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Abstract— In this paper, we present an approach to
traversability classification solely based on monocular images
and odometry estimates. We iteratively estimate the ground
plane by detecting and matching features. Since the features
are only sparse in the images and do not lead to dense
information about traversability, we present a technique to train
appearance-based floor detectors. In this way, we achieve a
dense classification of the image data. Our approach trains the
classifiers online in a self-supervised fashion from the ground
plane estimation. During robot navigation, the classifiers are
automatically updated and applied to the image stream to
decide which areas are traversable. From this information,
the robot can compute a two-dimensional occupancy grid
map of the environment and use it for planning collision-free
paths. As we illustrate in thorough experiments with a real
humanoid, the classification results of our approach are highly
accurate and the resulting occupancy map enables the robot
to reliably avoid obstacles during navigation. Our appearance-
based classifiers can also be used to augment stereo or RGBD-
data in close ranges where these sensors cannot provide any
depth information.

I. INTRODUCTION

Collision-free navigation is one of the most essential
capabilities of autonomous robots. Typically, they use dis-
tance data, i.e., from laser range finders or stereo cameras
to detect obstacles. Recently, depth cameras such as the
Microsoft Kinect or Asus Xtion have become available on
the consumer market and have been used for navigation with
mobile robots (e.g., [1]). However, monocular cameras are
still the typical sensor, light-weight robots are equipped with.

In this paper, we extend our previous work on obstacle
detection that operated on monocular images and sparse laser
data [2]. In that approach, the robot trained visual classifiers
for obstacles and the floor based on classified distance data,
which lead to highly accurate image labeling and traversabil-
ity classification results. Since not all humanoid robots
possess a laser range finder whose data can be used to acquire
training data, we developed a new approach that relies solely
on monocular images and odometry data. The approach
does not make use of any distance data. Our method finds
sparse features on the floor plane from geometric information
in an iterative fashion and deploys these features to train
appearance-based classifiers. The classifiers are subsequently
applied to densely label the camera images during walking.
From the labeled pixels, we learn a traversability map of the
robot’s surroundings in form of a 2D occupancy grid map
in which a collision-free path can be computed. The learned
classifiers are constantly updated during navigation. In this
way, the robot can deal with changing ground appearance
and reliably identify the traversable floor.

Fig. 1. Left: Image captured by the camera of a walking humanoid robot
with flow vectors of detected features on the estimated ground plane. Given
the floor features, we train visual classifiers to densely label patches of
subsequent images as being traversable or not. Right: Resulting traversability
probabilities for the successive camera image as estimated by our approach
(the brighter the color, the higher the probability of being traversable).

The left image of Fig.1 shows an image acquired from
the onboard camera of a walking robot. The circles show
the location of detected features on the floor plane. Due to
the motion of the camera, the locations of the features in the
image change from one image to another as indicated by the
flow vectors. Our approach iteratively estimates the ground
plane based on the detected flow. From the floor features,
we then train visual classifiers to label the traversable area
in successive camera images (right image of Fig.1).

Several approaches for estimating traversability from a
moving monocular camera have been proposed [3, 4, 5, 6].
Most of them try to recover structural information about the
environment from the camera motion. These methods often
rely on simplifying assumptions such accurate knowledge of
the camera or smooth motions that do not hold for walking
humanoid robots. Further popular approaches relying only on
feature correspondences (e.g., [7]) are unable to cope with
rotations when the translation is small and hence, are only
of limited use for humanoid navigation. In contrast to that,
our technique provides a dense labeling of the images from
which the traversable areas can be inferred, while the robot
is walking, standing, or turning on the spot.

As the experiments with a Nao humanoid demonstrate, our
approach achieves high classification rates and leads to an
accurate, dense labeling of the camera images. The resulting
occupancy grid map allows for collision-free navigation of
the robot.

II. RELATED WORK

Several techniques have been presented for obstacle de-
tection based on monocular image data. Broadly, these
approaches can be categorized according to whether they
operate directly on the appearance level or try to recover



structural information from a moving camera. Our approach
can be considered as a hybrid technique as it acquires
training data from structural information but reaches its
traversability decision based on appearance. We first discuss
related work focusing on structure from motion techniques
and then discuss appearance-based approaches.

