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Abstract— Teleoperation is still the de-facto mode of op-
eration for robotic manipulators in hazardous and unknown
environments. The objective is to move the manipulator under
the influence of a plenitude of constraints, mainly following the
human operator’s commands, but also the avoidance of adverse
effects such as joint limits or the exertion of external forces.
A classic approach to incorporate such non-instantaneous
behavior into the instantaneous motion of the kinematic chain
is the Closed-Loop Inverse Kinematics (CLIK) control scheme.

In this paper, we present PV-CLIK, a novel CLIK real-
ization that for the first time practically applies the Popov-
Vereshchagin (PV) hybrid dynamics solver to map the instan-
taneous constraints to motion commands. By relying on the PV
solver, PV-CLIK offers several benefits over traditional CLIK
implementations such as linear runtime complexity, handling
constraints on the dynamics level or fostering composable
software architectures. In the experimental evaluation, we show
that our implementation of PV-CLIK outperforms existing
kinematics solvers in Cartesian trajectory-following tasks at
high velocities.

I. INTRODUCTION

Operating in potentially hazardous and unknown environ-
ments poses a challenge to human safety (e.g., a disaster-
stricken area or a nuclear power plant). In such scenar-
ios, teleoperation of robots is more likely to succeed than
completely autonomous behavior due to the incorporation of
human decision making.

Structural and physical differences between robots and hu-
mans make teleoperation with human-robot motion mapping
challenging. Moreover, tasks involving coordinated motions
of arms, e.g., transferring a box, need additional end effector
constrains in terms of maintaining a constant distance be-
tween end effectors. Such tasks are difficult to perform using
teleoperation, as without having the box in the hand, the hu-
man is very likely to fail in maintaining the constant distance
between the hands. This demands a degree of autonomy
on the robot’s side and flexible control architecture, which
allows seamless and instantaneous transfer between manual,
shared, and autonomous control. Such an architecture must
also allow composability and thereby warrant its ability to
operate in different scenarios without requiring internal or
semantic changes to the overall system [1].

The Popov-Vereshchagin hybrid dynamics solver offers a
promising solution for computing human-robot motion map-
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Fig. 1: Experimental setup for demonstrating an application
of the PV solver for real-time human-robot motion mapping.

ping under these challenges [2], [3]. It provides an intuitive
way to account for kinematic and dynamic constraints and
allows to generate instantaneous motions that respect end-
effector constraints. Despite these advantages, this solver has
so far not been used for any practical applications like teleop-
eration. In this work, we build a teleoperation system based
on the PV solver and integrate the necessary constraints,
which respect kinematic joint-limits, while accounting for
the Cartesian end-effector constraints.

In the experiments, we compare PV-CLIK with existing
inverse kinematics solvers from the control perspective and
evaluate it for coordinated dual-arm tasks. We show an appli-
cation of the PV solver for teleoperation using a single robot
arm and validate the solver’s extensibility by performing bi-
manual teleoperation by transferring sand using the setup
shown in Fig. 1.

The main contributions of this paper are (i) integration
of joint-limit avoidance as a composable layer in the PV
solver-based control scheme, and (ii) an application of the
PV solver to real-world teleoperation.

The remainder of this paper is structured as follows: After
discussing related work in the following section, we will
explain the PV solver in Section III. Sections IV and V
elaborate the application of the solver for human-robot
motion mapping and integration of joint-limit avoidance re-
spectively. In Section VI, we describe the hardware used for
experimentation. Section VII presents experimental results
demonstrating the advantages of our approach. Finally, we
close the paper with conclusions and future work.



II. RELATED WORK

Applications of teleoperation range from medical appli-
cations, for example, for minimally invasive surgeries like
the Da Vinci surgical system, where supervisory control
is practiced, to space applications like Eurobot [4] where
direct control using exoskeletons is employed [5]. To keep
the human in the loop, visual, force, or combined feedback
is transferred to the human operator [6]. These methods
require a controlled environment and state-of-the-art sensors
and equipment, which are either costly, likely to introduce
time delay, not easily transportable, or impede human arm
movement [7] [8].

