Prediction Maps for Real-Time 3D Footstep Planning in Dynamic Environments

Philipp Karkowski

Abstract— Perception of the local environment is a precon-
dition for mobile robots to navigate safely in dynamic environ-
ments. Most robots, i.e., humanoids and smaller wheeled robots
rely on planar regions. For humanoids, a simple 2D occupancy
map as environment representation on which a path is planned
is hereby not sufficient since they can step over and onto objects
and therefore need height information. Considering dynamic
obstacles introduces another level of complexity, since they can
lead to necessary replanning or collisions at later stages. In this
paper, we present a framework that first extracts planar regions
in height maps and detects dynamic obstacles. Our system
then uses this information to create a set of prediction maps,
in which paths can be efficiently planned in real time at low
CPU cost. We show in simulation and real-world experiments
that our framework keeps run times well under 10ms for
one computation cycle and allows for foresighted real-time 3D
footstep planning.

I. INTRODUCTION

In recent years, service robots have become more and more
capable at helping humans even with complex tasks, e.g.,
tasks that present a high risk to humans or when it results
in a decreased long-term cost to apply robots. These tasks
may include coverage searches, e.g., in collapsed buildings
or moving objects between destinations in order to assist
humans with their task. Most current robots are still reliant
upon planar regions in order to smoothly move along, in
particular, humanoid robots which are highly delicate with
regards to stability.

In addition to identifying static planar regions, it is
advantageous to anticipate the development of the local
environment in the presence of dynamic obstacles. In this
way, obstacles that move in the way of a robot can be
considered during path planning, which in turn can reduce
the necessity to decelerate or stop and replan at later stages
in order to avoid a collision.

A common way to represent information about the struc-
ture of the environment around the robot are grid-based
height maps. While 2D occupancy grid maps are sufficient
for most wheeled robots, other robots, such as humanoids,
also need height information to consider stepping over or
onto objects. In this paper, we present a novel approach
to segment such height maps robustly into planar and non-
planar regions even in the presence of noise. Furthermore, we
track dynamic obstacles and approximate their movement to
allow for foresighted path planning. One way to accomplish
this, is to provide a static map along with a list of tracked
dynamic objects that can be combined to create a map for

All authors are with the Humanoid Robots Lab, University of Bonn,
Germany. This work has been supported by the European Commission under
contract number FP7-610532-SQUIRREL.

Maren Bennewitz

Fig. 1: We predict the future movements of dynamic objects to create a set
of predicted height maps, which are segmented into planar regions. Those
prediction maps can be used to find 3D footstep plans that anticipate possible
collisions and avoid unnecessary replanning at later stages.

any desired point in time. However, since path planning
algorithms typically have to perform a vast number of
collision checks, this would require frequent mappings of
the dynamic obstacles onto the static map. We, therefore,
precompute a set of prediction maps that can be accessed
directly in order to speed up path planning.

We put a high focus on the computational efficiency as it is
our believe that navigation should ideally be a background
task for any robot to allow it to perform other important
tasks in parallel, especially for systems with constrained
resources due to limited payload. Our system is capable
of completing a full cycle, which includes preprocessing,
segmentation, object detection, and, for example, computing
a set of 20 prediction maps 10 s into the future in only 6 ms
without the need of a graphics card.

We combined the framework with our real-time 3D foot-
step planner [1] and demonstrate its strengths in scenarios
with dynamic objects where the prediction maps can help to
avoid collisions or the necessity for replanning in the future.
One such example can be seen in Fig. 1, where our footstep
planner preemptively finds a higher cost path by stepping
over an obstacle, because it anticipates a blocked path by the
time the robot reaches the gap along the low cost path (red).
To the best of our knowledge, our framework is the first
that considers motion prediction of dynamic objects in 3D
footstep planning.

II. RELATED WORK

Commonly used methods for image segmentation are
the watershed transformation, superpixel, and plane fitting
approaches. The watershed transformation operates on grey



scale images that are interpreted as height maps [2], [3].
The watershed transformation is not very efficient because
of the iterative flooding step. Furthermore, this method
tends to over-segmentation such that the regions have to be
merged in an additional step. Superpixel algorithms follow
the approach of grouping pixels into polygonal regions,
which offers a compact representation of the image. Cigla
and Alatan, for example, developed a method that is based
on k-means clustering [4] and provides the final segmentation
by applying normalized cuts to the graph generated out of
the superpixels. A drawback here is that the number of
regions as parameter for the clustering has to be known
beforehand. Shen et al. provide a new clustering method
using DBSCAN (density-based spatial clustering of appli-
cations with noise) [S]. DBSCAN is an iterative algorithm
that clusters pixels using a distance measurement defined by
color and spatial features. This approach can lead to over-
segmentation so that small regions have to be merged in a
post-processing step.