Einhorn et al. [3] recover the scene’s geometry by tracking
features in consecutive images from the robot’s onboard
camera. Reconstructing the scene requires accurate pose
estimates of the camera, which the authors obtain from
odometry and filtering. This approach is applicable for
wheeled robots. Humanoids, typically provide only poor
odometry information.

Wang et al. [8] and Braillon et al. [4] presented approaches
that segment a camera image into different regions and apply
a given model of floor motion to these regions. A region
is considered as traversable if it can be matched in the
consecutive image at the computed location based on the
assumed floor motion. These methods also rely on accurate
odometry data to estimate the floor model.

Kim and Kim [5] use dense optical flow to compute
the plane normals for small image regions. Traversability is
estimated from the normals’ consistencies with the estimated
normal of the ground plane. Obtaining accurate dense optical
flow for images from a walking humanoid’s onboard camera
is difficult to obtain even with a state-of-the-art approach [9]
as we found out in experiments. Further approaches based
on optical flow to detect obstacles make certain assumptions
about the environment that are not generally applicable. For
example, Low and Wyeth [6] presented a method that relies
on the assumption that optical flow only occurs at obstacles.
Hence, the approach is unsuitable for environments with
textured floor such as parquet.

Pretto et al. [10] presented a framework for visual odom-
etry based on specifically designed feature detectors that can
cope with effects of motion blur typically occurring during
humanoid walking. The detected features are sparse in the
image and hence not sufficient for reliable obstacle detection.

Common to all these approaches is that they rely on
information from a moving camera. Appearance-based ap-
proaches, on the other hand, classify the camera image using
only visual information. For instance, Ulrich and Nourbakhsh
[11] use color histograms to model traversable areas. They
learn the model by retrospectively updating a histograms over
the color of the floor from a robot’s camera while manually
steering the robot through the free space.

Michels et al. [12] presented an approach to estimating
depth from a single monocular image. The approach applies
a regression techniques to learn a mapping from the feature
space to distance. The drawback is that the approach requires
a prior training period whereas our approach carries out
automatic learning while navigating.

Newcombe et al. [13] presented DTAM, a system for
monocular camera-based tracking and dense reconstruction
and showed impressive results. The system reconstructs a
scene by minimizing a photometric cost function, computed
from multiple images. The approach relies on a static world

assumption and on brightness consistency. Further, it requires
a special initialization stage to construct an initial environ-
ment model. This is because an accurate model is needed
for tracking and subsequent mapping. It is questionable how
well the system performs in case of rapid exploration (i.e.,
quick movements), as is typically the case in mobile robotics.

Previously, we presented an approach where a humanoid
constantly adopts a scanning position and tilts its head to
acquire 3D range data from a laser scanner on top of the
head [2]. Afterwards the robot trains visual classifiers for
obstacles and the floor based on classified laser data projected
to the camera images. While this technique leads to highly
reliable classification results, a drawback is that collecting
the 3D data is time-consuming. Furthermore, not all robots
possess a laser scanner that can be used to acquire the
training data. Therefore, we present a new approach that
uses only monocular images and odometry information from
which dense information about traversability is estimated.

III. PRELIMINARIES

In this section, we briefly describe the mathematical back-
ground [14] and notations used in this paper. Readers familiar
with multi-view geometry can skip this section. Our approach
learns appearance-based classifiers from features on the floor
plane. We identify these features using an iterative technique
based on homography estimation.

A homography is an invertible, projective mapping be-
tween two planes. Here, we consider the special case that
corresponding points x↔ x′ in two images of a plane π in
3D are mapped to each other by a homography H ∈ R3×3.
This means, that x and x′ represent the same point on the
plane π in 3D but in different camera views. We call H the
homography induced by π and its defining equation is

x̃ = H x̃′, (1)

where x̃ indicates that x is expressed in homogeneous coor-
dinates.

