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Abstract—In this paper, we present an integrated approach
for robot localization, obstacle mapping, and path planning
in 3D environments based on data of an onboard consumer-
level depth camera. We rely on state-of-the-art techniques
for environment modeling and localization, which we extend
for depth camera data. We thoroughly evaluated our system
with a Nao humanoid equipped with an Asus Xtion Pro Live
depth camera on top of the humanoid’s head and present
navigation experiments in a multi-level environment containing
static and non-static obstacles. Our approach performs in
real-time, maintains a 3D environment representation, and
estimates the robot’s pose in 6D. As our results demonstrate, the
depth camera is well-suited for robust localization and reliable
obstacle avoidance in complex indoor environments.

I. INTRODUCTION

Autonomous robots are designed with the ulterior motives
that at one point, they can assists humans with tasks such as
home-care, delivery, etc. All of these high-level tasks require
that the robot is able to localize itself in the environment,
detect obstacles, and avoid collisions with them by keeping
track of their locations and planning collision-free paths
around them. For localization and obstacle detection, an
autonomous robot has to rely on onboard sensor information.
Numerous sensors have been used for this purpose, including
ultrasound sensors, laser range finders, as well as monocular
and stereo cameras. All of these sensors suffer from short-
comings such as inaccuracy, sparseness, high algorithmic
complexity, or simply weight or cost. Recently, depth cam-
eras operating with projected infrared patterns such as the
Microsoft Kinect or Asus Xtion series have become available
on the consumer market, lifting some of these limitations.
These cameras are relatively accurate and provide dense,
three-dimensional information directly from the hardware.
To the best of our knowledge, in this paper, we present the
first integrated navigation system consisting of localization,
obstacle mapping, and collision avoidance for humanoid
robots that is based on depth camera data.

For a humanoid robot acting in complex indoor envi-
ronments containing multiple levels and 3D obstacles, a
volumetric representation of the environment is needed.
Our approach relies on a given 3D environment model in
form of an octree [1] that contains the static parts of the
environment. In this representation, the robot estimates its
pose using Monte Carlo localization based on acquired depth
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Fig. 1. Top: Nao humanoid robot with a depth camera on its head and part
of the multi-level environment. Bottom: 3D representation of the scene used
for collision avoidance. The map was constructed in real-time by turning
on the spot for about 60◦, thereby integrating 28 depth images.

camera data. Given the estimated 6D pose of the humanoid
and a sequence of depth images, our system continuously
builds a local 3D representation of the current state of
the environment containing also non-static obstacles. This
learned octree-based representation is then used for real-time
planning of collision-free paths.

Fig. 1 shows a motivating example of our system. The
upper image depicts a humanoid navigating on the top level
of a two-story environment. The lower image shows the
robot’s internal representation of its pose estimate and the
local environment model, both maintained from depth camera
measurements. In the environment model, one can clearly
identify objects such as the table, the cabinet, the plant, or
parts of the railing. The map was constructed in real-time
by turning on the spot for about 60◦, thereby integrating 28
depth images.

After presenting the basic techniques and our extension
towards depth camera data, we illustrate the performance of
our system for a Nao humanoid equipped with a Asus Xtion
Pro Live sensor on top of the head. During the experiments,
the robot navigated in a 3D environment consisting of
multiple levels and containing several static and non-static
obstacles. We thoroughly evaluate our approach and show
results that demonstrate that our system leads to robust



localization and reliable obstacle avoidance in real-time. We
conclude that such consumer-level depth cameras are well-
suited for reliable humanoid robot navigation in complex
indoor environments.

II. RELATED WORK

The work most closely related to our approach has been
recently presented by Biswas and Veloso. The authors de-
veloped an approach for indoor robot navigation based on
depth camera data [2]. They proposed to sample points from
the depth data belonging to vertical planes. These points
are down-projected to 2D and used to update the particle
filter that estimates the robot’s pose. The observation model
hereby matches the projected points to a given map of walls.
The projected points are further used for obstacle detection.
One disadvantage of this approach is that it discards the
3D information of the sensor data. Therefore, robots using
this techniques cannot navigate in multi-level environments.