For cases where master-slave control or haptic feedback is
not feasible, Stoyanov et al. develop a teleoperation method
based on the Stack-Of-Tasks approach employing shared
control, [9]. Some degree of autonomy is available at the
human’s disposal in this control paradigm like the alignment
of the gripper, joint-limit, and obstacle avoidance. In contrast
to the PV solver, their approach does not allow for the
consideration of environmental forces. Khatib et al. [10]
introduce a whole-body operational space control for motion
avoiding near-body objects, joint-limits, and self-collisions.
They control the robot posture by using a task-constrained
Jacobian matrix in the force domain. They define the task as
Cartesian accelerations and obtain the required joint torques
to perform the task. Rodehutskors et al. design a bi-manual
teleoperation system for the DARPA Robotics Challenge,
which uses 3D visualization and motion tracking for tele-
operation [11]. However, the control strategy cannot account
for forces in the environment. Moreover, the teleoperation
interface is complex and needs multiple users to operate the
robot.

The Instantaneous Task Specification using Constraints
(iTaSC) framework is well known for task-based control. It
enables the generation of robot motions when constraints be-
tween the robot and its environment are known [12]. Focused
on task specifications, this framework provides programming
support for complex task execution. A task could be an
interaction or motion among objects. Task specifications are
obtained by imposing constraints on the modeled motion or
interactions. Schutter et al. [12] demonstrate the system per-
formance for tasks like contour tracking or human-robot co-
manipulation. However, the generic nature of this framework
does not allow most efficient real-time control.

Based on [3], Shakhimardanov et al. proposed a control
approach using instantaneous constraints [2]. This approach
uses the PV solver to solve for constrained motion tasks.
Unlike iTaSC [12], this approach is capable of performing
efficient teleoperation, as the PV solver has linear time
complexity. Due to the dynamic interface, it can account for
forces acting on the robot end-effector and is potentially us-
able for compliant-motion based tasks, unlike in [9] and [11].
However, despite its capabilities, this solver has not been
used or evaluated for online applications like teleoperation,
to the best of our knowledge. In this paper, we present the
first practical application of the PV solver for teleoperation.

III. POPOV-VERESHCHAGIN HYBRID DYNAMICS SOLVER

Hybrid dynamics algorithms solve equations of motions
for a kinematic chain, given partial joint motions or forces.
This calculation requires: (i) computations of joint forces
or torques using outward recursions of positions, velocities,
and bias accelerations; (ii) inward recursions of inertia and
forces; and (iii) final outward recursions of torques and accel-
erations. The Popov-Vereshchagin hybrid dynamics solver,
additionally, introduces Cartesian acceleration constraints in
their computational sweeps. Algorithm 1 shows the compu-
tational sweeps of the solver [2]. All the variables are in
Plücker coordinates. This our case, it means that a variable
is a six dimensional vector consisting respective Cartesian
and angular components. The suffix i corresponds to the ith

joint or segment, 0 being the root and N being the leaf.
The explanation of the algorithm below assumes that the

reader is familiar with the basic dynamics algorithms, e.g.,
the Articulated Body Hybrid Dynamics Algorithm [2]. Even
though we briefly explain the solver, this is not the primary
focus of this work. To realize the contribution of our work,
the reader needs to understand only the inputs and the outputs
of the PV solver given in Table I and its usages explained in
Section IV-B. These variables form the inputs and the outputs
of the PV-CLIK architecture are explained in Section IV-A.

In the outward sweep, the variables mentioned in the
Table II are computed using outward recursions from the
root to the leaf. Table III addresses the variables recursively
computed from the leaf joint to the root joint, a.k.a. inward
sweep. The main difference from the existing dynamics
solvers are the terms constraint force A, acceleration en-
ergy U , and coupling matrix L, which are computed in
Algorithm 1, Lines 18, 19, and 21 respectively. Using the
variables computed above, the Lagrange multiplier ν which
minimizes the acceleration energy of the system is computed.

Output variables joint acceleration q̈ and Cartesian joint
acceleration Ẍ are calculated in the final outward sweep
computations in Line 27 and Line 29, recursively from the
root to the end-effector segment.

