
Self-supervised Obstacle Detection for Humanoid Navigation
Using Monocular Vision and Sparse Laser Data

Daniel Maier Maren Bennewitz Cyrill Stachniss

Abstract— In this paper, we present an approach to obstacle
detection for collision-free, efficient humanoid robot navigation
based on monocular images and sparse laser range data. To
detect arbitrary obstacles in the surroundings of the robot, we
analyze 3D data points obtained from a 2D laser range finder
installed in the robot’s head. Relying only on this laser data,
however, can be problematic. While walking, the floor close to
the robot’s feet is not observable by the laser sensor, which
inherently increases the risk of collisions, especially in non-
static scenes. Furthermore, it is time-consuming to frequently
stop walking and tilting the head to obtain reliable information
about close obstacles. We therefore present a technique to
train obstacle detectors for images obtained from a monocular
camera also located in the robot’s head. The training is done
online based on sparse laser data in a self-supervised fashion.
Our approach projects the obstacles identified from the laser
data into the camera image and learns a classifier that considers
color and texture information. While the robot is walking, it
then applies the learned classifiers to the images to decide which
areas are traversable. As we illustrate in experiments with a
real humanoid, our approach enables the robot to reliably avoid
obstacles during navigation. Furthermore, the results show that
our technique leads to significantly more efficient navigation
compared to extracting obstacles solely based on 3D laser range
data acquired while the robot is standing at certain intervals.

I. INTRODUCTION

Autonomous navigation with humanoid robots is still a
challenging task. First, humanoids have only limited payload
capabilities, which means that compact and light-weight
sensors have to be used. Typically, this directly affects
the possible precision and update rates of their sensors.
While walking, the robot’s observations are typically highly
affected by noise due to the shaking behavior of humanoids.
Second, depending on the placement of the individual sensors
on the robot, the area in front of the robot’s feet may
not be observable while walking which raises the question
of whether the robot can safely continue walking without
colliding with unanticipated objects.

In this paper, we present an approach to obstacle detection
for collision-free and efficient humanoid robot navigation
based on monocular images and sparse laser range data. To
detect arbitrary obstacles, we interpret sparse 3D laser data
obtained from a 2D Hokuyo laser range finder installed in the
robot’s head (see Fig. 1). Obstacles close to the robot’s feet
are out of the laser scanner’s field of view while walking,
which inherently increases the risk of collisions. Thus, the

All authors are with the Department of Computer Science, University
of Freiburg, Germany. This work has been supported by the German
Research Foundation (DFG) under contract number SFB/TR-8 and within
the Research Training Group 1103 as well as by Microsoft Research,
Redmond. Their support is gratefully acknowledged.

Fig. 1. Left: Humanoid robot Nao equipped with a Hokuyo laser scanner
in its head. Middle: Navigating robot. Right: Corresponding image taken
by the robot’s onboard camera together with traversability labels estimated
by our approach (green refers to traversable, red to non-traversable areas).
This image is best viewed in color.

robot regularly needs to stop, adopt a scanning position, and
tilt its head to obtain reliable distance information about
objects in the vicinity. This is time-consuming and leads to
inefficient navigation.

We therefore present a technique to train obstacle detectors
based on the sparse laser data to interpret the images obtained
from a monocular camera installed in the robot’s head. Our
approach projects detected objects from the range scans into
the camera image and learns a classifier that considers color
and texture information in a self-supervised fashion. While
the robot is walking, it then applies the learned classifiers
to the current camera image to decide which areas are
traversable. Using this classification, the robot updates a local
2D occupancy grid map of the environment which it uses
for path planning. Note that our approach does not require
a learning phase before navigating – learning is done online
in a self-supervised fashion. Our approach can be seen as
an extension to the vision-based obstacle detection system
proposed by Dahlkamp et al. [4]. In contrast to our method,
their approach carries out a classification based on color
only, whereas we additionally use texture information and
consider the neighborhood relations between nearby areas in
an image. Furthermore, we integrate the vision information
over time to plan paths for the humanoid.

The experiments carried out with our humanoid robot
illustrate that our approach enables the robot to reliably avoid
obstacles while walking in the environment. The field of view
of the robot is increased and it can detect dynamic obstacles
in the scene. We furthermore present results demonstrating
that using our technique, the robot reaches its goals signif-
icantly faster than with an approach that extracts obstacles
solely based on 3D laser data acquired while standing at
certain intervals.

