results we obtained without detection of

moving obstacles. The first image shows the classification of the 3D scan with the

original method. The whole trajectory of the wheeled robot is visible in the scan

and identified as obstacle. The next two images show the parts of the training image

labeled as traversable and non-traversable, respectively, as obtained by projecting

the classified 3D scan into the training image. These parts are used as training

samples for the two different classes. One can see that the training data is defective

because parts of the wheeled robot are visible in the training data for traversable

areas, while the wheeled robot itself is not contained as a whole in the training

data for non-traversable areas. The last image shows an example classification with

the vision-based approach, after training from the defective data. Here, parts of the

wheeled robot are wrongly classified as traversable.

The bottom row in Fig. 16 shows the same experiment as described above, but

this time using the extension to identify moving obstacles using optical flow, as pro-

posed in Sec. 2.6. Here, the wheeled robot’s trajectory is not visible in the 3D scan
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Fig. 17. Our approach can also be used to support data from Kinect-like sensors. The left image

shows the RGB image from a Kinect that we used as training image. The middle image shows the
corresponding depth data from the Kinect. The image contains some blind spots in the background.

The right image shows the subsequent RGB image with our classifier’s output.

(first image) and also not in the parts of the training data used to learn traversable

area (second image). Furthermore, the whole robot contained in the training data

for the non-traversable class (third image). Consequently, the classification obtained

from our vision-based approach yields substantially better results (last image). As

can be seen, the wheeled robot is completely identified as non-traversable and the

floor area is correctly marked as traversable.

3.9. Supporting RGB-D data

Finally, we illustrate the versatility of our approach and apply our classification

approach to support navigation based on Kinect-like RGB-D sensors. These devices

return RGB images and the corresponding depth data and can, in principle, directly

be used for obstacle detection and mapping. However, in some scenarios, the depth

data may be absent, for instance in presence of sunlight through windows, a low

inclination angle of the sensor, or objects close to the sensor. Fig. 17 gives an

example of such a scenario. The first image shows a RGB image from a camera

sequence and the second one the corresponding depth image. As can be seen, for

some parts in the background, no depth data was returned (marked black), due to

the bright sunlight and the low inclination angle. Navigation based on such data

is still possible, as the effect reduces once the camera gets closer, but the missing

depth data prevents foresighted planning.

We applied our approach to RGB-D data to illustrate how this problem can be

avoided. To provide this proof of concept, we trained our classifiers from the left

image in Fig. 17 and from the parts in the middle image where depth data was

available. We then applied the classifiers to the consecutive RGB image. The ob-

tained classification is shown in the right most image. As can be seen, our approach

correctly classifies the traversable and non-traversable areas and has no blind spots,

unlike the Kinect’s depth data. Thus, combining our classifiers with the depth data

from a Kinect, yields increased information about the environments which allows

for more foresighted navigation.
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3.10. Summary of Results

In the following, we discuss the properties of our approach. First, we demonstrated

high classification accuracy and reliable obstacle avoidance in multiple experiments.

Second, we increased the field of view for obstacle detection and the update rate

compared to pure laser-based navigation of the Nao. Accordingly, our system leads

to safer navigation and reduced travel time. Note that even on large-sized robots

with fast sensors, the process of obtaining 3D laser data requires about 1 s11. In

contrast to that, our vision-based approach currently observes the environment at

a rate of 3.5 Hz, i.e. every 285 ms. Third, by exploiting optical flow information, our

approach can react to dynamics in the scene while acquiring training data. Without

optical flow information, phantom obstacles would appear in the 3D point cloud

when dynamic objects pass in front of the robot while collecting data. Finally, we

showed that our approach can also be combined with RGB-D data from Kinect-like

sensors showing its general applicability.

Obviously, obstacles looking identical or very similar (regarding color and tex-

ture) to the ground will prevent the system from learning robust classifiers to dis-

tinguish ground from obstacles. Furthermore, the output of the visual classifiers be-

comes less significant when the obstacles vary strongly in appearance in the training

data. In these cases, the distributions representing the obstacle appearance flatten

and therefore distinguishing between obstacles and the floor becomes less reliable.

One way to detect such situations is to classify the labeled training images directly

after learning the classifiers. In case of large classification errors or uncertainties on

the training image, the classifiers are not suited to detect the obstacles in the scene,

and we can fallback to using only the laser.

4. Related Work

In the following, we discuss publications related to our paper. We first present

obstacle detection techniques that were particularly developed for humanoid robots

and, second, more general vision-based obstacle detection methods.

4.1. Obstacle Detection Techniques for Humanoid Robots

There exist several approaches that use external tracking systems to compute the

position of obstacles. For example, Baudouin et al. employ such a system to locate

obstacles in 3D and plan footsteps over non-static obstacles blocking the robot’s

path12. Stilman et al. also apply an external tracking system in order to plan

actions for a humanoid navigating amongst movable objects13 and Michel et al. to

generate sequences of footsteps for avoiding planar obstacles14.