A more detailed explanation of this algorithm can be found
in [2].

IV. APPLYING PV-CLIK TO MOTION MAPPING

In this section, we will explain the control architecture
used in our approach and the usages of the solver for human-
robot motion mapping.

A. Control Architecture

As realized in [13] and [14], Closed-Loop Inverse Kine-
matics (CLIK) architecture can consider constraints instan-
taneously. Hence, we propose a CLIK scheme based on
the PV solver, as shown in Fig. 2. The benefits of our
approach originate from the application of the PV solver
because it (i) can handle constraints on the dynamics level
and, hence, is agnostic to the particular control scheme (e.g.,
position control or impedance control); (ii) is composable
with controllers to handle a plenitude of tasks (e.g., end-
effector tracking, joint-limit avoidance).



TABLE I: Solver input and output variables

Variables Denotations
Joint angles q
Joint velocities q̇
Feed-forward joint torque τ
External force acting on a segment Fext

Unit constraint force matrix [6× 6] AN

End-effector Cartesian acceleration energy bN
Output torque required to perform motion τcontrol

Joint accelerations q̈

Cartesian acceleration of a segment Ẍ

TABLE II: Variables computed in the outward sweep of
positions, velocities, and accelerations

Variables Denotations
Cartesian pose of a segment X

Cartesian velocity of a segment Ẋ

Initialization of the bias acceleration of a segment Ẍb

Initialization of the bias force acting on a segment Fb

Articulated inertia of the segment IA

TABLE III: Variables computed in the inward sweep of the
solver

Variables Denotations
Articulated body inertia in joint subspace D

Projection operator for the inertia PA

Apparent inertia I
Bias force including articulated bias force Fa

b
Constraint force A
The acceleration energy produced due to the contribution
of child segment, bias forces, and feed-forward torques

U

Coupling matrix whose rows represent acceleration en-
ergy generated at the segment

L

An input to the architecture can be the desired acceleration
of the end-effector, desired feed-forward joint-torques, and
even external forces acting on the end effector. The output
is joint-level accelerations and torques. In our application,
we generate the velocity commands by integrating obtained
accelerations.

B. Motion Mapping

We use the PV solver to compute human-robot motion
mapping for teleoperation of a robot. We assume that a
motion capture system computes the pose (position and
orientation) of a human hand-tip with respect to the shoulder.
Using a simple scaling and transformation to match axes,
we compute the desired pose of robot end-effector in its
base frame. We obtain the current robot end-effector pose
using forward kinematics. At this step, both the desired
and current robot end-effector positions and orientations are
known. With a given desired end-effector pose for the next
time step, we compute joint accelerations using PV solver.

First, we calculate the instantaneous Cartesian velocity
based on the difference between current and desired robot
end-effector positions,

v = (
xdes − xcurr

δt
,
ydes − ycurr

δt
,
zdes − zcurr

δt
)

= (vx, vy, vz).
(1)

Algorithm 1: Constrained Hybrid Dynamics Solver

Input : Robot model, q, q̇, τ , Ẍ0,
Fext, AN, bN

Output: τcontrol, q̈, Ẍ
1 begin
2 // Outward sweep
3 for i = 0 to N− 1 do
4 i+1

i X = (diXi
i+1Xdi(qi));

5 Ẋi+1 = i+1XiẊi + Si+1q̇i+1;

6 Ẍb,i+1 = Ẋi+1 × Si+1q̇i+1;

7 FA
b,i+1 = Ẋi+1 × Ii+1Ẋi+1 − F ext

i+1;

8 IAi+1 = Ii+1;
9 end

10 // Inward sweep of inertia, force contributions
11 for i = N− 1 to 0 do
12 Di+1 = di+1 + ST

i+1I
A
i+1Si+1;

13 PA
i+1 = 1− IAi+1Si+1D

−1
i+1S

T
i+1;

14 Ii = PA
i+1I

A
i+1 +

∑
iXT

i+1I
a
i+1

iXi+1;

15 FA
b,i+1 = PA

i+1F
A
b,i+1 + Ii+1Si+1D

−1
i+1τi+1

16 +Ii+1Ẍb,i+1;
17 F a

b,i = FA
b,i +

∑
iX∗

i+1F
a
b,i+1;