Hornung et al. presented a 3D localization method for
humanoid robots based on 2D laser data [3]. Similar to
our method, they applied a particle filter to estimate the
6D pose of the robot in a given 3D volumetric map of the
environment. Our work can be seen as an extension as our
approach does not require an expensive laser range finder
but uses comparably cheap depth cameras. Furthermore, our
system additionally contains 3D obstacle mapping and path
planning capabilities.

Baudouin et al. proposed an approach to footstep planning
and collision avoidance in 3D environments [4]. While the
approach works in real-time and allows the robot to step over
low obstacles, it relies on very accurate off-board sensing and
applies a sampling technique for path planning that can result
in arbitrarily suboptimal paths.

Nakhaei and Lamiraux presented a technique to 3D en-
vironment modeling from stereo data for humanoid motion
planning [5]. Similar to our approach, the authors proposed
to use a probabilistic voxel grid. However, their system has
no localization component, which leads to inconsistencies in
the learned map.

Ozawa et al. developed a system that relies on stereo image
sequences to construct a dense local feature map [6]. This
system performs real-time mapping with a humanoid robot
based on 3D visual odometry for short trajectories.

Pretto et al. estimate the 6D pose of a humanoid as well
as the 3D position of features in monocular camera data [7].
The authors designed feature detectors specifically to be able
to deal with the effect of motion blur that typically occurs
during humanoid walking. However, because the detected
features in the monocular image are sparse, the approach is
unsuitable for reliable obstacle detection.

Einhorn et al. presented an approach to 3D scene re-
construction and obstacle detection based on monocular vi-
sion [8]. The authors propose to track features in consecutive
images and recover the features’ positions from the ego-
motion of the camera. This requires an accurate estimate of
the camera pose, which the authors obtain from odometry of

a wheeled robot. The system also relies on sparse features
for obstacle detection.

Chestnutt et al. use 3D laser data acquired with a con-
stantly sweeping scanner mounted on a pan-tilt unit at the
humanoid’s hip [9]. The authors fit planes through 3D point
clouds and construct a 2.5D height map of the environment.
Afterwards, they distinguish between accessible areas and
obstacles based on the height difference. Such a sensor
setup can only be used on robots with a significantly larger
payload than the Nao humanoid. Gutmann et al. also build a
2.5D height map given accurate stereo data and additionally
update a 3D occupancy grid map to plan navigation paths
for the robot [10].

Kümmerle et al. developed a laser-based localization
system for so-called multi-level surface maps for wheeled
robots [11]. These maps store multiple levels of the scene
per 2D grid cell and compactly represent 3D environments.
However, they suffer from the disadvantage, that they do
not provide volumetric information which is needed for
humanoid navigation.

Stachniss et al. presented a simultaneous localization and
mapping system (SLAM) to learn accurate 2D grid maps
of large environments with a humanoid equipped with a
laser scanner located in the neck [12]. Such a map was
subsequently used by Faber et al. for humanoid localization
and path planning in 2D [13]. During navigation, the robot
avoids obstacles sensed with the laser scanner and ultrasound
sensors located at the hip. Obstacles with a lower height
are not detected which potentially leads to collisions. Also
Tellez et al. use laser data to construct a 2D occupancy grid
map in which paths for a humanoid are planned [14]. The
authors use data from two laser scanners mounted on the
robot’s feet. All these approaches insufficiently represent the
environment for navigation tasks in indoor scenarios with
complex 3D structures.

Recently, approaches have been presented that perform
SLAM with RGB-D cameras [15, 16, 17]. These approaches
are optimized for small workspaces such as desktops or small
rooms but not for larger environments. Further, they are
algorithmically challenging and require that the camera can
see enough texture or structure to match the observations.
Consequently, they are not appropriate for scenarios like
ours, where the camera faces the lowly-textured floor most
of the time, in order to sense obstacles in the robot’s way.

III. NAVIGATION BASED ON DEPTH CAMERA DATA

In this section we describe our approach to robot localiza-
tion, mapping, and path planning.

