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Abstract— In this paper, we present a novel approach to ac-
curately calibrate the kinematic model of a humanoid based on
observations of its monocular camera. Our technique estimates
the parameters of the complete model, consisting of the joint
angle offsets of the whole body including the legs, as well as
the camera extrinsic and intrinsic parameters. We cast the
parameter estimation as a least-squares optimization problem.
In the error function, we consider the residuals between camera
observations of end-effector markers and their projections into
the image based on the estimate of the calibration parameters.
Furthermore, we developed an approach to automatically select
a subset of configurations for the calibration process that
yields a good trade-off between the number of observations
and accuracy. As the experiments with a Nao humanoid show,
we achieve an accurate calibration for this low-cost platform.
Further, our approach to configuration selection yields sub-
stantially better optimization results compared to randomly
chosen viable configurations. Hence, our system only requires
a reduced number of configurations to achieve accurate results.
Our optimization is general and the implementation, which is
available online, can easily be applied to different humanoids.

I. INTRODUCTION

Knowledge about the parameters of a robot’s kinematic
model is essential for all tasks involving navigation and
manipulation. For mapping unknown environments or es-
timating the positions of objects, the transforms between
the exteroceptive sensors and the robot’s internal reference
frame, that bring the observations in relation to the robot,
need to be known. Only then, it can avoid collisions with
objects, and plan paths to target locations or grasps.

For manipulation, an accurate kinematic model is nec-
essary for solving the inverse kinematics and controlling
a manipulator to reach grasping targets, as well as for
collision checking of arm trajectories with the environment.
While techniques such as visual servoing allow to control a
manipulator without accurate knowledge of the calibration, a
certain degree of calibration is still necessary, and an accurate
model of the robot allows for faster control and an easier
implementation, including open-loop control.

The kinematic structure of a robot is usually known from
the construction plan. However, errors can occur, e.g., as a
result of imperfect manufacturing, wear, or repair. To com-
pensate for such errors and to avoid time-consuming manual
tuning of the true parameters of the models, we present
an automatic self-calibration technique for humanoid robots.
Our approach calibrates the robot’s kinematic model, given
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Fig. 1. Left: Nao humanoid with markers attached to the end-
effectors (EEF) performing automatic self-calibration. Right: Marker on the
right EEF observed by the onboard-camera before and after the calibration,
with the robot model and the expected marker center overlaid.

its structure, based only on observations from the robot’s
internal monocular camera. We estimate the parameters of
the kinematic model of the whole body in form of joint
angle offsets as well as camera extrinsic and intrinsic param-
eters. We formulate the calibration as an error minimization
problem and apply the g2o optimization framework. In the
error function, we consider the residuals between observed
positions of end-effector markers in the camera image and
their expected locations given the estimated parameters.
Additionally, we present a method to automatically generate
robot configurations for the calibration and to determine
a small subset of configurations that lead to an accurate
calibration, thereby trading of time and accuracy.

We applied our approach to calibrate the parameters of a
Nao humanoid and show in experiments that our method
leads to an accurate calibration and needs only a small
number of configurations to achieve this. Fig. 1 shows a Nao
performing the self-calibration (left), as well as the expected
marker location and a 3D visualization of the kinematic
model overlaid to the onboard camera image, before (top
right) and after (bottom right) the calibration.

To the best of our knowledge, this is the first approach
to calibrate the complete kinematic model of a legged
humanoid. We released the source code of our ROS-based
implementation providing a one-click calibration routine for
the Nao robot, which is the most commonly used humanoid.
Adaptions for different humanoids can easily be obtained.



II. RELATED WORK

Yamane [1] proposed to calibrate the joint offsets of a
humanoid’s legs using measurements of a chest-mounted
Inertial Measurement Unit (IMU) and the constraint that the
feet of the robot are fixed on a plane, while manually moving
the robot. However, the upper body cannot be calibrated with
such a method as the corresponding joints do not affect the
IMU measurements. Park et al. [2] use optimization of the
Denavit-Hartenberg parameters of a manipulator using a laser
attached to the end-effector and an external camera within
a Kalman-Filter framework. While this allows for precise
measurements, it also requires a substantial modification
of the hardware. Asfour et al. [3] developed an approach
to calibrate a stereo camera relative to the joints of a
humanoid’s head by observing a marker and using a least-
squares formulation of the problem. Hence, they perform a
classical head-eye calibration. Traslosheros et al. [4], consid-
ered calibration of a robot with two parallel manipulators and
a camera. For their approach, it is assumed that the camera
intrinsics are already well-known. The authors use a ball
that is fixed within the environment as measurement marker
and the geometrical parameters of the ball projected into the
image plane are used for the constraint equations.