18 Ai =
iXT

i+1P
A
i+1Ai+1;

19 Ui = Ui+1 +AT
i+1{Ẍb,i+1 + SiD

−1
i

20 (τi+1 − ST
i (F

A
b,i+1 + Ii+1Ẍb,i+1))};

21 Li = Li+1 −AT
i+1Si+1D

−1
i+1S

T
i+1Ai+1;

22 end
23 // Balance of acceleration energy at the base link
24 ν = L−1

0 (bN −AT
0 Ẍ0 − U0);

25 // Outward sweep of accelerations
26 for i = 0 to N− 1 do
27 q̈i+1 = D−1

i+1{τi+1 − ST
i+1(F

A
b,i+1+

28 Ii+1(
i+1XiẌi + Ẍb,i+1) +Ai+1ν)};

29 Ẍi+1 = i+1XiẌi + Si+1q̈i+1 + Ẍbias,i+1;
30 end
31 end

Multiplication with the rate of change of the rotation
matrix and the inverse of the current rotation matrix gives
a skew-symmetric matrix comprising the angular velocity
components,

W = Ṙ R−1
cur , where W =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (2)

Using W, the end-effector angular velocity is given as

ω = (ωx, ωy, ωz). (3)

Linear and angular end-effector accelerations are chosen
to be proportional to the respective velocities:



Fig. 2: Control architecture for PV-CLIK with position level
input constraints and velocity level output commands to the
robot. Acceleration and torque could be used to command
the robot depending upon the available robot interface. The
variables subscribed using des and cur are the desired and
current variables respectively.

Ẍinput =
[
k1v k2ω

]
. (4)

Here, k1 and k2 are proportionality constants, selected by
initial offline trials with the robot.

This acceleration is equivalent to the input bN to the PV
solver used in Algorithm 1, Line 24. Since we specify motion
in all six DOFs, the unit constraint forces AN is a 6×6 unit
diagonal matrix. Feed-forward torque τ are considered to be
zero.

V. JOINT LIMIT AVOIDANCE CONTROLLER

For the robot to avoid joint-limits, a virtual external force
is applied such that it rotates the joints away from the joint-
limits. A virtual external force proportional to the Cartesian
velocity is applied on the end-effector to achieve the desired
end effector motion, while avoiding joint-limits.

Since, we use external force interface, the constraint
matrix for AN is a 6× 6 null matrix and

Ẍinput =
[
0 0 0 0 0 0

]
. (5)

The end effector constraints are imposed using the virtual
external force given as

F ext
N =

[
c1v c2ω

]T
. (6)

c1 and c2 are proportionality constants, selected by initial
offline trials with the robot, as the inertial model of our robot
is not known. In our case, all the joints are revolute joints
rotating about the z-axis. Hence, the applied force is the dot
product of the force vector and the motion subspace matrix.
They are used in Algorithm 1, Line 7 and calculated as

F ext
i = Si · F, (7)

Si =
[
0 0 0 0 0 1

]
,

F =
[
0 0 0 0 0 nz

]T
.

The value of nz is determined in initial trials on the robot.
Using this external force as solver input, we avoid joint-
limits.

Fig. 3: Skeleton tracking us-
ing the Kinect-based motion
capturing system. Here, only
the position of the joints can
be obtained.

Fig. 4: Arm pose obtained
using the IMU-based motion
capturing system. Here, po-
sition and orientation of the
arm-joints can be obtained.

VI. EXPERIMENTAL SETUP

In this section, we will describe our motion capturing setup
and robotic platform.

A. Motion Capturing System

This paper uses a combined IMU and Kinect-based1 mo-
tion capturing approach. The Kinect tracks full body motion
as shown in Fig. 3. We only use joints positions of shoulder,
elbow, wrist, and hand-tip. The Kinect cannot capture the
orientations of the hand-tip, and hence, we use an additional
IMU-based tracking system described in [15]. This system
uses four Xsens MTw Awinda wireless motion trackers2 on
the operator’s humerus, radius, hand, and finger and creates
a model of the human arm as shown in Fig. 4. The IMUs
are mounted on a jacket and are visible in Fig. 1. In this
work, we only use the information about the position and
orientation of the fingers or the hand-tip with respect to the
shoulder.