A. Environment Representation

To enable modeling of multi-level environments contain-
ing obstacles of various shapes we use the octree-based
mapping framework OctoMap [1]. This map representation
partitions the space into free and occupied voxels where each
voxel is associated with an occupancy probability. Unknown
space is implicitly modeled by missing information in the



Fig. 2. Photograph of the environment in which we carried out the
experiments and the corresponding map constructed with a CAD software.
The map contains only the static parts of the environment.

tree. As opposed to a fixed size voxel grid map, this tree-
based approach allows the map to grow dynamically and is
compact in memory as it only allocates memory as needed.
Bounded occupancy values enable to appropriately react to
changes over time and enable a compression by pruning the
tree, particularly in the large free areas.

We use two different 3D maps. First, we consider a
static map of the environment for localization and as prior
knowledge for path planning. Fig. 2 shows an example map.
Secondly, we maintain an additional map containing local
obstacles, which is continuously updated based on the depth
data acquired by the robot while walking. This representation
is then used for path planning around non-static obstacles.

For this process, we maintain a projected 2D map for
efficient collision checks as in [18]. Each 3D map update
of the local obstacle map also updates the 2D projection.
To allow the robot to pass below underpasses and traverse
the upper level of the environment, only obstacles within
the vertical extent of the robot are hereby projected into the
2D obstacle map. Further, we filter out points corresponding
to the floor, prior to map updates. Therefore, we consider a
point’s normal from its local neighborhood in the point cloud
constructed from the depth image.

B. Probabilistic 3D Map Update

We integrate sensor readings into the local map by using
occupancy grid mapping in 3D as in [1]. The probabil-
ity P (n | z1:t) that voxel n is occupied at time t is recursively
computed given all sensor measurements z1:t according to

P (n | z1:t) = (1)[
1 +

1− P (n | zt)
P (n | zt)

1− P (n | z1:t−1)

P (n | z1:t−1)

P (n)

1− P (n)

]−1

,

where zt is the measurement, P (n) is the prior probabil-
ity (typically this value is assumed to be P (n) = 0.5), and
P (n | z1:t−1) is the previous estimate. The term P (n | zt)
denotes the likelihood of voxel n being occupied given the
measurement zt. Here, we employ a beam-based inverse
sensor model that assumes that endpoints of a measurement
correspond to obstacle surfaces and that the line of sight
between sensor origin and endpoint does not contain any
obstacles. Thus, we update the last voxel on the beam as
occupied, and all the others up to the last one as free and
use corresponding likelihoods for P (n | zt). For efficiency,
we use the log-odds formulation of (1) to update the map.

C. Localization

For localization in the 3D model, we extend the Monte
Carlo localization (MCL) framework by Hornung et al. [3],
which was originally developed for data of 2D laser range
finders, to depth camera data. Hereby, the humanoid’s 6D
pose is tracked in the 3D world model. The humanoid’s torso
serves as its base reference frame.

The pose x = (x, y, z, ϕ, θ, ψ) consists of the 3D position
(x, y, z) with roll, pitch, and yaw angles (ϕ, θ, ψ). For robust
localization while walking, we combine 3D range data from
the depth camera located on top of the head, attitude data
provided by an inertial measurement unit (IMU) in the chest,
and odometry data.

Odometry is computed from measured joint angles with
forward kinematics and integrated in MCL with a Gaussian
motion model. In the observation model, we consider the
data of the humanoid’s sensors. The depth camera provides
a depth image, that we convert to a set of beams with
ranges rt, the joint encoders provide a measurement z̃t of
the humanoid’s torso above the current ground plane, and
the IMU estimates the roll and pitch angles ϕ̃t and θ̃t.

We assume that all these measurements are independent
and combine them into one unified observation model to
compute the likelihood of an observation ot:

p(ot | xt) = p(rt, z̃t, ϕ̃t, θ̃t | xt) =

p(rt | xt) · p(z̃t | xt) · p(ϕ̃t | xt) · p(θ̃t | xt).
(2)

Here, xt is the robot’s estimated state.
For evaluating the range sensing likelihood p(rt | xt), we

sample a sparse subset of beams from rt (see below). We
assume that the sampled measurements rt,k are conditionally
independent and determine the likelihoods of the individual
beams p(rt,k | xt) by ray casting in the volumetric 3D
environment representation. Hereby, we extract for each
beam the expected distance to the closest obstacle contained
in the map, given the robot pose, and compare it with the
actually measured distance. To evaluate the measurement and
to model the measurement uncertainty of the sensor, we use a
Gaussian distribution. Similarly, we integrate the torso height
z̃t as well as the roll ϕ̃t and pitch θ̃t provided by the IMU
with a Gaussian distribution based on the measured values
and the predicted ones.