A homogeneous representation of a point x = (x, y)T

in 2D can be obtained by adding an additional coordinate
with value 1, i.e., x̃ = (x, y, 1)T . The same principle is easily
extended to higher dimensions. It is important to note that
there exists an equivalence class of homogeneous coordinates
that all represent the same point. Two homogeneous points
are equivalent if they differ only by a scale factor λ ∈ R\{0}.
Thus, from a homogeneous representation x̃ = (x1, x2, x3)

T ,
we can go back to the original representation x = (x, y)T by
defining x = x1

x3
and y = x2

x3
. The advantage of homogeneous

coordinates is that all affine transformations can be expressed
by a single matrix multiplication.

For instance, for a point in 3D given in homogeneous
coordinates X̃, its homogeneous image point is given by

x̃ =M [R | t] X̃, (2)

where R ∈ R3×3 is a rotation matrix and t ∈ R3×1 is
a translation vector. [R | t] is the extrinsic camera matrix
transforming points from the world coordinate system to the
camera coordinate system. The matrix M ∈ R3×3 is the



Odometry Camera

Feature
Extraction

Initialization Correspondence
Search

Training

Homography
Estimation Classification

Local Map

image pairs

Fig. 2. Overview of the proposed system. We compute corresponding
features in image pairs by iteratively estimating the ground homography
and matching corresponding features. Features identified as belonging to
the floor are then used to train appearance-based visual classifiers. These
classifiers are applied to estimate dense traversable areas in the images and
to guide the homography estimation in subsequent image pairs.

intrinsic matrix of the camera and projects points to the
image plane. Here, we assume that the standard pinhole
model for M is applicable and the camera images are
undistorted. In the following, we abandon specific indication
of homogeneous coordinates for sake of comprehensibility.

IV. APPROACH

Fig. 2 gives an overview of our system. We extract
features that are matched between image pairs and used to
iteratively estimate the floor homography. The homography
is initialized from odometry to guide the first matching step.
Once the correspondences on the floor plane are established,
we interpret the sparse feature points as training examples for
the appearance of the floor and train visual classifiers. Sub-
sequently, the classifiers are applied to assign traversability
labels to successive images, which we then use to construct
a local map of the scene around the robot for navigation.

V. GEOMETRIC FLOOR ESTIMATION

For identifying points on the floor, we match features that
are compatible with the floor homography in image pairs
captured by a camera while the robot is moving. One of
the biggest problems with extracting and matching features
between images from a moving camera is the occurrence
of motion blur. Especially humanoid robots often move in
a jerky way that induces blur effects in the camera image.
Hence, we first introduce our technique to acquire steady
images that further have the maximum possible baseline.

A. Identification of Steady Images While Walking

To identify phases in which the camera is steady, we
exploit the specific movement of humanoid robots, which
often sway sideways during walking. When the direction
of the swaying changes, the body has to undergo a short

phase with zero velocity before it sways the other way. Our
algorithm tries to detect these phases and extracts the camera
images at that moment. A further advantage of this approach
is that the recorded camera images have the maximum
possible baseline during two foot steps which facilitates
computing the planar homography.

To detect the corresponding phases, we compute the lateral
inclination angle of the camera relative to gravity using
an integrated inertial measurement unit. We use a delayed
running average filter with a window length of 0.1 s on the
angle measurements to smooth the data. Then, we identify
the steady points as the extrema of the smoothed function.
As a result, we are able to identify camera images with little
motion blur and a relatively large baseline that we use for
geometric floor estimation as described next.