II. RELATED WORK

We first discuss collision-avoidance techniques for hu-
manoid robots. Several approaches only consider static ob-
stacles while choosing actions leading the robot towards the
goal [9], [10] or use an external tracking system to compute
the position of objects blocking the robot’s way [19], [13].

Michel et al. [12] apply a model-based technique to track
individual objects in monocular images during walking. They
have to manually initialize the objects before tracking starts.
Cupec et al. [3] detect objects with given shapes and colors
in monocular images and determine the robot’s pose relative
to these objects to adjust the trajectory accordingly.

Stachniss et al. [17] presented an approach to learn accu-
rate 2D grid maps of large environments with a humanoid
equipped with a laser scanner located in the neck. Such a
map was subsequently used by Faber et al. [6] for humanoid
localization and path planning in 2D. During navigation, the
robot carries out a potential field approach to avoid obstacles
sensed with the laser and ultrasound sensors located at the
height of the robot’s hip. Obstacles smaller than this height
are not detected. Tellez et al. [20] use two laser scanners
mounted on the robot’s feet. The authors use 2D laser data
to construct a 2D occupancy grid map which they use for
path planning.

Chestnutt et al. [2] use 3D laser data acquired with
a constantly sweeping scanner mounted at a pan-tilt unit
on the humanoid’s hip. The authors first extract planes to
identify traversable areas and obstacles. Subsequently, they
plan footstep paths in a height map of the environment. Such
a setup can only be used on robots with a significantly larger
payload than our Nao humanoid. Gutmann et al. [8] construct
a 2.5D height map given stereo data and additionally use a
3D occupancy grid map to plan complex actions for the robot
leading towards the goal.

Li et al. [11] proposed a vision-based obstacle avoidance
approach for the RoboCup domain. The authors assume
known shapes of the obstacle, i.e., the other field players.
They use gradient features learned from training images and,
also, apply a color-based classifier and data from ultrasound
sensors to determine obstacle positions. Their approach relies
on a specific color coding further simplifying the problem.

Plagemann et al. [15] and Michels et al. [14] presented
approaches to estimate depth from monocular images. These
approaches apply regression techniques to learn a mapping
from the feature space (pixel columns and edge-based fea-
tures [15], texture [14]) to distance and yield impressive
results. However, both require a prior learning phase before
the classification can start whereas our approach performs a
self-supervised learning during navigation.

Ulrich and Nourbakhsh et al. [21] proposed to learn color
histograms of pixels corresponding to the floor. The his-
tograms are learned while initially steering a wheeled robot
equipped with a monocular camera through the environment
and learning about the free-space.

Fazl-Ersi and Tsotsos [7] use stereo images to produce
dense information about floor and obstacles in the images.

They classify regions of neighboring pixels with similar
visual properties and consider their distances form the ground
plane using planar homography. Subsequently, they learn
color-based models for the floor and obstacles. There exist
further techniques relying on stereo data to detect moving
obstacles, i.e., walking people, for which special detectors
are trained (e.g., [5]). These approaches are, however, com-
putationally highly demanding.

Our approach is most closely related to the one presented
by Dahlkamp et al. [4]. They also use 3D laser data to learn
a vision-based obstacle classifier. In contrast to their work,
we combine different information, i.e., color and texture, to
distinguish between obstacles and the floor. We then apply
probabilistic relaxation labeling [16], [18] for considering
dependencies between nearby areas in an image. Finally, we
construct a local grid used for path planning in which the
vision-based obstacle information is integrated over time.

III. THE HUMANOID ROBOT NAO

The humanoid robot Nao is 58 cm tall, weighs 4.8 kg and
has 25 degrees of freedom. Aldebaran Robotics developed in
cooperation with our lab a laser head for this type of robot.
Thus, our humanoid is equipped with a Hokuyo URG-04LX
laser range finder mounted in the modified head, in addition
to the default sensors such as cameras. See Fig. 1 for an
illustration. While the measurements of this laser sensor are
relatively noisy, it is small and lightweight and allows a
field of view of 240◦ with a resolution of 0.33◦. In our
implementation, we use the top camera in the robot’s head.
The camera’s diagonal field of view is 58◦.