To sample the beams rt,k in the ray casting step, our sys-
tem classifies all end points of the beams rt into ground and
non-ground parts. Therefore, it pre-filters candidates based
on their height in the robot’s internal coordinate system. Then
it obtains the beams hitting the ground by finding dominant
planes with RANSAC over local neighborhood normals. Our
system uses this information for uniformly sampling half the
beams from non-ground parts and the other half from the
ground. Thus, we compensate for the fact that the camera
faces mostly the floor area for better obstacle avoidance.
Beams hitting the floor, however, can provide no information
for estimating translation in the horizontal plane, which is
typically more important than height or pitch and roll.
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Fig. 3. Left: Nao navigating in the lower level of our environment between obstacles (Scenario 2). Middle: Static (blue) and local (red) 3D map constructed
by the robot while walking. Right: Two-dimensional projection of the local map used for collision avoidance and path planning. The lines show the robot’s
odometry estimate, the estimated pose of our localization system, and the ground truth. The arrow indicates the robot’s pose corresponding to the left
image. The numbered circles in the figure indicate obstacles that are not part of the static map. As can be seen, our navigation system localizes the robot
accurately and leads to reliable navigation behavior.

D. Path Planning and Collision Avoidance

For planning collision-free path, we consider the static
map of the environment as prior knowledge, as well as the
locally constructed map based on depth camera data, which
contains also non-static obstacles.

In general, one could also plan collision-free footsteps
or whole-body motions for the humanoid on the learned
3D map. However, planning motions in 3D is still a very
complex problem and requires either high computation times
or provides arbitrarily suboptimal solutions. For sake of real-
time performance and robustness, we therefore rely on a
projection of the 3D map to the floor. To be able to traverse
underpasses, we restrict the projected area to the size of the
robot in vertical direction. This is the area where collisions
are potentially hazardous for the robot. Everything below and
above can be safely ignored. Note that this is not the same as
maintaining a simple 2D map. When the robot’s z-coordinate
changes, the projection is updated accordingly. This is only
possible because we keep the 3D structure, hence enabling
navigation in multi-level scenarios.

For collision checks in the projected map, we assume a cir-
cular robot model. This assumption prevents the robot from
passing very narrow passages but allows to perform collision
checks in constant time, once a distance transform of the 2D
obstacle map is computed. These distance transforms can be
computed in real-time.

To compute a collision-free path to the goal location, our
system uses the A∗ algorithm. In case of a map update, it
checks whether the previous plan is still valid and replans
the path only if necessary.

IV. EXPERIMENTS

We carried out a series of experiments demonstrating the
capabilities of our navigation system based on depth camera
data. All experiments were carried out with a Nao (V4)
humanoid by Aldebaran Robotics. Nao is 58 cm in height,
weighs 5.2 kg and has 25 degrees of freedom. With the
current firmware of the robot, it is able to walk up to 10 cm/s.
We modified the head and mounted an Asus Xtion Pro Live

RGB-D camera on top of it (see Fig. 1). The camera has
a field of view of 58◦ horizontally and 45◦ vertically. The
camera is mounted on the robot’s head in a way such that
its optical axis faces the floor in a 30◦ angle while walking.
We found this to be the best compromise between observing
the near range for obstacle detection and looking ahead for
localization and path planning. The increased weight due to
the mounted camera destabilizes the walking behavior of the
robot. We therefore added thin plastic sheets to the robot’s
feet to increase the friction.