B. Feature Extraction and Association for Floor Estimation

1) General Approach: To identify the floor plane we use
an iterative approach. We consider image pairs from which
we detect and match features that are compatible with the
homography H induced by the ground plane. Thus, we
search for correspondences xi,↔ x′i in the images Ij , Ij+1

with
‖x′i −H xi‖ < ξ, (3)

for a threshold ξ. The homography H can in turn be re-
estimated from the feature pairs that correspond to the floor
by optimization. In more detail, we consider successive
steady images Ij and Ij+1 as identified in Sec. V-A in
which we extract SURF features [15]. Let the detected
features in Ij be fj and the features from Ij+1 be fj+1.
We seek the set S = {(xi, x′i)} of correspondences with
xi ∈ fj and x′i ∈ fj+1, representing the floor in Ij and
Ij+1, respectively. At each iteration k of our algorithm, we
update the estimate for the floor homography H(k−1) from
the current correspondences S(k−1) to yield H(k) and then
refine the correspondences S(k−1) from H(k) to yield S(k).

2) Correspondence Search: To find the set of corre-
spondences S(k), we consider the homography H(k) and
the 64-dimensional SURF descriptor. We define the set of
candidates Ci for a feature xi ∈ fj as

Ci = {y ∈ fj+1 |
∥∥y−H(k) xi

∥∥ < ξ} (4)

according the homography H(k), where ξ is the search
radius. As correspondence x′i ∈ Ci to xi, we select the
visually most similar candidate feature according to the
SURF descriptor d(·), i.e.,

x′i = argmin
y∈Ci

‖d(y)− d(xi)‖. (5)

We also apply the common constraint that the ratio between
the descriptor distance of the best match x′i to the descriptor
distance of the next best match is above a threshold ρ.
Further, we perform the mutual consistency check, i.e., we
demand that xi is also within the l most similar correspon-
dences for x′i in terms of the descriptor distance. S(k) is
then the set of all pairs (xi, x′i) fulfilling these constraints.
In each iteration, we reduce the search radius ξ. In this way,



we reduce the ambiguities in the feature matching process
because the number of candidates |Ci| shrinks with ξ.

3) Homography Estimation: To estimate H(k+1), we ap-
ply a standard non-linear optimization to S(k). The non-
linear optimization finds a least-squares solution for H to
the problem x′i = H xi, i.e., it minimizes

n∑
i=1

x′i −H xi, (6)

where n =
∣∣S(k)

∣∣. For the minimization we use the numeric
Levenberg-Marquardt algorithm.

4) Initialization: To initialize the algorithm, we consider
the homography H(0) computed from the odometry as

H(0) =M [ ej+1
1 ej+1

2 ej+1
4 ] [ ej1 ej2 ej4 ]M

−1 (7)

where M is the camera’s intrinsic matrix and eji are the
i-th columns of the camera’s extrinsic matrix at time j.
The e3 have been dropped due to the projective nature of
homographies [16, Ch. 11]. We then initialize S(0) from
H(0) as in 2). To include prior knowledge into the estimation
of H(1), we further demand that the features xi in S(0)

are only sampled from parts of the image that are labeled
as floor by our appearance-based classifiers. This constraint
is waived in all subsequent iterations to be able to adapt
to changing floor appearances but substantially improves
the initialization. We then robustly estimate H(1) from the
remaining correspondences using RANSAC. Afterwards, we
proceed with the iterative refinement.

5) Iterative Refinement: We iterate steps 2) and 3) until
the number of correspondences n have converged or a
maximum number of iterations is reached. Typically, five to
ten iterations are sufficient. In this way, we obtain a set of
corresponding features on the floor plane xfloor ↔ x′floor in the
two subsequent images Ij and Ij+1. These features are then
used to train visual classifiers as described in the following
section. Fig. 1 illustrates the result of our algorithm. The left
image shows the first image Ij of the pair (Ij , Ij+1) along
with the detected floor points xfloor and the corresponding
flow vectors, i.e., the displacement x′floor − xfloor. As can be
seen, our algorithm reliably extracts features corresponding
to the floor.

VI. APPEARANCE-BASED TRAVERSABILITY ESTIMATION

The set of floor points xfloor is typically sparse in the image
as illustrated in Fig. 1. However, for collision-free navigation,
dense information is required. We therefore developed an
appearance-based approach to estimate traversability from
images. We model it as an one-class classification problem
since we have accurate information about features on the
floor but no reliable information about obstacles.