Pradeep et al. [5] presented a bundle adjustment approach
for calibrating a robot with multiple sensors and arms. The
main idea here is that multiple sensors can observe the
same points in the world and hence, the parameters can be
jointly optimized. Birbach et al. [6] proposed an approach
to calibrate the intrinsic and extrinsic parameters of a stereo
camera, the joint elasticities and the joint angle offsets of
an upper body of a humanoid with two arms, and the head
mounted IMU. As in [5], the authors jointly optimize the
parameters from manually determined robot configurations.
The authors use a single point marker located on each
of the arms’ wrists. Similarly, Hubert et al. [7] applied
a maximum a priori approach (MAP) for estimating the
parameters of hand-eye kinematics of a humanoid robot. The
prior is assumed to be normal distributed with an empirically
determined variance. If the prior is well chosen, the MAP
approach requires less measurements and, thus, is faster as
a maximum likelihood formulation. However, our approach
automatically selects configurations for calibration such that
the number of needed measurements is reduced.

Selection and generation of measurement configurations
has been studied previously, especially in the context of
manipulator calibration. For instance, Borm and Menq [8]
studied the selection of measurement configurations for
manipulator calibration. Their goal is to minimize the effect
of noise in measurement. Using an observability measure
based on the Jacobian of the error function, the authors
show that the selection of the measurement configurations is
more important than the actual number of measurements. Our
system follows that idea by evaluating different observability
indices. Also Li et al. [9, 10] used observability indices
to choose configurations for calibration of a manipulator.
The authors showed that using the optimized configurations

yields better results than using configurations sampled from
the boundary of the working space, which is otherwise a
reasonable heuristic.

Most similar to our approach, Carrillo et al. [11] recently
experimentally compared different criteria for the selection
of measurement configurations for the calibration of a hu-
manoid’s upper body. The authors conclude that for greedy-
selection algorithms, determinant-based criteria should be
preferred. However, the paper only shows that applying a
determinant-based criterion maximize the other criteria as
well, but not whether it minimizes the actual calibration error.
In our work, we present extensive cross-validation results for
four different selection criteria.

III. GRAPHED-BASED OPTIMIZATION OF THE
CALIBRATION PARAMETERS

Poor calibration of a robot leads to a discrepancy between
self-observation, e.g., from a camera, and expected obser-
vation according to underlying models and their estimated
parameters. Our calibration framework hence measures this
discrepancy and adjusts the parameters so that the error is
minimized. We hereby rely on camera observations of point
markers attached to the robot’s end-effectors. We determine
their expected locations in the camera image and compute
the error when compared to the actual observations.

A. Measurement Model and Parameters

One of the most obvious reasons for a misalignment
between a true observation and the expected one is that the
camera’s intrinsic and extrinsic parameters are not known
accurately. Our system uses the standard pinhole model to
compute the projection of a point in the camera image
and also considers the radial distortion of the lens, which
is typically the most dominant reason for deviations. Let
p =

[
x y z

]ᵀ
be a 3D point in the camera frame, then the

corresponding image coordinates are given by the function

proj : R3 7→ R2,

proj(p) =
[
u v

]ᵀ
, (1)

where
[
u v 1

]ᵀ
= K

[
x′ y′ 1

]ᵀ
, (2)

with
[
x′ y′

]ᵀ
= (1 + κr2)

[
x/z y/z

]
, (3)

and r2 = (x/z)2 + (y/x)2, (4)

and K =

fx 0 kx
0 fy ky
0 0 1

 . (5)

Here, the focal lengths (fx, fy) and the principle
point (kx, ky) are the pinhole model’s parameters, and κ
models the strength of the radial distortion.