To allow for real-time performance, we set the camera’s
resolution to 320 × 240 and update the map from sensor
data at approximately 6 Hz. All processing is done on a
standard quad core PC. We conducted the experiments in
a multi-level environment, scaled-down to match the size
of a Nao humanoid (see Fig. 2). We sketched the structure
in a 3D CAD software and converted it to an OctoMap.
This model is used for localization. Note that the 3D model
does not perfectly match the actual scene due to imper-
fection in constructing the environment and, furthermore,
the scene will contain non-static obstacles not included in
the 3D CAD model. Therefore, our approach constructs a
local map from depth camera data during navigation in real
time. A video demonstrating our approach can be found at
http://hrl.informatik.uni-freiburg.de.

A. Localization Accuracy

First, we performed a series of experiments to evaluate our
localization system. We compared the resulting pose estimate
to the ground truth in the 2D plane, which we obtained by
tracking the humanoid with two stationary SICK laser range
finders [19]. Consequently, we evaluated the translational
error in the horizontal plane.

We conducted experiments in three different scenarios. In
Scenario 1, the robot navigated on the lower level of our
environment. Except for the two laser range finders used to
record the ground truth and their power supplies, the static
map closely resembled the actual scenario as can be seen
in Fig. 2. Scenario 2 was similar to Scenario 1 but we
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Fig. 4. Top: Local three-dimensional map (red) constructed while the
robot was walking on the top level of the environment (Scenario 3),
along with the static map (blue). Bottom: Two-dimensional projection
of this map used for collision avoidance and path planning. As can be
seen, also obstacles not contained in the original static representation are
represented accordingly (numbered circles). The figure further shows the
robot’s trajectory estimated by our algorithm (red) and the ground truth
(blue). Odometry has been left out for sakes of clarity.

additionally placed several obstacles such as books, balls,
baskets, and shelves in the scene (left image in Fig. 3).
These obstacles are not part of the map used for localization
and therefore are expected to decrease the performance. The
robot followed a similar path in Scenario 1 and 2 (right image
in Fig. 3). In Scenario 3, the robot walked two circles on the
top level of the environment where we also placed unmapped
obstacles such as a table, a plant, and a cabinet in the scene
(see Fig. 1).

For all scenarios, we manually initialized the localization
system from the true pose. We used 500 particles for tracking
the robot’s pose and sampled 100 points from the depth
image for ray casting as described in Sec. III-C. Fig. 3 and
Fig. 4 depict the trajectories of the pose estimates and the
ground truth on top of the projected obstacle map. As one can
see, the estimated pose closely resembles the ground truth.
Fig. 3, also shows the robot’s odometry as reference which
is clearly useless for reliably executing navigation tasks.

To evaluate the localization results quantitatively, we com-
puted the mean error as well as the standard deviation over
the robot’s trajectory for each of the three scenarios. Table I
summarizes the results. As can be seen, our system leads to
robust and accurate pose tracking. As expected, the accuracy
decreases slightly in Scenario 2 compared to Scenario 1, due

TABLE I
AGGREGATED LOCALIZATION ERROR FOR THREE SCENARIOS

mean error [m] std. dev. [m]

Scenario 1 0.07 0.04
Scenario 2 0.09 0.07
Scenario 3 0.07 0.05
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Fig. 5. Localization error as mean and standard deviation for five runs in
scenario 1.

to the additional obstacles. However, for all scenarios, the
average accuracy is still better than 1 decimeter.

Additionally, as Monte Carlo localization is a probabilistic
technique, we repeated the accuracy evaluation five times
over the same data set. Here, we used the same raw sensor
data and initialization as for Scenario 1 and recorded the
pose estimation errors relative to the ground truth. We then
computed the mean error and standard deviation over the
trajectory parametrized by time. Fig. 5 shows the results.
The error is generally small. For the time between 50 s and
130 s and 170 s to 180 s, the average error increased from
approximately 6 cm to 10 cm. Here, the robot navigated in
the long hallway part parallel to the walls and the camera
observed only little structure in the environment that could
help reducing the translational uncertainty. A larger field of
view or an active sensing approach could help in this case.

B. Mapping

To demonstrate the mapping and obstacle detection ca-
pabilities of our system, we consider Scenarios 2 and 3
described in the previous section. Fig. 3 and Fig. 4 show the
3D map constructed from the depth camera data while walk-
ing (red), as well as the static map of the environment (blue).
It is clearly visible that the constructed map closely follows
the structure of the reference map. Furthermore, it also
includes all the obstacles that are not part of the static map.
The figures also show the 2D projection of the constructed
3D map used for collision avoidance. In both maps, the
structure of the non-traversable area is clearly identifiable.