B. Robotic Hardware

We use two Schunk LWA-4D arms3 for evaluation. The
arm has seven DoF and seven revolute joints. The arms are
equipped with two Schunk Dexterous hands4 as shown in
Fig. 1. Velocity and position interfaces are available for com-
manding a motion. We use the velocity interface to achieve
more flexible instantaneous control over the trajectory, with
the control frequency of 30 Hz.

VII. EXPERIMENTAL EVALUATION

This paper evaluates the PV-CLIK with three different
types of experiments including, (i) imitation of predefined
motions with a single arm, (ii) teleoperation with a single
arm, and (iii) coordinated dual-arm motion. Additionally, we

1https://msdn.microsoft.com/en-us/library/
dn782025.aspx (03/09/2017)

2https://www.xsens.com/products/
mtw-awinda/(03/09/2017)

3http://www.schunk-modular-robotics.com/en/home/
products/dextrous-lightweight-arm-lwa-4d.html
(24/10/2018)

4https://schunk.com/de_en/gripping-systems/
series/sdh/ (24/10/2018)



Fig. 5: Setup for imitation of predefined end-effector motions
with a single arm.

show the easy extensibility of the proposed architecture by
demonstrating its usages for a teleoperation task with a dual-
arm robot.

The first experiment evaluates the performance of our
control system against predefined motions and compares
this performance with the widely used TRAC-IK5 solver.
We chose the TRAC-IK solver as it uses algorithms based
on Newton’s convergence methods and Sequential Quadratic
Programming simultaneously to improve the success rate. It
claims a solution rate of above 99% for Schunk LWA-4D
arms, which is better than any individual kinematics solver.

The second experiment evaluates the intuitiveness of the
proposed system. The third experiment evaluates the ability
of the system to perform a coordinated task which requires
precision (e.g., carrying a box with two arms), with partial
autonomy at the robot’s end. The final experiment demon-
strates dual-arm teleoperation using the PV-CLIK.

A. Imitation of Predefined Motions with a Single Arm

The deviation between desired and actual motion is mea-
sured using the Fréchet distance, which is the maximum
distance by which a given curve deviates from the original
curve.

1) Setup: In these experiments, we generated circular and
square trajectories. We sent the position generated to the
solver at 30 Hz. In the robot arm base link, the x axis is
pointing downwards, and the z axis is the pointing forward.
The direction of the y-axis follows the right hand rule. The
effect of a variation of the speed on the end-effector motion
is analyzed. Fig. 5 shows the setup.

2) Experiments and Results: First, we present results for
desired motion generation at variable speeds. The circle
radius and the square sides are 0.1 m with the same end-
effector orientation. The solver attempts to reach the latest
commanded position. As a consequence, if the velocity is
varied, the robot end-effector trajectory varies. Fig. 6 and 7
show the variation of the trajectory as the speed of the
commanded motion changes using both the TRAC-IK and
PV-CLIK as solution methods.

z
Fig. 8 and 9 show box plots for such deviations at different

speeds and Table IV enumerates the results. The average
latencies of the PV-CLIK and TRAC-IK solver were 0.22
ms and 0.50 ms respectively.

5https://bitbucket.org/traclabs/trac_ik.git
(10/13/2018)
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Fig. 6: Robot end-effector motion response to circular motion
generated at different speeds. As can be seen, at higher
speeds, the PV-CLIK performs better trajectory tracking than
the TRAC-IK solver.
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Fig. 7: Robot end-effector motion response to square motion
generated at different speeds. As can be seen, at higher
speeds, the PV-CLIK performs better trajectory tracking than
the TRAC-IK solver.
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(b) PV-CLIK.

Fig. 8: Deviation of the robot end-effector from the desired
circular motion. As can be seen, at higher speeds, the TRAC-
IK solver deviates more from the desired trajectory than the
PV-CLIK.
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(b) PV-CLIK.