Also the calibration of the camera extrinsics is of great
importance, i.e., its placement relative to the reference frame
that it is attached to, e.g., the robot’s neck joint. Let x̃ ∈ R4

be a 3D homogeneous point in the reference frame, then[
x y z

]ᵀ
= R [I3×3 − c] x̃ (6)



describes the point in the camera frame. The extrinsics are
thus modeled by the camera’s rotation matrix R and its center
point c relative to the reference frame.

One additional important reason for poor calibration is that
the rotary joint encoders, which contribute to the kinematic
state of the robot, are affected by systematic offsets due
to lack of precision in the manufacturing process or wear.
Hence, we model the true position of the joints at time i as
the sum of the offsets qoff and the encoder readings q̂i

qi = q̂i + qoff. (7)

Finally, we need to consider the artificial markers attached
to the end-effectors (EEF) as we rely on them as obser-
vations. While their approximate positions can be obtained
from manual measuring, positional errors directly affect the
automatic evaluation of the state of calibration of the robot.
Hence, we include the position for the markers MEEF on
each end-effector in the estimation and model them as three-
dimensional vectors relative to the EEF-frame by

mEEF =
[
x y z

]ᵀ
. (8)

To summarize, the parameters considered in the error
minimization are
• the camera intrinsics and distortion fx, fy, kx, ky, κ,
• the camera extrinsics R, c,
• one marker location mEEF per end-effector, and
• the joint offsets qoff.
For simplicity, in the remainder of this paper, we stack all

these parameters in a vector θ ∈ RL.

B. Formulation as Least-Squares Optimization

Thus, our calibration procedure aims at estimating the
parameters θ that minimize the error between the estimated
poses of the markers attached to the end-effectors and
their observations in the camera image. To obtain a robust
estimate for θ, we consider the accumulated error for a set ω
consisting of n different robot configurations, where each
configuration is defined by its joint encoder readings q̂i ∈ ω.
We formulate the error minimization using least-squares
optimization. Hence, we minimize

θ∗ = arg min
θ

F (θ), (9)

where F : RL −→ R is given by

F (θ) :=
∑

i=1..n

ei(θ, ẑi, q̂i)
ᵀ
ei(θ, ẑi, q̂i), (10)

and ei is the error function for the robot configuration q̂i

and measurement ẑi. Note that F depends on ω, but we
omit the index to enhance readability. For the employed point
markers, the error function is given by

ei(θ, ẑi, q̂i) := ẑi − predictMEEF
(θ, q̂i). (11)

Here, ẑi ∈ R2 is the observed marker location in the image,
from which we subtract the estimate for the projection of the

marker predictMEEF
(θ, q̂i), given the robot’s kinematic struc-

ture, the calibration parameters θ, and the joint readings q̂i.
The predicted location of a marker M is given by

predictMEEF
(θ, q̂i) := projθ(forwardCMEEF

(θ, q̂i)), (12)

where projθ is described in Eq. 1 using the current calibration
parameters θ and forwardCMEEF

(θ, q̂i) determines the location
of the marker MEEF relative to the camera using forward
kinematics, given the joint readings q̂i and the calibration
parameters θ. forwardCMEEF

can be computed by the multi-
plication of a series of homogeneous matrices that represent
the transforms between joints in the kinematic chain from the
camera to the marker MEEF, taking into account the estimated
joint positions q̂i +qoff in the rotational part of the matrices.

To solve the least-squares problem defined in Eq. 9 -
Eq. 12, we apply a linear approximation. Let

f(θ) :=
[
e1(θ, ẑ1, q̂1)

ᵀ
. . . en(θ, ẑn, q̂n)

ᵀ]ᵀ
, (13)

by which Eq. 10 can be formulated as

F (θ) = f(θ)ᵀ f(θ). (14)

We apply a linear first-order approximation of f by defining

θ := θ̃ + ∆θ. (15)

Thus, f(θ) = f(θ̃ + ∆θ) ≈ f(θ̃) + J ∆θ, (16)

where J :=
∂f

∂θ
(θ̃) (17)

is the Jacobian of f at the linearization point θ̃. Intuitively,
J describes how the error changes with changes in the
parameter-space around θ̃. By plugging Eq. 16 into Eq. 14,
we obtain