C. Path Planning and Obstacle Avoidance

In the last experiment, we evaluate the ability to react to
changes in the environment and plan collision-free paths also
with non-static obstacles. Fig. 6 shows a scenario in which
the robot reacted to a dynamic obstacle during walking.
The left column shows the state of the projected obstacle
map along with the robot’s pose and the planned path. The
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Fig. 6. The robot avoids a dynamic obstacle. The first row shows the robot’s
initial path to the goal with the corresponding camera image. Then, a human
blocks the robot’s path, forcing the robot to detour (second row). The robot
follows the updated path to the goal (last row). The camera images show
an overlay of the current obstacle map (red, best viewed in color).

right column depicts the current RGB camera image with an
overlay of the state of the constructed 3D map. Initially, the
robot planned a straight path to the goal location through
the empty space (first row). While walking, a human entered
the scene blocking the robot’s initial path (second row). The
robot immediately updated its obstacle map and planned a
collision-free path to the goal. The robot followed that path
accurately (third row) until it reached the goal.

V. CONCLUSIONS

In this paper, we demonstrated that affordable, consumer-
level depth cameras are well-suited sensors for robot naviga-
tion tasks in complex indoor environments. We presented
a real-time navigation system that allows to estimate a
humanoid’s 6D pose while walking and to map the scene
in a local 3D map. We described how our system can be
used for planning collision-free paths through scenes with
static and non-static obstacles.

In experiments with a Nao humanoid equipped with an
Asus Xtion Pro Live RGB-D camera, we thoroughly evalu-
ated the performance of our system. As the results show, our
approach leads to accurate localization estimates and reliable,
collision-free navigation in the acquired 3D map. In the
future, we will extend the approach to multi-level collision
maps for different parts of the robot as in [18]. Hence, we
will lift the circular robot model assumption made in this
paper and allow the robot to better pass narrow passages.

Of course, depth cameras also have drawbacks. In the near
range of the camera (closer than 50 cm), no depth data is
available. In this case, we can fall back to applying collision
detection approaches based on monocular vision data [20].
However, we rarely observed this problem in practice.

ACKNOWLEDGMENTS

The authors would like to thank Mathias Luber for his
help in laser-based tracking of the robot’s pose for ground
truth data during the experiments.

REFERENCES

[1] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard. OctoMap: A probabilistic, flexible, and compact 3D map
representation for robotic systems. In ICRA 2010 Workshop on Best
Practice in 3D Perception and Modeling for Mobile Manipulation,
2010. Software available at http://octomap.sf.net/.

[2] J. Biswas and M. Veloso. Depth camera based indoor mobile robot
localization and navigation. In IEEE Int. Conf. on Robotics and
Automation (ICRA), 2012.

[3] A. Hornung, K. M. Wurm, and M. Bennewitz. Humanoid robot
localization in complex indoor environments. In IEEE Int. Conf. on
Intelligent Robots and Systems (IROS), 2010.

[4] L. Baudouin, N. Perrin, T. Moulard, F. Lamiraux, O. Stasse, and
E. Yoshida. Real-time replanning using 3d environment for humanoid
robot. In IEEE Int. Conf. on Humanoid Robots (Humanoids), 2011.

[5] A. Nakhaei and F. Lamiraux. Motion planning for humanoid robots
in environments modeled by vision. In IEEE Int. Conf. on Humanoid
Robots (Humanoids), 2008.

[6] R. Ozawa, Y. Takaoka, Y. Kida, K. Nishiwaki, J. Chestnutt, J. Kuffner,
S. Kagami, H. Mizoguchi, and H. Inoue. Using visual odometry to
create 3d maps for online footstep planning. In IEEE Intl. Conf. on
Systems, Man, and Cybernetics, 2005.

[7] A. Pretto, E. Menegatti, M. Bennewitz, W. Burgard, and E. Pagello.
A visual odometry framework robust to motion blur. In IEEE
Int. Conf. on Robotics and Automation (ICRA), 2009.
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