IV. OBSTACLE DETECTION
USING VISION AND SPARSE LASER DATA

For collision-free navigation, it is important that the robot
can sense its surroundings and distinguish traversable from
non-traversable areas. In this section, we describe our ap-
proach to obstacle detection using monocular images and
sparse laser data which is the main contribution of this paper.
The robot continuously receives 2D range data from the laser
sensor in its head with a frequency of approx. 10 Hz. In
order to obtain 3D data, the robot has to stop walking and
to slowly tilt its head. In this way, a sweeping laser line is
obtained and the robot’s surroundings are scanned. The goal
is now to use the continuous flow of image data together
with the rather seldom obtained 3D range data to navigate
without collisions. This is done by learning classifiers using
the laser data to automatically generate training data. Fig. 2
illustrates an overview of our system.

A. Classification of Laser Data

The first task is to identify obstacles in the laser range
data. To achieve that we analyze the traversability of the
area around the robot in a two-step procedure: (i) identify
the ground plane and (ii) label areas as obstacles which show
a significant difference in height to the ground plane.

For the first step, we insert the 3D end points measured
by the laser scanner into a 2D grid structure (xy plane) and

laser
sensor

camera

laser-based
classifier

image-
based

classifier

mapper

planner robotmotion
commands

laser
readings

laser
readings images

traversable
area

labeled image

map

Fig. 2. Overview of the proposed system.

compute the mean elevation for each cell. Under the assump-
tion that the robot stands on the ground plane, we perform a
region growing. This procedure expands a region by adding
neighboring grid cells to the region if they show similar
elevation than the current cell under consideration. After
convergence, the ground plane can be obtained by means of
principal component analysis based on the 3D laser points
that fall into the grid cells belonging to the ground plane
according to the region growing procedure. By ignoring
the Eigenvector that corresponds to the smallest Eigenvalue
(which should have a value close to zero), we obtain the
ground plane. Subsequently, we perform a further assignment
of the grid cells in the elevation map to the parametric
representation of the ground plane. This is important since
the region growing algorithm will not reach all cells due to
gaps in the map resulting from the sparse laser data. All
areas that show a deviation from the ground plane that is
not compatible with the walking capabilities of the robot,
are labeled as not traversable and all others as traversable.

In case the robot would be able to constantly obtain full
3D range scans while walking, it would be sufficient to
navigate solely based on the this representation. However,
since obtaining an 3D scan requires the robot to stop and
is therefore time-consuming, 3D data can only be acquired
seldom during navigation. Therefore, we use the camera of
the humanoid as the main sensor to estimate the traversability
while walking.

B. Classification of Image Data

The goal is to estimate from the camera images which
parts of the robot’s surrounding are traversable so that
obtaining time-consuming 3D scans can be avoided as much
as possible. We achieve that by relating the image data to
an initial 3D scan of the environment and learn classifiers to
estimate the traversability in a self-supervised fashion.

1) Training Data: For training our classifiers, we need
camera images together with the information which pixels
in the image correspond to traversable and which ones to
not traversable parts of the environment. The idea of our ap-
proach is to use the laser data whenever it is available to train
the image-based classifiers. This is done in a self-supervised
approach by assigning to each pixel a traversability label

C1

C2

C3

C4

C5

C6

C7

C8

C9

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

C0

Fig. 3. Left: Basis functions of the 2D DCT for a 8 × 8 image.
Right: Scheme for texture feature extraction using DCT coefficients. The
illustration shows the matrix D from DCT coefficients for an 8× 8 image.

based on the projection of the classified laser data into the
image.

2) Traversability Estimation based on Color Information:
In most indoor environments in which humanoid robots are
operating, color information provides a good estimate about
traversability. To be less sensitive to illumination changes,
we operate only in the HSV color space, i.e., we use the hue
and saturation values.

Based on the training data, which provides for every pixel
of an image the corresponding traversability information, we
learn a distribution of color values for each traversability
class. A natural way of modeling such distributions from
digital images are histograms. Each bin corresponds to a
color and, thus, such a histogram is obtained by simply
considering the individual pixels and updating the bins
accordingly. After counting the color occurrences, we smooth
the bins with a Gaussian kernel and normalize the histogram.