We first train a texture-based and a color-based classifier
using the floor point correspondences xfloor from the image
Ij , as explained in the next paragraph. These classifiers are
then used to label all successive images until new training
data is available. Note that all images are labeled, not only
the steady images used for ground plane estimation (see

Fig. 3. Virtual downwards-looking camera as described in Sec. VI-A. The
images correspond to the situation depicted in Fig. 1. The dots in the left
image indicate the detected floor points xfloor. The right image shows the
traversability estimation based on texture (the brighter the color, the higher
the probability of being traversable).

Sec. V-A). This is necessary to be able to react to changes
in the environment and update the map in a timely manner
as well as to label images while standing or turning.

A. Texture-Based Classification

The texture classifier labels image patches according to
their representation in the frequency-domain. In particular,
we employ the discrete cosine transformation (DCT) to
extract texture information [17]. For an input image, the
DCT computes a set of coefficients which can be regarded
as weights of a set of two-dimensional basis functions cor-
responding to different frequencies. Hence, the coefficients
represent the amount of presence of certain frequencies in
the image. Since the DCT is not invariant to perspective, we
do not operate on the camera image directly but project it
to a virtual downwards-looking camera. This projection is
computed by applying a homography induced by the floor
plane between the camera and a virtual camera looking
perpendicular at the floor at a fixed height of 2 m and 1 m
in front of the real camera. The homography is computed
from odometry, similar to Eq. 7. The left image in Fig. 3
shows an example of such a top-down view. Note that
this step works also with inaccurate odometry information:
Translational errors have no impact on the classification
accuracy, and we observed the classifier to be robust to
rotational errors up to 30◦. From the projected image, we
extract rectangular patches of size 16×16. To these patches,
we apply the DCT and keep only the 13 coefficients corre-
sponding to the lowest frequencies in the image patch for
dimensionality reduction and generalization. The extraction
of these features is described in more detail in our previous
publication [2]. For training, we extract the patches from
the projected camera image at the location of the features
xfloor, compute the DCT-based descriptor and store it in a
KD-tree. For classification, we project an image to the top-
down view and also align the orientation of the top-down
view with the orientation of the projected training image.
In this way, we compensate for the rotational invariance of
the DCT-based descriptor. Subsequently, we extract 16× 16
patches at a fixed distance of 8 pixels, compute the DCT-
based descriptor and determine a traversability probability.
Here, we use the distance of the patch’s DCT-based feature
vector y to its nearest neighbor y′ in the KD-tree and define
the probability of y being traversable as exp

(
−

∥∥y − y′∥∥
σ

)
.
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Fig. 4. Qualitative evaluation of traversability estimates. The columns show the robot’s onboard camera images and the corresponding traversability
estimates from our approach along with the corresponding timestamps. The last column depicts an overview of the scene and the learned occupancy grid
(where obstacles appear dark, traversable area white, and unknown gray). Note that the varying coarseness within the labeled images stems from combining
two different classifiers with different resolutions. The numbers in the map correspond to the obstacles marked in the camera images. The light arrow
indicates the robot’s pose as shown in the overview picture. The dashed line illustrates the robot’s trajectory. The map is shown at the time the robot
reached its goal location (dark arrow).

Hence, we apply the exponential probability density function
with scale σ, which controls the steepness of the function.
We average the probabilities for the pixels according to
the overlapping patches. The right image in Fig. 3 shows
an example classification result in terms of traversability
probabilities.

B. Color-Based Classification

Due to the projection to the virtual downwards-looking
camera, some parts of the original image cannot be labeled.
This is demonstrated in Fig. 3 where a part of the original
camera image shown in Fig. 1 is missing due to the projec-
tion. Also, the regions close to the margins of the visible area
are not suitable for texture-based classification. Therefore,
we train a second classifier based on color to achieve a
classification of the whole image.

We compute the average HSV color in a 4 × 4 neigh-
borhood around the floor points xfloor and store them in a
KD-tree. For classification, we again divide the image into
4×4 patches and assign traversability probabilities according
to the distance to the nearest neighbor as described above.