F (θ) ≈ (f(θ̃) + J∆θ)ᵀ (f(θ̃) + J∆θ) (18)

= fᵀ(θ̃)f(θ̃)︸ ︷︷ ︸
=:c

+ 2fᵀ(θ̃)J∆θ︸ ︷︷ ︸
=:2bᵀ∆θ

+ ∆θJᵀJ∆θ︸ ︷︷ ︸
=:∆θᵀH∆θ

. (19)

Thus, we obtain an approximate error function that does not
depend on θ anymore but on ∆θ. So we define

Fapp(∆θ) := c+ 2bᵀ∆θ + ∆θᵀH∆θ. (20)

To minimize Eq. 20, we set its derivative to zero and solve
the linear system,

∂Fapp

∂∆θ
= 0 ⇐⇒ 2b+ 2H∆θ = 0 (21)

H∆θ = −b (22)

∆θ = −(JᵀJ)−1Jᵀf(θ̃). (23)

An estimate for θ can then be obtained using the definition
in Eq. 15. We use the Levenberg-Marquardt (LM) algorithm
to minimize the error. LM repeats the three steps, i.e., the
linearization in Eq. 16, the minimization in Eq. 23, and the
increment in Eq. 15, until convergence.
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Fig. 2. Example g2o graph for the robot calibration. The graph includes
nodes for the camera intrinsics, camera extrinsics, joint offsets, and the
markers of the two arms. Three measurements per chain are indicated.

C. Implementation
We implemented our calibration approach using the g2o

library [12]. It solves problems of the form given in Eq. 9
and Eq. 10 by optimizing a hyper-graph. The graph consists
of a set of vertices that encode the sub-components of
the parameter vector θ to be optimized and the measure-
ments (ẑi, q̂i). The edges represent the error functions from
Eq. 11 between corresponding vertices. Fig. 2 shows an
example for such a graph with six measurements and two
markers. As can be seen, the edges for one measurement
connect multiple vertices. Next to its good performance, g2o
automatically handles problems with singularities and over-
parameterization of rotation representations.

In g2o, it is also possible to use a robust kernel such as
the Huber loss function in Eq. 10. Thus, it optimizes

FH(θ) =
∑

i=1..n

ρH(ei(θ, ẑi, q̂i)) (24)

where ρH(x) =
[
ρH(x1), ρH(x2), · · · , ρH(xm)

]ᵀ
(25)

and ρH(xi) =

{
x2
i if ‖xi‖ < b

2b ‖xi‖ − b2 else
, (26)

where the xi are scalars and b is a scaling parameter. This
means, ρH(xi) is quadratic for small errors xi, and linear for
larger ones. In case of b =∞, Eq. 24 is identical to Eq. 10.

IV. AUTOMATIC SELECTION OF ROBOT
CONFIGURATIONS

The result of the optimization described in Sec. III-B
depends on the initial linearization point and the set of
configurations with their measurements for which the error
minimization is carried out. A higher number of configu-
rations can lead to a more accurate parameter estimation
but, obviously, they consume more time. A small set of
configurations on the other hand might lead to overfitting
on the calibration data. In order to reduce the number of
needed configurations, while still enabling robust estimates,
we developed an approach to automatically select a set of
close-to-optimal configurations. The goal is to achieve a good
trade-off between the time needed to carry out the calibration
and the accuracy of the result.

A. Generating a Pool of Configurations

Our system initially samples a large pool Ω of configura-
tions from which subsequently a subset of configurations that
optimizes a certain criterion is selected. The configurations
are uniformly sampled in joint space and checked for self-
collisions as well as marker observability. A configuration q
is a vector of admissible values for all the joints that are
included in the calibration.

For each sampled configuration q̂i, we first project the
marker location into the camera image, given the current
estimate of θ and the kinematic structure of the robot as
described in the Sec. III-B. The system only accepts q̂i,
if zi = predictMEEF

(θ, q̂i) is within the boundaries of the
camera image minus some safety margin. Next, the algorithm
tests whether the robot is in self-collision using a mesh-
model and the Flexible Collision Library (FCL) [13]. Finally,
our approach checks whether the marker is not occluded by
any body part in this configuration and visible by the camera.