Fig. 9: Deviation of the robot end-effector from the desired
square motion. As can be seen, at higher speeds, the TRAC-
IK solver deviates more from the desired trajectory than the
PV-CLIK.



TABLE IV: Experimental results for trajectory following
with a single-arm. At the highs speeds, measuring the de-
viation from the desired trajectory, the PV-CLIK performed
better than that of the TRAC-IK solver.

Shape Speed Max Deviation using
the TRAC-IK solver [m]

Max Deviation using
the PV solver [m]

Circle 0.15 rad/s 0.001 0.002
1.20 rad/s 0.089 0.056

Square 0.15 rad/s 0.0018 0.0039
0.6 m/s 0.041 0.030

Fig. 10: Experimental setup for the task of pressing a button
using teleoperation. It shows the relative position of user,
robot arm and button.

In summary, the PV-CLIK outperforms the TRAC-IK
solver in terms of latency and end-effector pose tracking.
The tracking error for both solvers increases as the speed of
the desired motion increases. However at the high speeds,
the PV-CLIK performed better than the best-performing IK
solver. At low speeds, its performance was comparable to
that of the TRAC-IK solver.

B. Teleoperation with a Single Arm

In this section, we evaluated the teleoperation system for
the task of pressing a button using only the PV-CLIK.

1) Setup: The participants wore a jacket with IMUs
mounted on it. They were given a serial device to start
and stop the manipulator control and to reset the starting
position. This button ensures that the users can relax their
arm, if necessary. We mounted the button to be pressed using
teleoperation on the table in the reachable workspace of the
robot. The experimental setup is as shown in Fig. 10.

2) Experiments and Results: Ten participants were asked
to press the black button shown in Fig. 10, while teleoperat-
ing a single arm. These participants were in the age of 15-35
years old and naı̈ve users of the system. We gave these users
an instruction explaining the working of the system and the
task. They were given 300 seconds to train and 300 seconds
to accomplish the task. We noted the trajectory of both - the
robot and the user, the time needed, the number of restarts,
and whether they could accomplish the task. The robot’s end-
effector and the user’s hand positions are calibrated to be
aligned at the start of teleoperation, but not the orientations.

TABLE V: Evaluation with users for the task of pressing a
button with teleoperation.

User Task completion Time needed [s] Number of restarts
1 Yes 53 0
2 Yes 104 0
3 Yes 56 0
4 Yes 48 1
5 Yes 300 1
6 Yes 30 0
7 Yes 28 0
8 Yes 54 0
9 Yes 75 0
10 Yes 104 0
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Fig. 11: Trajectory of the end-effector and the user’s hand
while performing the task of pressing a button with single
arm teleoperation. As can be seen, the robot-end effector is
able to follow the user’s trajectory.

We use absolute orientations, as it is counterintuitive to
perform relative orientations due to the symmetric gripper.

Table V shows the task performance of the participants.
All participants learned to use the system in the given
300 seconds. Every participant was able to perform the task
successfully. In Fig. 11, we see that the robot end-effector
was able to follow the user’s position and orientation. The
system had a latency of 20-24 milliseconds.

We observed that the users inadvertently tend to change
the orientation of their hand, while moving their arm, or
while resetting the robot’s position using the red button. To
avoid this inadvertent orientation change for the robot, the
angle tolerance is kept large, i.e., 0.1 radians. Consequently,



Fig. 12: Experimental setup for evaluating coordinated dual-
arm motion.

Figs. 11d, 11e, 11f show the robot followed the human roll,
pitch, and yaw only up to the tolerance of 0.1 radians.

C. Coordinated Dual-Arm Motion

This section involves testing and experimentation for a
coordinated dual-arm task using only the PV-CLIK. This is
important when a robot wants to perform coordinated tasks,
e.g., carrying a box, where the distance between two end-
effectors should remain constant, while the arms are moving.

With a dual-arm setup, we imposed the task constraint that
the distance between two arms must be constant while mov-
ing towards the desired pose. A trajectory of only one arm is
known to the robot. The second arm trajectory is computed
based on the constant relative distance between two arms. In
this scenario, the second arm moves autonomously to follow
the first arm, giving the robot control of the tasks, when
precision in maintaining a fixed distance is needed.