Other methods apply plane fitting to approximate a point
cloud by a set of planes. Fallon et al. fuse stereo-images [6],
while Jin et al. [7], Holz et al. [8], and Trevor et al. [9] use
depth data from RGB-D cameras. Even though segmentation
results in these approaches can be obtained quite fast, run
times are usually still too high to allow for further pro-
cessing steps and immediate reaction to dynamic changes
in the environment. In our previous work [1], we developed
a real-time capable plane fitting approach for 2D height
maps that calculates a normal vector based on the cells
in a local neighborhood and grows this estimated plane
into neighboring cells. However, a drawback is the possible
under-segmentation in certain cases, which is caused by the
approximation of the normal vector.

For object detection and tracking, many approaches use
difference images. The approach proposed by Asvadi et al.
tracks the objects extracted from 3D LiDAR data by Kalman
filters to predict their next states taking into account the
velocity and trajectory [10]. Object association, however,
is only performed based on gating strategies selecting el-
igible candidates and nearest neighbor properties, which
could cause false matching. Furthermore, there exist object
tracking methods that rely on stereo data. For example,
Ess et al. developed a method based on the HOG (histogram
of oriented gradients) feature descriptor to classify image
regions, detect given objects of interest in street scenarios,
and predict their motions [11]. Just recently, Osep et al.
[12] presented a method for generic multi-object tracking
that works for known as well as unknown objects in street
scenes. Additionally, Wahrmann et al. presented an approach
for modelling objects using swept sphere volumes and track
them in unknown dynamic environments [13]. Note that in
contrast to the discussed object tracking methods, the focus
of our work lies on predicting their trajectories to construct
prediction maps, which can then be used for grid-based path
planning and collision checking in real time.

Finally, a variety of methods exist that compute the
piecewise motion for RGB-D images or 3D LiDAR data to

estimate the scence flow [14], [15], or semantically classify
the image in static and dynamic parts [16]. The semantic
segmentation is hereby rather expensive and depends on a
prelearning step using labeled objects.

ITII. PLANAR REGION SEGMENTATION

Our segmentation method relies on a height map that
can, for example, be acquired using a depth camera. The
map is represented as a 2D grid with corresponding height
information.

A. Normal Computation

The planar region segmentation is based on a region grow-
ing approach that considers normal vectors of neighboring
grid cells. We first fit a plane xn, + yn, + 2 +no = 0 for
every grid cell using the height information of a 3 x 3 grid
around the cell. The standard least squares fitting solution
for the normal [n,,n,, 1] is then given by solving a set of
three linear equations, cf. [17]. As we are only interested in
finding the normal for every cell and are not interested in
the full plane equation, we shift the 3 x 3 grid patch such
that >°.z; = 0 and the central cell of each patch lies at
z =y = 0. In that case the said equations simplify to

N N
Z:o x? 0 0 " - ‘Z:o TiZ;
B N N I 1
0 S of|Y — > Yizi W
i=0 1o i=0
0 0 N 0

where the points x;, y;, z; are the coordinates of the cells and
N is the number of points, i.e., 9 in our case. The coordinates
for z; and y; are given by the grid resolution ¢, such that
> x? = >, y? = 6¢*. Note the factor of 6 instead of 9, as
three of the nine cells are 0 for both = and y, cf. Fig. 2. In
addition, the sums over x;z; and y;z; are trivially computed,
as both z; and y; only take the values ¢, 0, or —c. Using
this information, it is possible to compute the normals very
efficiently.

Fig. 2: Geometry of normal fitting. When we center every patch of 3 x 3
cells at the origin, the least squares solution to the plane fitting is highly
simplified and can be computed very efficiently, cf. Eq. 1.