B. Selecting a Subset of Valuable Configurations

To automatically generate a set of good configurations
for calibration, we examine the Jacobian from Eq. 17. The
Jacobian is decomposed using Singular Value Decomposi-
tion (SVD) into

J = UΣV ᵀ, (27)

where U and V are orthogonal matrices and Σ is the
diagonal matrix with the singular values (σ1, . . . , σL) of
J , with σ1 ≥ σ2 ≥ · · · ≥ σL. Here, we assume that
there are L = |θ| columns, corresponding to the number
of parameters, and ν > L rows in J , otherwise the system is
under-determined. That means, at least dL/2e measurements
need to be considered, as each measurement yields two
constraints. On this decomposition, we apply a so-called
observability index, which is based on the σi and yields
higher values for larger σi and lower values for smaller
σi. The rationale behind maximizing the σi is that given
the approximation in Eq. 16, the covariance of θ can be
estimated as

cov(θ) ≈ (JᵀJ)−1. (28)

Thus, maximizing the singular values σi of J is equivalent
to minimizing the Eigenvalues λi of cov(θ), as σi = λ−2

i .
Hence, we seek to reduce the variance or uncertainty of
the parameters. To this end, we evaluated the following
observability indices [11, 14]:

OD = (σ1 · · ·σL)1/L ν−1/2 (29)

OA = (σ−1
1 + · · ·+ σ−1

L )−1 (30)

ONAI = σ2
L/σ1 (31)

OE = σL. (32)

OD corresponds to the determinant of cov(θ), OA to its
trace, and OE to the largest Eigenvalue of cov(θ), while ONAI
has no direct relation with the covariance, but can be seen as
the product of the Jacobian’s inverse condition number and
it’s smallest singular value.



Algorithm 1: OD-select: Selects N∗ configurations
from a pool Ω for calibration and optimizes θ

Input:

Pool of configurations Ω
Initial calibration parameters θ, with |θ| = L
Desired number of configurations N∗

Max. number of retries for sampling initial set T

Output: Optimized configurations ω∗

Optimized calibration paramters θ
ω∗ ←− uniformly sample dL2 e configurations from Ω
for t = 1 to T do

ω ←− uniformly sample dL2 e configurations from Ω
ω ←− exchange(ω,Ω)
if computeOD(ω, θ) > computeOD(ω∗, θ) then

ω∗ ←− ω
θ ←− solve Eq. 9 for ω∗

while |ω∗| < N∗ do
q+ ←− arg maxq∈Ω\ω∗ computeOD(ω∗ ∪ {q},θ)
ω∗ ←− ω∗ ∪ {q+}
θ ←− solve Eq. 9 for ω∗

Algorithm 2: exchange: Optimizes a set ω of N
configurations for calibration from a pool Ω

Input:
Pool of configurations Ω
Initial configurations ω = {q1, . . . , qN}
Calibration parameters θ

Output: Optimized set of configurations ω∗ of size N
repeat

q+ ←− arg maxq∈Ω\ω∗ computeOD(ω∗ ∪ {q},θ)
ω∗ ←− ω∗ ∪ {q+}
q− ←− arg maxq∈Ω\ω∗ computeOD(ω∗ \ {q},θ)
ω∗ ←− ω∗ \ {q−}

until q+ = q−

Consequently, we choose the configurations for the cali-
bration, and thereby the entries of J , such that the chosen
observability index is maximized. How to select such a set of
N∗ configurations is explained exemplary in the following
and is shown in Alg. 1 and Alg. 2 for the index OD.
Here, the function computeOD(ω, θ) computes OD from
a set of configurations ω ⊂ Ω and θ. That means the
Jacobian J is computed around the current estimate for θ
from the partial derivatives of all error functions as in Eq. 11,
corresponding to the set of configurations ω. Alg. 1 initially
samples a set of dL/2e configurations from the pool Ω, as
this is the minimum number of configurations needed to
solve the optimization problem. We randomly sample the
configurations proportional to the degrees of freedom of the
corresponding chains. This is to ensure that all the parameters
can be determined. Each sampled set is then optimized by
exchanging its configurations (see Alg. 2), such that the
observability index is maximized. Then, Alg. 1 keeps the
best optimized set of configurations ω∗ and optimizes for θ.
Finally, additional configurations are added to ω∗ in a greedy
fashion, while iteratively solving for θ given the current set
of parameters.