1) Setup: The experimental setup is as shown in Fig. 12.
The two arms are in the starting position such that the
commanded trajectory is in the reachable workspace of the
robot.

2) Experiments and Result: We evaluated the perfor-
mance of the solver while commanding circular and square
motions at various speeds. For coordinated motions, the
critical constraint is that the Euclidean distance between the
end-effectors along every axis is constant. The left arm in
Fig. 12 was in the trajectory following mode, and the right
arm maintained the distance between two arms at any given
instance.

Fig. 13 shows the trajectory of the end-effector of the arm
for this constraint for a circle of 0.1 m radius and at a speed
of 0.15 rad/s. Fig. 14 shows the trajectory for square of 0.1 m
side and at a speed of 0.15 m/s.

Fig. 15 shows the distance between the two arms as a
function of time and Fig. 16, the box plot for this experiment.
Figs. 17 and 18 show the respective pots for the square
trajectory.

3) Discussion: The trajectories are commanded in such
a way that both the arms have to travel different distances
in the joint space to be able to follow the trajectory. This
insures that the solvers for two arms work independently.
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Fig. 13: End-effector motion response of the right and the left
arm to the circular motion generated at a speed of 0.15 rad/s.
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Fig. 14: End-effector motion response of the right and the left
arm to the square motion generated at a speed of 0.15 rad/s.
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Fig. 15: Deviations in the
distance between two end-
effectors for a speed of
0.15 rad/s from the initial
distance, for circular mo-
tion.
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Fig. 16: Deviations in the
distance between two end-
effectors from the initial dis-
tance, for circular motion at
various speeds.
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Fig. 17: Deviations in the
distance between two end-
effectors for a speed of
0.15 m/s from the initial dis-
tance, for square motion.
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Fig. 18: Deviations in the
distance between two end-
effectors from the initial dis-
tance, for square motion at
various speeds.



Fig. 19: Dual-arm teleoperation task of pouring sand from
one hand to the other hand

The Fréchet distance for the dual-arm setup for the desired
circular motion at the speed of 0.15 rad/s was observed to
be 0.0012 m and 0.0021 m for the right and the left arm
respectively. For the square motion, they were 0.0038 m and
0.0042 m for the right and the left arm respectively.

The priority of the task is to maintain the distance between
the arms. These experiments show that the solver could main-
tain the distance between the two arms’ end-effectors within
a sub-millimeter range, while still being able to maintain the
trajectory within 0.0042 m accuracy. The maximum deviation
between the end-effectors was 0.0008 m and it is independent
of the speed or the trajectory shape.

D. Extensibility of the Approach: Teleoperation with a Dual-
Arm Robot

Finally, to show the easy extensibility of our control
architecture, we demonstrate the performance of our system
for the task of teleoperation of a dual-arm robot. The task is
to pour sand from one hand to the other as shown in Fig. 19.
Both Xsens and the Kinect camera track the motion of the
user. Self-collision checking is performed using the Flexible
Collision Checking (FCL) library6. The motion-mapping
controller stops the manipulators and informs the user if a
collision is imminent in the intended motion direction. The
video of this experiment is available online7.

VIII. CONCLUSION

This paper demonstrates the first application of the Popov-
Vereshchagin hybrid dynamics solver for human-robot mo-
tion mapping under instantaneous motion constraints. To
realize this, we propose the PV-CLIK scheme and incor-
porate joint-limit avoidance as a composable layer in the
same. In various experimental evaluations, we show that our
control methodology using the PV solver: (i) performs better
than existing kinematics solvers at higher speeds in terms
of following trajectories, (ii) leads to an intuitive control
interface for teleoperation, (iii) allows for partial autonomy

6https://github.com/flexible-collision-library/
fcl(24/09/2018)

7https://www.youtube.com/watch?v=M3TondB7tlQ

of the robot for coordinated tasks, and (iv) is capable of
performing bi-manual teleoperation.

Future work involves testing system performance under
the influence of external forces, including compliant motion
following, and providing a solution for singularity avoid-
ance.
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