There also exist techniques that use onboard sensing, like our approach. For in-

stance, Stachniss et al. introduced a simultaneous localization and mapping system

to learn accurate 2D grid maps of large environments with a humanoid equipped

with a laser scanner located in the neck15. Such a map is subsequently used by
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Faber et al. for humanoid localization and path planning16. During navigation, the

robot carries out a potential field approach to locally avoid obstacles sensed with

a 2D laser scanner and ultrasound sensors located at the hip. Also, Tellez et al.

use 2D laser data to construct a 2D occupancy grid map which they use for path

planning17. The laser scanners are mounted on the robot’s feet and the robot has to

walk in such a way that the feet are always parallel to the ground to obtain stable

2D measurements. Chestnutt et al. use 3D laser data acquired with a constantly

sweeping scanner mounted at a pan-tilt unit at the humanoid’s hip11. The authors

fit planes through 3D point clouds and construct a height map of the environment.

Afterwards, they distinguish between accessible areas and obstacles based on the

height difference. Such sensor setups can only be used on robots with a significantly

larger payload than the Nao. We augment navigation based on laser data with visual

observations.

Several solutions to visual obstacle detection for humanoid robots have previ-

ously been presented. For instance, Gutmann et al. build a 2.5D height map given

accurate stereo camera data and additionally update a 3D occupancy grid map to

plan actions for the robot leading towards the goal18,19. Ozawa et al. also devel-

oped a system that relies on stereo data to construct a dense local feature map20.

This system performs real-time localization and mapping with a humanoid robot

based on 3D visual odometry in a local environment. Cupec et al. detect objects

in monocular images and determine the robot’s pose relative to these objects to

adapt the trajectory accordingly.21 This technique relies on the assumption that

obstacles and floor are clearly distinguishable. Li et al. proposed a vision-based ob-

stacle avoidance approach for the RoboCup domain22. The authors assume known

shapes of the obstacles, i.e., the other field players and use gradient features learned

from training images, a color-based classifier, and ultrasound data to determine ob-

stacle positions. Their approach relies on a specific color coding of the scene which

simplifies the problem. Our approach is also based on visual classification, but auto-

matically generates training data from a laser range finder. Thereby it is possible to

adapt to new environments without manual intervention. Furthermore, we obtain

a dense classification of the images.

The approach presented in this article is an extension of our previous conference

paper23. Compared to the conference paper, we present a significantly extended

experimental evaluation of the approach and evaluate two different strategies to

exploit neighborhood information. In addition to that, we extended our previous

work so that it can now deal with dynamic objects in the scene during the training

phase, which was not possible before.

4.2. General Obstacle Detection Techniques Based on Visual

Information

In general, there exists a large variety of approaches for obstacle detection. For

instance, for monocular cameras, some approaches obtain obstacle information by
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inferring geometric information from camera images24 25 26. Other techniques, sim-

ilarly to our work, learn the appearance of obstacles from training data27,28,29.

Further approaches combine visual information with other sensor data to over-

come the limitations of a single sensor. In this context, Ohya et al. presented a

self-localization and obstacle detection system that matches image edges to a map

of vertical edges in a building30. Edges that can not be matched are treated as obsta-

cles and are consequently avoided. To detect moving obstacles, the authors further

employ ultrasonic sensors. Labayrade et al. proposed to combine laser data with

stereo vision for obstacle detection in the context of autonomous automotives31.

Obstacles are identified in the stereo vision data as well as in the laser range data.

The proposed algorithm then checks for consistency between the obstacle locations

as identified by both sensors to avoid false positives. An early approach in this field

was proposed by Wang et al. 32. Their approach uses color segmentation with adap-

tive thresholds to identify obstacles in a camera image. To avoid false positives,

they check consistency with the image from a second camera. Both cameras are

mounted rigidly on a vehicle.

Our approach also combines two sensors, namely a monocular camera and a laser

range finder, but in our case, to enable self-supervised training. In the remainder

of this section, we discuss publications that also apply automatic training. Fazl-

Ersi and Tsotsos use stereo data to extract dense information about floor and

obstacles33. The authors proposed to classify regions of neighboring pixels with

similar color information and also consider the distances from the ground plane

to distinguish between floor and obstacles. Subsequently, they learn color-based

models for the two classes. Other authors proposed to divide the camera image

into small rectangular patches and to compute feature vectors for each patch34,35.

Consequently, they learn models for the traversability of a patch by clustering in

feature-space. Both approaches obtain the training data from the robot’s interaction

with the environment, e.g., driving over the corresponding area. Such strategies are

not applicable for humanoids as they can easily lose their balance.

Dahlkamp et al. use vision for extending the perception range of the autonomous

car Stanley to allow for faster and more forward-looking driving36. The authors ap-

ply laser-based data for learning of a vision-based obstacle classifier. In contrast to

their work, we combine different visual cues, i.e., color and texture, to distinguish

between obstacles and the floor. We furthermore consider dependencies in neigh-

boring regions in the image and can deal with dynamic elements in the scene during

the self-supervised learning phase.

5. Conclusions

In this paper, we presented an efficient approach to vision-based obstacle detection

for collision-free humanoid navigation. Our system uses sparse laser data to train

image-based classifiers online in a self-supervised way. By analyzing image sequences

using optical flow to identify moving objects, our technique is able to perform the
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training also in dynamic scenes. After learning the visual obstacle classifiers, they

can be used for collision-free real-time navigation.

We thoroughly evaluated our system in real-world experiments with a Nao hu-

manoid. The experiments illustrate that the robot avoids obstacles reliably, navi-

gates efficiently, and can deal with dynamic obstacles in the scene. By applying our

learning approach to RGB-D images, we illustrated that our approach is generally

applicable when combining vision and depth data and that it can be used to support

navigation systems relying on Kinect-like sensors.
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