B. Segmentation of Planar and Non-Planar Regions

In order to find the segments, we use a region growing
approach from a seed cell using the normal vectors of each
cell. We first find all planar regions by examining each cell
of the map and checking whether the normal vectors of its
surrounding 4 cells point in a similar direction as its own
normal vector. If that is the case, we use it as a seed for



[T NN
(a) (b) (©)
Fig. 3: Segmentation-based on region growing. The figure illustrates how
a region (green) is grown into regions with normal vectors that point in
similar directions, here illustrated with similar gray tones.

a region growing algorithm. This approach is more robust
than our previous work [1], since the segmentation allows
for slight curvatures in large regions, which are nearly planar
at short distances. The algorithm starts at the seed cell and
keeps adding neighboring cells if their normals point in a
similar direction as the normals of their neighbors and if
they have not been segmented yet (cf. Fig. 3).

We then segment all remaining connected regions and clas-
sify them as non-planar. The algorithm works similarly to the
segmentation of the planar regions, but instead of checking
whether neighboring normals point in similar directions, we
simply add neighboring cells if they have not been segmented
yet.

During the segmentation of planar regions, we concur-
rently perform a plane fitting algorithm and find the standard
deviation of the distances to the fitted plane for the points that
belong to the corresponding segment. Should that deviation
be too high, we reclassify the segment as non-planar and,
after completing the search for planar regions, keep growing
the region as a non-planar region. This is helpful to detect
large smooth objects whose normals have very similar neigh-
boring normals, e.g., a large spherical object.

When using real data we also have to deal with shadows,
which either arise due to a too low resolution of the camera’s
depth data or due to obstructed regions behind tall objects.
Our framework uses a global map with height information
for filling all shadow regions.

IV. OBJECT TRACKING

The previous section described how the height map of the
local surrounding is segmented into planar and non-planar
regions. These segments correspond to either stationary parts
of the environment, e.g., the floor or non-moving obstacles,
or also to dynamic objects. In our approach, we track those
objects across multiple segmented frames and predict their
future positions.

A. Object Tracking

We classify a segment as an object if it falls into a preset
size range, i.e., we ignore large segments, e.g., the floor, or
very small segments that may arise from high sensor noise.

For every segment that is classified as an object, we save
its size, centroid, a list of its corresponding grid cells and
the time stamp of its detection. In this way, we generate a
list of objects for each segmented height map and maintain
a maximum number f;,,. of these lists.

In order to track an object and predict its future locations,
we need to associate objects from a new frame with those

in the preceding frame. We associate the objects by first
calculating assignment costs for any object o from the current
and any object p from the previous frame. The cost matrix .S
is constructed by using a Gaussian distance function using
the distance r,, between any two objects,

Sop = ae™"or, @)

where a and k are constants to be determined experimentally.

We apply an algorithm similar to the Hungarian
Method [18] to find the globally best assignment between
the objects, given S. However, unlike the original Hungarian
Method, we also include empty associations to account for
disappearing and appearing objects, e.g., when an object
enters or leaves the map area.

B. Object Motion Prediction

Since we perform data association at every time step,
we maintain a sequence of positions for any tracked object
with a sequence size anywhere between 1 and fi,q.. If an
object has been tracked for a certain number of frames, we
use the associated positions and time stamps to predict its
future motion. If the position has not changed considerably
over the course of the last frames, it is classified as static,
while all other objects are classified as dynamic. The motion
prediction of dynamic objects is split up into two parts:

1) As objects move along a straight line when no other
external force act upon them, we first compute the
movement direction d,, of object o at the current time
to by applying a linear regression on their tracked
positions.

2) The equation of kinetic friction states that a constant
force acts upon a moving object opposite to the direc-
tion of motion. Additionally, if an object moves on a
slope, gravity adds a constant positive or negative force
along the motion direction. Combined, this results in
a constant deceleration or acceleration such that the
position of an object will follow a parabolic trajectory
along a straight line. Thus, we perform a Newton fitting
algorithm, which is well-suited for fitting a parabola to
the expected parabolic trajectory.

This results in an equation of motion of the predicted
future position x,(t) at time ¢, given by

x,(t) = zo + d, * (At? + Bt), 3)

where x, is the current position of object o, while A and B
are the fitted parameters found by Newton’s algorithm. Note
that x,, cio, A, and B, are all in principle time dependent,
as the equation of motion is recomputed at every time step
and the current position of any dynamic object changes over
time. We have left the time dependency out for simplicity,
such that Eq. 3 is valid only for the current time step.