It has to be noted that the observability indices relate
singular values whose units depend on the parameters that are
used to calculate the corresponding Jacobian. This can lead
to a bad choice of configurations if the units are differently
scaled. Hence, our approach compensates for this problem
by scaling the columns of the Jacobian [15]. Therefore, prior
to computing computeOD, the algorithm right-multiplies J
by a scaling matrix S = diag(s1, . . . , sL), where

si =

{
‖ji‖−1 if ‖ji‖ 6= 0

1 else
, (33)

and ji indicates the ith column of J . This approach has
the advantage that the user does not need to provide a
range for the parameters, which can sometimes be hard to
determine (e.g., for camera intrinsics or translations).

V. EXPERIMENTS

In this section, we present an extensive evaluation of our
self-calibration method using a Nao humanoid robot. The
robot is approx. 60 cm in height and has a total of 23
joints, one of which is a mimic joint. Our system respects
mimic joints by only considering one of the joints in the
configuration selection and optimization. Five of the joints
are redundant wrt. the camera pose and the markers, i.e.,
the head pitch joint and the last joints for each EEF. Their
offsets cannot be determined and thus, are left out in the
calibration. In addition to the joint offsets, we estimate
the four marker positions (3 DOF each), the camera pose
(6 DOF), its intrinsics (4 DOF) and one radial distortion
parameter. Hence, there is a total of 41 parameters to be
estimated and at least 21 measurements are needed for
a full calibration. Our algorithm sets the initial state for
the calibration according to the manufacturer specifications
(i.e., zero) for the joint offsets, while we quickly calibrated
the camera with the standard OpenCV calibration routine.
Furthermore, we manually measured the placement of the
markers relative to the end-effectors.

To allow a quantitative evaluation of our system, we
generated a large database of 3000 configurations, observing
each of the robot’s four end-effectors 750 times, using the
sampling method described in Sec. IV-A and then recorded
the camera observations and joint encoder readings. We
performed a 5-fold cross-validation on the data set to evaluate
the system, including the automatic configuration selection.

A. Pose Selection

To evaluate our approach to automatic configuration selec-
tion as described in Sec. IV, we compared the results from
the OD-select algorithm with a strategy that randomly se-
lects configurations from the pool Ω. For the random strategy,
we repeated the complete 5-fold cross-validation three times
and accumulated the results to obtain more representative
values. The results are shown in Fig. 3 (top) as root mean
square error (RMSE) and its standard deviation over the
folds (and repetitions in case of the random strategy). As
can be seen, our OD-select algorithm leads to accurate
results with an RMS of 7.2 ± 1.1 px requiring only 25
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Fig. 3. Error on validation data. Top: comparison of OD-select with
a random selection strategy. Bottom: comparison of different observability
criteria.

configurations, which is close to the theoretic minimum of
21. The random strategy yields a substantially higher RMS
of 19.7 px with a large standard deviation of 9.1 px. Even
for 50 configurations, OD-select performs better with an
RMS of 5.5± 0.8 px compared to 6.1± 0.8 px.

We also compared the different observability indices intro-
duced in Sec. IV. The results are shown in Fig. 3 (bottom).
As can be seen, the OD-select performs better than the
other algorithms for a small number of measurements, with
OA-select performing similar for more than 32 config-
urations. Both algorithms generally perform better than the
remaining two, even for a large numbers of measurements.

Finally, we compared the performance for arms and legs
separately, as some users might want to calibrate only sub-
parts of the humanoids body. The results are shown in Fig. 4.
As can be seen, in each case, it is advisable to use a selection
algorithm. For the arms, we obtained slightly better results
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Fig. 4. Errors on validation data. Comparison of OD-select with a
random selection strategy for arms and legs separately.

compared to the legs, which is due to the better observability
of the former, as the legs typically need to be in front of
the robot to be seen by the camera, which means that the
configurations do not cover the whole parameter space.