Once the histograms are generated, we can determine the
likelihood that an intensity value of a pixel is generated
by the individual classes. Let t be the variable indicating
traversability, and ih and is the intensity values of the hue-
and saturation-channels, respectively. If we assume a uniform
distribution of P (t), P (ih), and P (is) and independence of
ih and is, we can evaluate the likelihood of traversability for
each pixel as

P (t | ih, is) = P (ih | t, is)P (t | is)P (ih | is)−1 (1)
= P (ih | t, is)P (is | t)P (t)
·P (ih)−1P (is)−1 (2)

∝ P (ih | t)P (is | t). (3)

3) Texture-based Classification: Besides color informa-
tion, texture is also a source of information that can be used
for the classification of the image data. Therefore, we use the
same training data as before and seek to exploit also texture
information for determining the traversability label.

One feature for describing texture is the discrete cosine
transformation (DCT) [1]. For an input image, the DCT
computes a set of coefficients which can be regarded as
weights of a set of two-dimensional basis functions. Each ba-
sis function is an image constructed from a two-dimensional
cosine function with a different frequency. As an illustration,
the basis functions for a 8 × 8 image are shown in the left

image of Fig. 3. The DCT transforms an input image into
an image of the same size where every pixel corresponds
to a DCT coefficient representing the amount of presence
of a certain frequency in the original image. The frequencies
increase horizontally to the right and vertically to the bottom.
Therefore, the lower-right part of the transformed image
contains information about the high frequency content of
the image. One can observe that by considering only a
small subset of the coefficients, mainly the low to mid
frequency parts, an input image can already be reconstructed
surprisingly well.

In the following, we describe how to use the DCT to learn
a traversability classification based on texture information.
Since texture information is not available per pixel, we divide
the input image’s hue-channel into overlapping patches of
size 16 × 16 computed at the fixed distance of 8 pixels
in vertical and horizontal direction. Each patch is assigned
a traversability label t, based on the percentage of labeled
pixels inside the patch using the classified laser data. If more
than a certain percentage θP (which we chose as 90%) of the
pixels in that image patch are labeled as traversable, we label
it as example for traversable texture. Analogously, if more
than θP percent of the pixels in the patch are labeled non-
traversable, we assign the label non-traversable to the patch.
If neither condition holds, for example at the boundaries of
obstacles, the patch is not used for self-supervised learning.
From the labeled image patches, we compute a feature vector
fDCT based on the DCT transform of the patch.

The feature vector fDCT is computed as follows. Let P
be such a patch of size 16 × 16 and D be the DCT of P .
Let Ci represent the set of all the DCT coefficients in the
corresponding marked region of D, according to Fig. 3. For
example C0 is the DCT coefficient located at D1,1 and C4 is
the set of the DCT coefficients located at D1,3, D1,4, D2,3,
and D2,4, etc. Further, let Mi and Vi be the average and the
variance over all coefficients in Ci, respectively. We then
define fDCT as

fDCT = (M0,M1,M2,M3, V4, V5, . . . , V12). (4)

Using this form of feature computation, we represent the
visually significant low frequency coefficients directly and
accumulate the less significant high frequency components
by their variance. From these feature vectors, together with
the corresponding traversability label for the patches, we
train a support vector machine (SVM). The SVM learns a
function pT : R12 7→ [0, 1], where pT (fDCT) is the likelihood
that the feature vector fDCT represents traversable area.

To predict the traversability of regions in an image, we
first extract image patches with their corresponding feature
vectors. Then we evaluate pT for all these patches. As the
patches overlap, we assign to all pixels (x, y) of the image
the average over all pT (x, y) obtained from the patches
containing (x, y).

C. Smoothing via Relaxation Labeling

A classification based on the individual classifiers above
is not perfect. Often small spurious classification errors exist

which can actually prevent the robot from collision-free
navigation using the techniques presented above. In both
approaches above, we ignored the dependencies between
nearby areas. One way of taking neighborhood information
into account and to combine both classifiers is probabilistic
relaxation labeling as proposed by [16].

Probabilistic relaxation labeling works as follows. Let G =
(V, E) be a graph consisting of nodes V = {v1, . . . , vN} and
edges E between pairs of nodes. In our setting, the nodes
correspond to the small rectangular image patches and the
edges describe their neighborhood relations.