We want to address a few issues that arise with this
approach. If an object is moving with very little friction,
e.g., a rolling ball, it almost follows a linear trajectory.
Thus, determining the curvature of the parabola becomes
error prone. Additionally, the exact position of objects cannot



Fig. 4: Prediction maps for one time step. (a) Segmented height map into
planar (turquoise) and non-planar (orange) regions. (b) Same map as (a),
but displaying edges between adjacent segments (red) and an inflated region
around the edges (light red).

Fig. 5: Example scenario for run time evaluation. The height map has a
size of 200 x 200 grid cells and contains 3 static and 3 dynamic objects.
The predicted positions of the dynamic objects are projected onto the height
map (dark blue) in 0.3 s steps 5 s into the future.

be determined from a grid map, especially in real world
experiments, which, in turn, can lead to an inaccurate pre-
diction, e.g., predict an acceleration instead of deceleration.
Therefore, we additionally fit a linear trajectory and, if the
associated error is small enough, use that predicted motion
instead. This avoids too large prediction deviations due to a
false prediction of the trajectory curvature.

Additionally, if an object follows a decelerating trajectory,
we determine the predicted stopping point in time and replace
the parabolic trajectory with the stopping position, so the
motion of an object is not predicted to move backwards after
stopping.

Note that our framework performs the motion prediction
in the global frame, e.g., with the help of a localizer.

V. PREDICTION MAPS

While it is possible that a planning algorithm makes use
of a static map along with a set of dynamic objects, many
approaches to path planning, e.g., A*, perform a vast number
of collision checks. Hence, to allow for efficient planning, it
is of advantage to have a set of precomputed maps, each for
a different future point in time.

As we need to project the dynamic objects onto their
predicted future positions, this would leave the region they
currently occupy with a shadow. Thus, we extract all dynamic
objects from the height map and fill the region with height
information from a global map. This is done similarly to
filling the shadows as described in Sec. III-B.

We then compute a set of prediction maps for multiple
future time steps. In particular for each time step, our system
provides:

1) A grid map map that contains the height information.

2) A grid map indicating which cell has been classified
as planar and non-planar

3) A grid map that contains information of edges between
different neighboring segments along with an inflation

—
N

T T T T T

@ preprocessing
normal computation

@ scgmentation
@ object tracking
@ prediction maps

—_
(=]
T

oo
T

IS

computation time (in ms)
=)}

N

0
80 100 120 140 160 180 200

map length / width (in grid cells)

Fig. 6: Computation times for a full computation cycle. The cumulative
times are shown for separate computation steps, explained in detail in
Sec. III, Sec. IV, and Sec. V for the scenario seen in Fig. 5. Times are
averaged over 5000 runs for each map size. The object tracking step is
barely visible between computing the prediction maps and the segmentation.

radius around each edge. This map can be used for fast
collision checks.

An example set of maps for a single time step can be seen
in Fig. 4.

While most 2D planning algorithms only need to know
the planar regions and the inflation map, other algorithms,
e.g., footstep planners, also need the height information to
include stepping over and onto obstacles.

VI. EXPERIMENTS

We performed an extensive set of experiments to highlight
the strengths and evaluate different aspects of our approach.
Most experiments were performed within a simulation frame-
work to determine more accurate estimates of computation
times, object prediction accuracies, and robustness to noise.
For the real-world experiment, we used the RGB-D camera
ASUS Xtion Pro Live to record depth images. All experiments
were done on an Intel Core i7 4770 processor. In all cases,
we computed 20 prediction maps for 10s into the future in
0.5s steps.

A. Preprocessing Depth Data

While the simulation framework directly creates height
maps, the depth images from the RGB-D camera first need to
be mapped onto the height map, given a 6D transform from
the camera origin to the map origin, e.g., given by the robot
pose from localization along with the transform tree of the
robot. For mapping we use the highest point that falls into
each height map grid cell. The computation time to convert
the depth image took 2.25 ms on average and is independent
of the size of the height map.