The complexity of the OD-select is governed by three
variables: the pool size |Ω|, the number of initial samples T ,
and the number of configurations N∗. The computation of
the initial set, involving Alg. 2, takes 2.5 s per iteration for
|Ω| = 1500 on an i7 quad-core CPU. In the experiments, we
set T = 50. For |Ω| = 1500, selecting a new configuration
takes 5 s on average, and 19 s for |Ω| = 3000. Solving Eq. 9
takes between 2 s (for N∗ ≤ 15) and 15 s (for N∗ ≤ 60).

B. Effect of the Calibration Compared to the Initial State

Fig. 5 shows the residuals in the camera for each of the
four chains. The top plot depicts the residuals for the uncali-
brated state according to the manufacturer specifications with
a good initial guess for the markers. The lower plot shows
the residuals after the calibration using 60 configurations
selected by OD-select. This plot overlays the residuals
from each of the 5-folds of the data set. Initially, the error
was 43.4 px. By calibration we achieved an RMS of 5.2 px.

C. Effect of Measurement Noise

Finally, we tested the effect of noisy measurements on the
optimization. Therefore, we used 60 configurations selected
by OD-select and repeated the optimization, but this time
we randomized the detected marker location over the entire
image for different percentages of measurements. This is
to simulate the effect of false marker detections, which
often occurs in presence of clutter and uncontrolled lighting.
We optimized using the noisy data with and without using
a robust kernel and performed a 5-fold cross-validation
as previously. The results are shown in Fig. 6. As can
be seen, using a robust kernel yields substantially better
results compared to a quadratic kernel. For up to 10 noisy
measurements out of 60 total, the robust kernel performs
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(bottom) calibration. The bottom plot show the residuals for the union of
the evaluation data from a 5-fold cross-validation.
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Fig. 6. Effect of noise on the optimization. Different percentages of camera
observations were randomized in the image and optimized with and without
a robust kernel. The plot shows the results of a 5-fold cross validation.

similar to using noise-free measurements (6.6 px RMS),
whereas without robust kernel, the RMS rises up to 45.1 px.
Concluding, the robust kernel handles up to 16% of noisy
measurements without larger performance drops and clearly
outperforms the standard kernel.

VI. CONCLUSIONS

We developed new techniques for automatic calibration of
the complete kinematic model for legged humanoids. Our
system relies on least-square minimization of the sum of
residuals between camera observations of markers and their
expected locations in the image. Our approach automatically
chooses robot configurations that enable an accurate, robust
calibration by minimizing the variance of the parameters
to be estimated. The calibration framework is general and
can be used for other robots with a different kinematic
model and with different types and numbers of cameras. The
ROS-compatible software is available online1. In extensive
experiments with a real Nao humanoid, we showed that
our framework requires only few observations to obtain
accurate calibration results. In future work, the framework
can be extended such that the robot constantly monitors the
error metric in Eq. 11 and, when it exceeds a threshold,
automatically initiates a re-calibration.
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[12] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Bur-
gard. g2o: A general framework for graph optimization. In IEEE
Int. Conf. on Robotics and Automation (ICRA), 2011.

[13] J. Pan, S. Chitta, and D. Manocha. FCL: A general purpose library
for collision and proximity queries. In IEEE Int. Conf. on Robotics
and Automation (ICRA), 2012.

[14] A. Nahvi and J. Hollerbach. The noise amplification index for optimal
pose selection in robot calibration. In IEEE Int. Conf. on Robotics and
Automation (ICRA), 1996.

[15] J. M. Hollerbach and C. W. Wampler. The calibration index and
taxonomy for robot kinematic calibration methods. Int. Journal of
Robotics Research (IJRR), 1996.

1http://github.com/danielmaier/nao_calibration

http://github.com/danielmaier/nao_calibration

	Introduction
	Related Work
	Graphed-Based Optimization of the Calibration Parameters
	Measurement Model and Parameters
	Formulation as Least-Squares Optimization
	Implementation

	Automatic Selection of Robot Configurations
	Generating a Pool of Configurations
	Selecting a Subset of Valuable Configurations

	Experiments
	Pose Selection
	Effect of the Calibration Compared to the Initial State
	Effect of Measurement Noise

	Conclusions