Let furthermore T be the set of possible labels, in our case
traversable and non-traversable. We assume that each node
vi stores a probability distribution about its label, represented
by a histogram Pi. Each bin pi(t) of that histogram stores the
probability that the node vi has the label t. For two classes,
Pi can efficiently be represented by a binary random variable.

For each node vi, the neighborhood N (vi) ⊂ V refers to
the nodes vj that are connected to vi via an edge. In our
case, we assume an eight-connected graph of neighborhood
relations. That means that each local area only influences
its 8 neighbors. Each neighborhood relation is represented
by two values. One describes the compatibility between
the labels of both nodes and the other one represents the
influence between the nodes. The term R = {rij(t, t′) |
vj ∈ N (vi)} defines the compatibility coefficients between
the label t of node vi and the label t′ of vj . Finally,
C = {cij | vj ∈ N (vi)} is the set of weights indicating
the influence of node vj on node vi.

Given an initial estimation for the probability distribution
over traversability labels p(0)i (t) for the node vi, the prob-
abilistic relaxation method iteratively computes estimates
p
(k)
i (t), k = 1, 2, . . . , based on the initial p(0)i (t), the

compatibility coefficients R, and the weights C in the form

p
(k+1)
i (t) =

p
(k)
i (t)

[
1 + q

(k)
i (t)

]
∑

t′∈T p
(k)
i (t′)

[
1 + q

(k)
i (t′)

] , (5)

where

q
(k)
i (t) =

8∑
j=1

cij

[∑
t′∈T

rij(t, t
′)p

(k)
j (t′)

]
. (6)

The compatibility coefficients rij(t, t
′) take values be-

tween −1 and 1. A value rij(t, t
′) close to −1 indicates

that the label t′ is unlikely at the node vj given that the
node vi has label t. Values close to 1 indicate the opposite.

Probabilistic relaxation provides a framework for smooth-
ing but does not specify how the compatibility coefficients
are computed. In our work, we apply the coefficients as
defined by Yamamoto [22]

rij(t, t
′) =

 1
1−pi(t)

(
1− pi(t)

pij(t|t′)

)
if pi(t) < pij(t | t′)

pij(t|t′)
pi(t)

− 1 otherwise,

where pij(t | t′) is the conditional probability that node vi
has label t given that node vj ∈ N (vi) has label t′ (which

Fig. 4. Left: scene from the robot’s view, 2nd left: top view, 3rd left: scene changed while navigating, right: labeled image from the robot’s camera.

Fig. 5. Maps and planned trajectories of the robot while navigating. Left: initially built map (corresponds to the 1st and 2nd image in Fig. 4), 2nd left:
map after new obstacle has been detected (corresponds to the 3rd and 4th image in Fig. 4), 3rd and 4th: updated map while approaching the goal.

we determined by counting given the training data). The
initial probabilities p(0)(x,y)(t) are obtained by averaging over
the outputs from the individual classifiers described above.
Each of the weights cij is initialized with the value 1

8 ,
indicating that all the eight neighbors vj of node vi are
equally important. After termination, we obtain the final
classification as an image Ip, where Ip(x, y) represents the
probability that pixel (x, y) is traversable.

D. Re-training the Classifiers
Obviously, the learned classifiers need to be re-trained

whenever the appearance of the scene changes. Such a
change can be detected by monitoring the color/texture fea-
ture distributions over time. In our current implementation,
we follow a heuristic approach that triggers the re-learning
in case the histogram correlation between the current color
histogram computed over the whole image and the one
obtained during the previous learning step shows a value
lower than 0.5. This is clearly a heuristic but appears to
work well in our experiments.

E. Map Update and Motion Planning
For locally planning the motion of the robot, we use a

2D occupancy grid map to combine the laser data as well as
traversability information from the classified camera data.

To integrate the traversability information from the camera
images, we first compute a homography H induced by the
floor plane between the camera’s image plane and a virtual
camera’s image plane which is looking perpendicular at the
floor plane from a far distance. This allows us to construct a
bird’s eye view from the robot’s camera image. By applying
the homography H to the labeled image Ip and by using
bilinear interpolation, the traversability information from the
image Ip is mapped to the coordinate frame of the occupancy
map. The rest of the occupancy grid update is straight-
forward. An example of such a map is shown in Fig 5.