An issue that arises with real-world data is noise on the
height information. Therefore, we implemented an efficient
median filter based on the work by Waltz ef al. [19] for
3 x 3 height map grid patches. An average filter is of
disadvantage for our approach as it does not conserve sharp
edges which is necessary for the proper functioning of the
segmentation step.



o

e heavy box

= heavy box fit

=3

o light box

== light box fit

e
%

e ball

I
=

ball fit

=

distance along motion direction (in m)

05 i 15 2 25
time (in s)

Fig. 7: Model accuracy. We recorded the trajectory of three different real
objects and fit our model to the entire dataset or until the objects stopped
moving. As can be seen, our model provides a highly accurate fit.

B. Computation Times

First, we show the average computation time of an exam-
ple scenario that contains 6 objects of which 3 are dynamic
as can be seen in Fig. 5. The run times are shown for a
squared map with increasing map resolutions and are split
into the following computational steps:

1) Preprocessing, which includes initializations and run-
ning the median filter, see Sec. VI-A.

2) Computation of normals, detailed in Sec. III-A.

3) Segmenting the map into planar and non-planar re-
gions (incl. filling shadow regions), cf. Sec. III-B.

4) Detecting objects, mapping them onto objects from the
previous frame, and computing the predicted trajecto-
ries of the dynamic objects, described in Sec. IV.

5) Computing the 20 prediction maps, i.e., height map,
segmented map, and map with inflated edges, ex-
plained in Sec. V.

The results in Fig. 6 show that our framework is real-time
capable even at high frame rates of 30 fps while still not
requiring the full CPU capacity.

C. Prediction Accuracy for Real Objects

In order to validate our prediction model (cf. Sec. IV),
we recorded the trajectories of objects with different prop-
erties, moving on a hard carpet flooring. First, we fitted our
parabolic model to the entire observed time frame. Fig. 7
demonstrates for three objects (a heavy box, a light box,
and a ball, with sizes between 0.2 — 0.3m) that our model
provides a nearly perfect fit.

Furthermore, to test the prediction capabilities, we used a
time frame of 0.3s for the Newton fitting algorithm and then
predict how the motion is expected to continue. We tried to
keep the time frame as short as possible, while still providing
good predictions. This was done for three different sections
along the trajectories of the boxes as seen in Fig. 8. One
can see, that our model is capable at predicting the future
motion of the objects very well. Only for the light box at
the first prediction interval [0.1s;0.4s] a deviation of 0.3m
can be observed, which is due to the difficulty of correctly
computing the curvature of the parabola (cf. Sec. IV-B).

To demonstrate the issue that arises from fitting a parabolic
trajectory to a near linearly moving object, Fig. 9 shows
how fitting only the parabolic model to the trajectory of the
ball leads to inaccurate predictions (left). If we instead use

25
light box
i e
o real data 19 o real data
—prediction [0.1s, 0.4 5] | 1.0 — prediction [0.1's, 0.4 ]
— prediction [0.4 s, 0.7 5] — prediction 0.3 s, 0.6 5]
prediction [0.7 s, 1.0's]| -9 prediction [0.5 s, 0.8 5]
="
1.0 1.5 2.0 'U 0.2 0.4 0.6 0.8 1.0 1.2 14

time (in s) time (in s)

Fig. 8: Motion prediction. We use data from three subsequent 0.3s time
frames to predict the future motion of two boxes with different properties.
As can be seen, even such a short time frame can accurately determine the
stopping positions and times.

E) e real data ball (parabolic fitting) 30
Y| —prediction [0.1 s, 0.4 5
2.0/ prediction [0.4's, 0.7 5]

prediction [0.7 s, 1.0 s]
1.5 —prediction [1.0's, 1.3 s]

ball (adjusted linear + parabolic fitting)

2.0
1.5
1.0
0.5

1.0

0.5

0 0.5 1.0 15 2.0 25 0 0.5 1.0 15 2.0 2.5

time (in s) time (in s)

Fig. 9: Adjusted linear motion prediction. The left figure shows how only
using the parabolic motion prediction can lead to and inaccurate prediction
for objects that follow a near-linear path (constant speed). Our adjusted
model that uses a linear motion model, if the error of a linear fit is small
results in a highly improved motion prediction, as seen on the right.

our combined model that uses a linear motion prediction
for small errors in the fitting algorithm, we achieve a more
accurate prediction (right).

D. Robustness to Noise

While simulated environments are in general noise-free,
real-world cameras always introduce a certain level of noise.
In order to test the segmentation robustness to noise, we
added increasing levels of Gaussian noise to the same
scenario as in Fig. 5. In this way, we found the maximum
standard deviation of the Gaussian noise filter at 1.5¢m that
still allowed us to robustly segment 10000 height maps from
multiple scenarios.