For the final classification, we combine the prediction
from both classifiers by a weighted average. For considering
dependencies between nearby areas and smoothing, we apply
probabilistic relaxation labeling [2, 18]. Fig. 1 shows an
example for a final classification result.

C. Using Traversability Information for Navigation

For planning the motion of the robot, we maintain a
2D occupancy grid map [19] to integrate the traversabil-
ity information from the classified camera data over time.
Each cell of the map represents the probability of being
traversable. To integrate the traversability information from
the camera, we project the labeled camera image to a virtual
top-down looking camera as described in Sec. VI-A. By
using bilinear interpolation, the traversability information
from the camera image is mapped to the coordinate frame
of an occupancy map. We update each cell using standard
occupancy grid map updating. An example of such a map is

shown in Fig 4 (right image). Afterwards, the map is used
for planning collision-free motions by applying A∗.

VII. EXPERIMENTS

We conducted a series of experiments on a Nao (V4)
humanoid robot to demonstrate that our approach is able
to reliably learn about traversability using only odometry
information and monocular images. In the experiments, we
used the top camera in the robot’s head. The camera’s
diagonal field of view is 72.6◦ and provides images with
a resolution of 320×240. For all experiments, we weighted
the prediction of the texture-based classifier with 0.9 and the
color-based classifier with 0.1. The values were experimen-
tally determined. We further initialized the radius ξ, in which
candidate corresponding features are searched, to the length
of the expected flow according the homography. This way
we allow smaller deviations for features in the background
which move only little between two images.

A. Qualitative Results on Traversability Estimation

In the first experiment, we placed various obstacles on
the floor in our lab. The robot walked through the scene
to a designated goal location. Fig. 4 shows classification
results obtained during this experiment. The columns show
the camera image and the traversability estimates, ordered
chronologically from left to right. The last column shows
an overview picture of the scene as well as the state of
the learned occupancy grid map at the time when the robot
reached the goal location. As one can see, our approach
results in correctly labeled images and the constructed grid
map can be used for collision-free navigation.

B. Adapting to Changing Ground Appearance

The following experiment is designed to illustrate that
our approach can automatically adopt to new environments,
specifically to changing ground appearance. To illustrate this,
the robot started to navigate on a parquet floor. Distant,
we placed a PVC floor coating that was visually dissimilar
from the parquet. Fig. 5 shows resulting classification results
as well as the learned grid map in this experiment. The
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Fig. 5. The images illustrate that our approach automatically adapts to changing ground appearance. The columns show the robot’s onboard camera
images at different timestamps along with the traversability estimates, while the robot approaches a floor with different appearance. Both floors are correctly
identified as traversable. The fourth column depicts an overview and the constructed grid map. The numbers in the map correspond to the obstacles marked
in the camera images. The bright arrow indicates the robot’s pose in the overview picture. The map is shown at the time the robot reached its goal location
(dark arrow). The last column shows the detected feature points and flow vectors for the camera images in column 1 and 3, respectively.

robot immediately labeled the parquet as traversable (1st

column) but considered the PVC floor as obstacle due to its
dissimilarity from the parquet and only few feature matches
for the PVC floor in the background. As soon as the robot
got closer (2nd column) and hence, could detect features
on the PVC floor for training the classifiers, the PVC as
well as the parquet parquet were labeled as traversable (3rd

column). As can be seen, the resulting grid map (4th column)
correctly represents the area corresponding to the PVC floor
as traversable. The last column shows the detected feature
points and corresponding flow vectors for the camera images
in the 1st and 3rd column, respectively.