For planning the robot’s motion, we apply the A∗-
algorithm based on this 2D map. To drag the robot away from

obstacles, we efficiently compute for each cell the distance to
the closest obstacle using the Euclidean distance transform. If
the distance for a cell is larger than one robot’s radius plus a
safety margin, the cell is not considered as traversable during
planning. The optimal collision-free path to a goal location
leads through the remaining cells and is computed by A∗.

V. EXPERIMENTS

The experimental evaluation of our approach is designed
to show that our robot can detect obstacles using its self-
supervised image classifiers and thereby reduce the number
of 3D range scans that need to be acquired. We evaluate the
accuracy of our system and show that our approach allows
the robot to navigate faster to the desired goal location.

A. Obstacle Avoidance

The first experiment illustrates the functionality of our
visual obstacle avoidance system. We placed obstacles on the
floor in our lab and let the robot navigate through the scene.
The robot first took a 3D range scan to train its classifiers,
and then started navigating and updating its map based on
the visual input. In the example shown in Figs. 4 and 5,
we placed an obstacle in front of the robot after it started to
navigate. The left image of Fig. 4 shows the initial scene, the
target location was close to the second (red) humanoid robot.
The second image shows a top view of the partial scene at
the time when the robot was taking the 3D scan. The third
image shows the same scene after placing the ball in the way
of the robot. The right image of Fig. 4 shows a corresponding
labeled image recorded by the robot. In addition to that,
Fig. 5 illustrates the updated grid map and the trajectories
planned by the Nao robot at the different points in time.

B. Classification Accuracy

Fig. 1 and Fig. 6 show qualitative classification results
achieved in different environments. To evaluate the accuracy
of the image-based classifiers, we set up two different

Fig. 6. Two examples of obtained classification. Left: external camera view
for reference, right: classified onboard camera image (best viewed in color).

scenarios on two different floor surfaces and placed various
obstacles on the ground. The robot’s task was to navigate
through the scene. First, the robot took one 3D range scan,
trained its classifiers, and then used only the camera to map
its surroundings and to plan a trajectory to the given goal
location. We repeated the experiments 12 times. In case the
robot detected substantial changes in the appearance of the
scene, re-training was triggered automatically based on the
histogram correlation as explained in Sec. IV-D. The images
in Fig. 7 illustrate an example in which the re-training is
carried out.

For the evaluation, we saved an image every 10 seconds
while the robot was navigating and manually labeled each
pixel in these images. Whenever the probability for a pixel
corresponding to an obstacle was bigger than 0.5, we counted
it as obstacle and as free space otherwise. We then compared
these results to the manual labels. The obtained accuracy in
terms of confusion matrices is shown in Table I. As can be
seen, the probability that a pixel corresponding to an obstacle
was classified as free space lies between 1% and 4%.

We also tested the influence of noise, induced by shaking
movements of the robot, on the classification rates. To better
control the noise, we applied a motion blur filter to a set of
images. We observed that the classification rates for obstacles
decreased from approximatively 0.98 to 0.91, compared to
the original data set without blur, while the floor detection
rates remained unchanged. During this experiment, we chose
the parameters of the blur filter to add stronger blur than the
worst case we observed in practice with our humanoid robot.

C. Improved Robot Navigation

Three claims for using the approach presented in this paper
are made: First, the robot can better observe the area in front
of its feet which is the most important part during navigation.
Second, the robot can move faster overall since it needs
to stop less often to acquire a 3D range scan to check for
obstacles. Third, it can instantly react to dynamic obstacles
in the scene.

TABLE I
EVALUATION OF THE IMAGE CLASSIFIERS. CONFUSION MATRICES FOR

ALL CLASSIFIERS DURING TWO EXPERIMENTS.

experiment 1 experiment 2

TEXTURE CLASSIFIER
estimated as estimated as

true class obstacle floor obstacle floor

obstacle 0.84 0.16 0.99 0.01
floor 0.12 0.88 0.10 0.89

COLOR CLASSIFIER
estimated as estimated as

true class obstacle floor obstacle floor

obstacle 0.97 0.03 0.99 0.01
floor 0.20 0.80 0.04 0.96

COMBINED APPROACH
estimated as estimated as

true class obstacle floor obstacle floor

obstacle 0.96 0.04 0.99 0.01
floor 0.07 0.93 0.07 0.93

Fig. 7. Left: scene during training (robot outside the cameras field of view).
Middle: new but similar-looking objects do not trigger re-training. Right:
Adding the carpet is interpreted as a substantial change and re-training is
triggered.