E. Planning Examples in Simulated Environments

Fig. 10 shows one example of the raw height map with
the Gaussian noise filter and the filtered, segmented map.

In order to demonstrate the applicability of our framework,
we combined it with a state-of-the-art real-time footstep plan-
ner [1]. We use empirically determined times for executing
the footsteps to choose which predicted height map should
be used for collision checking during the footstep planning.
It should be noted that exact times are not necessary, as we
do not consider the exact execution of the entire footstep
plan, which can be recomputed in real time. Instead, we aim
at foresightedly detecting areas that may become impassible
by the time the robot reaches them.

As can be seen in Fig. 11a, a free path exists through the
point A, which avoids high cost steps over other obstacles.
However, our framework predicts a collision at point A by
the time the humanoid would reach it and, thus, preemp-
tively finds a footstep plan through point B that avoids the
collision.

In Fig. 12a we can see a ball moving right toward the
current position of the robot. The lowest cost path at this
time would be straight ahead toward the goal by crossing



Fig. 10: Segmentation robustness against noise. The figure shows the same
scenario as in Fig. 5, however, after applying a Gaussian noise filter.
(a) shows the height map with the maximum level of noise that still allowed
our approach to fully segment the scene into planar and non-planar regions.
The filtered, segmented map is shown in (b).

(a) o (b)

Fig. 11: Footstep planning in a dynamic environment. The motion of the
tracked dynamic object is indicated with the arrow in (a). The current state
of the environment at ¢ = tg is shown in (a). (b)-(d) show different time
steps of the footstep plan along with the predicted height map at the point
when the robot is expected to reach the respective footsteps. As can be seen,
our system anticipates the motion of the ball and the resulting footstep plan
lets the robot step over an obstacle instead to reach its goal.

point A. Our framework, however, predicts the future motion
of the ball and determines that a collision with the moving
object would occur. Instead, a free plan to the goal is found
via point B by stepping on top of the flat object, which
additionally avoids a collision with the moving object.

F. Real-World Planning

Finally, we performed an experiment with real depth data
from an RGB-D camera, positioned at a height of 1.65m,
equivalent to the height of REEM-C by PAL Robotics. In
the experiment we have positioned a few objects in the
planning scene, while still allowing the possibility of finding
an almost direct footstep path to the goal; the scenario is
shown in Fig. 13. Fig. 13b shows the current state of the
environment, where the tracked dynamic object is displayed
with blue projections that indicate its predicted future posi-
tions. While a valid footstep plan could be found straight
to the goal, our framework instead finds a path around

Fig. 12: Footstep planning in a dynamic environment. The motion of the
tracked dynamic object is indicated with the arrow in (a). The current state
of the environment at ¢ = ¢ is shown in (a). (b)-(d) show different time
steps of the footstep plan along with the predicted height map at the point
when the robot is expected to reach the respective footsteps. As can be seen,
to avoid the collision with a moving object the footstep plan lets the robot
step onto an obstacle.

Fig. 13: Real world experiment. (a) Scenario with several objects. The
movement of the dynamic object is indicated by the arrow. (b) Height map
representation of the environment. The predicted future positions of the
moving object are shown as blue projections. (c¢) The footstep plan leads
around the objects in order to avoid a collision with the ball. (d) The full
footstep path along with the predicted environment by the time the robot is
expected to reach the goal.

the obstacles, as we predict the direct path would lead to
collisions with the dynamic object after a few footsteps. The
final collision free footstep plan is shown in Fig. 13d, while
the possible direct path to the goal that would result by using
only the static environment is indicated in red in Fig. 13b.

VII. CONCLUSION

In conclusion, we presented a framework that is capable
of segmenting height maps of the local surrounding robustly
into planar and non-planar regions. Moreover, our system
detects dynamic objects and predicts their motion reliably
into the future. This allows our framework to foresightedly
detect and avoid areas that may become impassible for the
humanoid by the time it reaches them.