C. Classification Accuracy

To quantitatively evaluate our approach, we compared the
traversability estimates for the camera images assigned by
our algorithm to manually assigned ground truth labels for
the experiments described in Sec. VII-A (experiment 1) and
Sec. VII-B (experiment 2), respectively. To compare the
binary manual labels of the images with the traversability
probabilities provided by our approach, we considered each
pixel in the latter as representing floor area, if its traversabil-
ity probability was above 0.5 and as obstacle otherwise.
Then, we counted the number of pixels coinciding with the
manual labels. Table I presents the classification accuracy. As
can be seen, the classification rates are highly accurate. The
probability that a pixel corresponding to an obstacle was clas-
sified as traversable space lies between 6% and 12%. Note
that in practice, the number of potentially dangerous false
classification is even lower because most false classifications
occurred in the background of the scene. In these regions,
the texture-based classifier has no information due to the
projection of the image to the virtual camera (see Sec. VI-
A) and our approach relies only on color information. As
soon as the robot gets closer to these obstacles, they appear
in the projected image and the texture classifier can be used
as well to identify the traversable floor.

D. Turning on the Spot

In the next experiment, we demonstrate that our tech-
nique is able to classify camera images even if the robot

TABLE I
TRAVERSABILITY CLASSIFICATION ACCURACY.

experiment 1 experiment 2

estimated as estimated as

true class obstacle floor obstacle floor

obstacle 0.88 0.12 0.94 0.06
floor 0.03 0.97 0.06 0.94

is turning on the spot. Many structure-from-motion based
approaches (e.g., [7]) fail in these situations since it is
not possible to compute structural information for rotations
around the optical center of the camera. In contrast to that,
our approach yields correct classification results also for
rotations by using the previously learned visual classifiers.
After turning, the robot then automatically re-trains the
classifiers when it starts to move. Fig. 6 shows results from
the traversability estimation while the robot turned counter-
clockwise by circa 100◦. As can be seen, the classification
results allow the robot to detect obstacles in the scene and
will improve even further once the robot starts navigating
and updating the classifiers.

E. Dealing with Moving Obstacles

In a final experiment, we illustrate the ability of our
approach to deal with dynamics in the environment. While
the robot was walking, we rolled a soccer ball several times
into the robot’s field of view. Fig. 7 shows results for the
traversability estimation as well as the corresponding camera
images. As can be seen, the images are robustly labeled and
the traversability estimation leads to collision-free navigation
of the robot.

F. Remarks

If obstacles look (in terms of the texture features and color)
very similar to the floor, appearance-based classification will
fail. The same may hold for textureless floor, for example
a homogeneously black floor, since it will not generate any
interest points. Furthermore, we assume that the floor plane
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Fig. 6. Obtained classification results while the robot turns on the spot.
The rows show the robot’s onboard camera images and the traversability
estimates for different rotation angles.

Fig. 7. We achieve reliable traversability estimates also in presence of
moving obstacles. We rolled a soccer ball multiple times in front of the
robot’s field of view while navigating. The top row shows the camera images
and the bottom row the corresponding traversability estimates.

is dominant (with respect to the number of features) in the
first image pair. Afterwards, the floor can be identified by
considering the appearance model in the homography estima-
tion, even in the presence of larger obstacles. Concerning the
computation time, we found that labeling images takes 0.1 s
on a single core of a standard i7 PC. Training the classifiers
takes 2.0 s, of which the majority is required for the iterative
feature matching. For real-time navigation, we thus cannot
re-train from every image pair, but are still able to label all
steady camera images, that we obtained at a rate of 2 Hz on
a Nao humanoid.

VIII. CONCLUSIONS

In this paper, we presented an approach to estimate
traversable areas in the surroundings of a humanoid robot

solely based on monocular images and odometry informa-
tion. We apply an iterative approach to estimate the floor
homography by detecting and matching compatible features.
To get dense information about traversability given the sparse
floor features, we developed a technique to train appearance-
based classifiers based on color and texture. Using the classi-
fiers, which are automatically learned online, the robot labels
its camera images and updates a map of the environment
while walking, standing, and turning. As we showed in
practical experiments with a Nao humanoid, the achieved
classification rates are highly accurate. The labeled images
lead to safe navigation and the robot constantly updates the
classifiers so as to adapt to changing ground appearance. The
proposed appearance-based classifiers can also be used in
combination with RGBD-sensors that do not provide depth
data at close ranges. In these cases, monocular image data
can be analyzed using the learned classifiers.
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