The first claim does not require experimental support.
Based on the geometry of the robot and its sensors, the
closest sweep line of the laser is 0.84 m away from the
robot’s feet while walking. Using the camera in the robot’s
head, this distance reduces to 0.45 m.

To support the second claim, we compared the overall
travel time for our Nao robot using only laser data with the
proposed method. Without vision, the robot has to record
a 3D laser scan every 1.3 m to 1.4 m since this is the
distance in which the floor can be observed in sufficient
detail with the Hokuyo scanner1. Note that such 3D scans
are needed for navigation if no vision-based classifiers are
used. Constructing a consistent 3D model while walking and
continuously nodding, however, is challenging and was not
possible in our setup. The reason is the minimal overlap in
consecutive 2D laser scans while nodding in combination
with the shaking movement of the robot.

In this set of experiments, the task of the robot was to
travel through an initially empty corridor. We first uniformly

1For larger distances, typical floors (wood or PVC) provide poor mea-
surements with the Hokuyo due to the inclination angle. A travel distance
of 1.3 m between 3D scans was used in our navigation system before
implementing the approach presented here.

TABLE II
TRAVEL TIME WITH AND WITHOUT OUR VISION-BASED SYSTEM.

technique travel time (5 runs) avg.
3D laser only 219s 136s 208s 135s 135s 167s
laser & vision 136s 94s 120s 96s 87s 107s

sampled the robot’s goal location, the number of obstacles
(from 1 to 3) and their positions. After placing the obstacles
in the scene, we measured the time it took the robot to
navigate through the corridor with and without our vision-
based system. The experiment was repeated five times. The
timings for each experiment are depicted in Table II and,
as can be seen, our approach requires on average 107 s
compared to 167 s. We also carried out a paired two sample
t-test with a 0.999 confidence level. The test shows that
this result is statistically significant (tvalue = 5.692 >
t-table(conf=0.999;DoF=8) = 4.501).

Using the camera data, the robot can furthermore react
more quickly to dynamic changes in the scene (third claim).
Our current implementation runs with a frequency of 4 Hz
and thus the robot can react every 250 ms based on new
camera data. Using solely the 3D laser data, the robot only
updates its model after traveling for 1.3 m. Obviously, one
can increase the frequency in which 3D scans are recorded.
This, however, leads to significantly higher travel times.

D. Limitation of our Approach

Finally, we discuss limitation of our approach. Obstacles
looking identical or very similar (same color and same
texture) to the ground will prevent the system from learning
robust classifiers to distinguish ground from obstacles. One
way to detect this, is to classify the labeled training images
directly after learning the classifiers. In case of large errors
on the training data, the robot can switch back to the strategy
of using only 3D range scans.

Furthermore, moving obstacles in the environment during
the acquisition of the 3D range scan impose a problem to
the training of the image classifiers. In this case, the training
image and the classified range data do not correspond. How-
ever, this situation would also cause problems if navigation
was based solely on 3D laser data. In future work, we want
to investigate how these effects can be reduced, e.g., by
identifying areas where obstacles have moved and discard
them as training data. Note that dynamic obstacles during
navigation are not problematic to the approach.

VI. CONCLUSIONS

In this paper, we presented an approach to combine sparse
laser data and visual information for obstacle avoidance on
a humanoid robot. Our method allows the robot to train
classifiers for detecting obstacles in the camera images in
a self-supervised fashion. Based on this information, the
robot can navigate more efficiently and avoid obstacles. Our
approach provides the humanoid with a better field of view,
leads to a reduced travel time, and allows to deal with
changes in the scene.

ACKNOWLEDGMENTS
The authors would like to acknowledge Armin Hornung

and Christoph Sprunk for their help in the context of
humanoid robot navigation and Andreas Ess for fruitful
discussions on the topic.

REFERENCES

[1] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transfom.
IEEE Transactions on Computers, 23(1):90–93, 1974.