Since our approach is not only real-time capable, but
additionally keeps the CPU usage very low, even at a high
update frequency of 30 fps, it allows the robot to perform
calculations for other tasks in parallel to navigate reliably
across the environment.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]
[18]

[19]

REFERENCES

P. Karkowski, S. Oswald, and M. Bennewitz, ‘“Real-time footstep
planning in 3d environments,” in Proc. of the IEEE/RAS Int. Conf.
on Humanoid Robots (Humanoids), 2016.

R. Hulik, V. Beran, M. Spanel, P. Krsek, and P. Smrz, “Fast and
accurate plane segmentation in depth maps for indoor scenes,” in Proc.
of the IEEE/RSJ Int. Conf. on Intelligent Robots & Systems (IROS),
2012.

G. Peters and J. Kerdels, “Image segmentation based on height maps,”
in Computer Analysis of Images and Patterns, ser. Lecture Notes in
Computer Science, W. G. Kropatsch, M. Kampel, and A. Hanbury,
Eds., 2007, vol. 4673.

C. Cigla and A. A. Alatan, “Efficient graph-based image segmentation
via speeded-up turbo pixels,” in IEEE International Conference on
Image Processing, 2010.

J. Shen, X. Hao, Z. Liang, Y. Liu, W. Wang, and L. Shao, “Real-
time superpixel segmentation by dbscan clustering algorithm,” /IEEE
transactions on image processing, 2016.

M. Fallon, P. Marion, R. Deits, T. Whelan, M. Antone, J. McDonald,
and R. Tedrake, “Continuous humanoid locomotion over uneven
terrain using stereo fusion,” in Proc. of the IEEE/RAS Int. Conf. on
Humanoid Robots (Humanoids), 2015.

K. Jin, P. Liu, R. Sun, Z. Wei, and Z. Zhou, “Real-time plane segmen-
tation in a ros-based navigation system for the visually impaired,” in
Int. Conf. on Ubiquitous Positioning, Indoor Navigation and Location
Based Services (UPINLBS), 2016.

D. Holz, S. Holzer, R. Rusu, and S. Behnke, “Real-time plane
segmentation using RGB-D cameras,” in RoboCup 2011: Robot Soccer
World Cup XV, ser. Lecture Notes in Computer Science, T. Rofer,
N. Mayer, J. Savage, and U. Saranl, Eds. Springer Berlin Heidelberg,
2012, vol. 7416.

A. J. Trevor, S. Gedikli, R. B. Rusu, and H. I. Christensen, “Efficient
organized point cloud segmentation with connected components,”
Semantic Perception Mapping and Exploration (SPME), 2013.

A. Asvadi, P. Peixoto, and U. Nunes, “Detection and tracking of
moving objects using 2.5d motion grids,” in Int. Conf. on Intelligent
Transportation Systems, 2015.

A. Ess, K. Schindler, B. Leibe, and L. van Gool, “Object detection
and tracking for autonomous navigation in dynamic environments,”
Int. Journal of Robotics Research (IJRR), vol. 29, no. 14, 2010.

A. Osep, W. Mehner, P. Voigtlaender, and B. Leibe, “Track, then
decide: Category-agnostic vision-based multi-object tracking,” in I[EEE
Int. Conf. on Robotics and Automation (ICRA), 2018.

D. Wahrmann, A.-C. Hildebrandt, T. Bates, R. Wittmann, F. Sygulla,
P. Seiwald, and D. Rixen, “Vision-based 3d modeling of unknown
dynamic environments for real-time humanoid navigation,” in Int.
Journal of Humanoid Robotics, 2019.

M. Jaimez, M. Souiai, J. Gonzalez-Jimenez, and D. Cremers, “A
primal-dual framework for real-time dense RGB-D scene flow,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), 2015.

R. Newcombe, D. Fox, and S. Seitz., “Dynamicfusion: Re-construction
and tracking of non-rigid scenes in real-time,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

A. Dewan, G. Oliveira, and W. Burgard, “Deep semantic classification
for 3D LiDAR data,” in IEEE/RSJ Int. Conf. on Int. Robots and
Systems (IROS), 2017.

B. Muralikrishnan and J. Raja, Computational Surface and Roundness
Metrology. Springer London, 2009.

H. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, no. 1, pp. 83-97, 1955.

F. Waltz, R. Hack, and B. Batchelor, “Fast efficient algorithms for
3x3 ranked filters using finite-state machines,” in Proc. SPIE 3521,
Machine Vision Systems for Inspection and Metrology VII, vol. 3521,
1998.