[2] J. Chestnutt, Y. Takaoka, K. Suga, K. Nishiwaki, J. Kuffner, and
S. Kagami. Biped navigation in rough environments using on-board
sensing. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2009.

[3] R. Cupec, G. Schmidt, and O. Lorch. Experiments in vision-guided
robot walking in a structured scenario. In Proc. of the IEEE Int. Symp.
on Industrial Electronics, 2005.

[4] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski. Self-
supervised monocular road detection in desert terrain. In Proc. of
Robotics: Science and Systems (RSS), 2006.

[5] A. Ess, B. Leibe, K. Schindler, and L. van Gool. Moving obstacle
detection in highly dynamic scenes. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2009.

[6] F. Faber, M. Bennewitz, C. Eppner, A. Goeroeg, A. Gonsior, D. Joho,
M. Schreiber, and S. Behnke. The humanoid museum tour guide
Robotinho. In Proc. of the 18th IEEE Int. Symposium on Robot and
Human Interactive Communication (RO-MAN), 2009.

[7] E. Fazl-Ersi and J.K. Tsotsos. Region classification for robust floor
detection in indoor environments. In Proc. of the Int. Conf. on Image
Analysis and Recognition (ICIAR), 2009.

[8] J.-S. Gutmann, M. Fukuchi, and M. Fujita. 3D perception and envi-
ronment map generation for humanoid robot navigation. Int. Journal
of Robotics Research (IJRR), 27(10):1117–1134, 2008.

[9] A. Hornung, M. Bennewitz, and H. Strasdat. Efficient vision-based
navigation – Learning about the influence of motion blur. Autonomous
Robots, 29(2), 2010.

[10] J. Ido, Y. Shimizu, Y. Matsumoto, and T. Ogasawara. Indoor navigation
for a humanoid robot using a view sequence. Int. Journal of Robotics
Research (IJRR), 28(2):315–325, 2009.

[11] X. Li, S. Zhang, and M. Sridharan. Vision-based safe local motion on
a humanoid robot. In Workshop on Humanoid Soccer Robots, 2009.

[12] P. Michel, J. Chestnutt, S. Kagami, K. Nishiwaki, J. Kuffner, and
T. Kanade. GPU-accelerated real-time 3D tracking for humanoid
locomotion and stair climbing. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2007.

[13] P. Michel, J. Chestnutt, J. Kuffner, and T. Kanade. Vision-guided
humanoid footstep planning for dynamic environments. In Proc. of
the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2005.

[14] J. Michels, A. Saxena, and A.Y. Ng. High speed obstacle avoidance
using monocular vision and reinforcement learning. In Proc. of the
Int. Conf. on Machine Learning (ICML), 2005.

[15] C. Plagemann, C. Stachniss, J. Hess, F. Endres, and N. Franklin. A
nonparametric learning approach to range sensing from omnidirec-
tional vision. Robotics & Autonomous Systems, 58:762–772, 2010.

[16] A. Rosenfel, R.A. Hummel, and S.W. Zucker. Scene labeling by
relaxation operations. IEEE Trans. Systems. Man. Cybernet, 6(6):420–
433, 1976.

[17] C. Stachniss, M. Bennewitz, G. Grisetti, S. Behnke, and W. Burgard.
How to learn accurate grid maps with a humanoid. In Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA), 2008.

[18] C. Stachniss, O. Martı́nez-Mozos, A. Rottmann, and W. Burgard.
Semantic labeling of places. In Proc. of the Int. Symp. of Robotics
Research (ISRR), San Francisco, CA, USA, 2005.

[19] M. Stilman, K. Nishiwaki, S. Kagami, and J. Kuffner. Planning
and executing navigation among movable obstacles. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2006.

[20] R. Tellez, F. Ferro, D. Mora, D. Pinyol, and D. Faconti. Autonomous
humanoid navigation using laser and odometry data. In Proc. of the
IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2008.

[21] I. Ulrich and I. Nourbakhsh. Appearance-based obstacle detection with
monocular color vision. In Proc. of the National Conf. on Artificial
Intelligence (AAAI), 2006.

[22] H. Yamamoto. A method of deriving compatibility coefficents for
relaxation operators. Compt. Graph. Image Processing, 10, 1979.

