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Abstract— To this date, many footstep planning systems rely
on external sensors for mapping and traversability analysis or
on computationally expensive algorithms that do not allow for
real-time calculations. In this paper, we present an approach
that analyzes the environment in the vicinity of the robot with
an onboard RGBD camera while computing local footstep plans
in real time. We achieve this by combining the advantages of
grid-based height maps, fast planar region segmentation, and
a systematic local footstep search to a local goal point. Using
a single CPU core, a full mapping and planning cycle only
takes 18 ms on average and thus presents an important step
to autonomous humanoid robots in dynamic environments that
only rely on their onboard hardware.

I. INTRODUCTION
In the last decade, the field of humanoid robotics has

continuously grown due to the capabilities of humanoids
with their human-like body plan. One of the major tasks
in humanoid navigation consists of determining feasible
footstep paths that lead the robot to a desired destination.
This task, however, proves itself to be very difficult if one
needs to take into account regions that might cause instability
in the walking behavior. Many well-established methods to
solving this problem use optimal, anytime, or randomized
path planning algorithms such as A*, AD*, ARA*, or R* [1]–
[3]. Due to the calculation of the 2D cost map used for
collision checking of the footsteps and the exploration of
the search space as defined by a given set of possible
footsteps, these algorithms are computationally expensive.
Other approaches use 2.5D height maps or 3D maps and
directly plan footsteps upon convenient walking regions [4],
[5]. However, the amount of data to be processed leads
to run times that are generally not suitable for dynamic
environments. While optimized implementations of the above
algorithms may find a complete footstep path to the goal
location in the range of seconds [3], calculations are done on
a modern external computer and expect an already provided
map of the environment.

In this paper, we present a highly efficient technique to
planar region segmentation and a systematic geometrical
approach to 2D footstep planning. Our method first computes
a local height map based on the 3D point cloud acquired with
the robot’s onboard sensor and performs a segmentation of
the height map into different planar regions. The edges of the
segmented regions are subsequently used for collision check-
ing during path planning. Our system first finds a collision-
free 2D path and computes a footstep plan that closely
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Fig. 1: Real-time footstep planning. Our framework is capable of adapting
to local changes in the environment at a delay of just 18 ms on average.

follows this path afterwards. For generating a valid footstep
plan, we apply a fast method that systematically searches for
collision-free footstep locations within the stepping range of
the robot. An example path and footstep plan can be seen in
Fig. 1.

As our experimental results show, our framework is capa-
ble of both analyzing the local environment using a RGBD
sensor and computing a local 2D path along with a full
footstep plan in 18 ms on a single CPU core on average.
Since the processing power onboard a humanoid is generally
limited, our approach is an important step in the direction
of fully autonomous humanoids that are capable of quickly
reacting to changes to the local environment.

II. RELATED WORK

In this section, we first discuss related approaches to plane
segmentation and traversability estimation and then review
footstep planning techniques.

Many approaches to detecting planar regions from point
cloud data exist that generally provide accurate segmenta-
tions. For example, Deits et al. find convex regions around
known obstacles using the IRIS algorithm [6]. Hulik et al.
applied accurate methods that use second derivate estimates
and find planar sections at zero curvature [7], which be-
comes a very expensive task if higher order polynomials
are used. Other common methods use local plane normals,
e.g., Fallon et al. who achieve fast segmentation results
based on stereo-fusion of images [8], while Holz et al. and
Trevor et al. use images from RGB-D cameras [9], [10]. Even
though segmentations in these approaches can be obtained
well below a second, run times are usually still too high to
immediately react to changes in the environment and the used



point cloud based maps appear to be too complex for real-
time footstep planning. Stumpf et al. propose 2.5D height
maps and are capable of planning longer footstep paths also
on inclined terrain. However, instead of detecting planar
regions they use ground contact estimates to ensure stabil-
ity [5]. In our approach, we combine 2.5D height maps and
fast segmentation of planar regions based on plane normals
and region growing.

Chestnutt et al. and Michel et al. implemented A* and
informed local searches to reach a goal [1], [11], [12],
however, the methods need appropriate heuristics to achieve
fast results and computations still last for a few seconds.
Hornung and Maier et al. proposed to use ARA* or AD* to
find paths around obstacles and replan if necessary [2], [4].
Even though faster than standard A*, these algorithms are
not real-time capable. Additionally, all approaches based on
A* rely on a predefined set of possible footsteps that need
to be constrained to avoid a high branching factor during the
search. Deits et al. compute paths with an MIQCQP planning
algorithm within convex regions [13]. While finding near
optimal solutions, user-guided detection of convex regions is
necessary.

Adapting footsteps to environmental changes in real time
becomes progressively more difficult the closer the changes
are to the robot. Baudouin et al. use rapidly exploring
random trees (RRT) and precomputed dense swept volumes
to find collision-free footsteps [14]. Although being able
to adapt to changes without stopping the walk, adaptations
can only be made two steps ahead and the framework
requires an external motion capture system. The approach
by Fallon et al. is also capable of online replanning in 3D
using a high-end computer, however, calculation times of
1.5-2 s do not easily allow to react to dynamic obstacles [8].

Our technique uses systematic searches to find a path to
the goal point while checking for collisions. It does not
require a discrete set of footsteps, which leaves the planner
with more search possibilities while still maintaining high
performance.

III. FAST PLANAR REGION SEGMENTATION

We developed an approach that allows for fast footstep
planning and instantaneous replanning based on estimated
planar regions. We use a 2.5D height map instead of a
complex 3D map as environment representation, since even
modern methods are still rather slow when it comes to
detecting planes from the 3D model [7]. A height map is
an evenly-spaced grid map, where each grid cell contains
the height information of the highest measured point that
falls into the cell.

Stable foot placements can in general only be made upon
planar terrain without further stability control. In addition,
it is essential to retain feet from edges, e.g., corresponding
to the end of steps or object boundaries. Thus, our approach
generates a segmented map from the height map where each
section defines a connected planar region. Furthermore, all
areas that are not detected as planes or shadows, which do
not contain any height information, are marked separately.

Algorithm 1: Segmenting the height map into planar
regions which are safe for footstep placements.

input : Height map
output: Segments

Fails← 0;
Cells← full set of grid cells;
Segments← {};
while |Cells| > minCellsLeft and
Fails < maxFails do

Cell ← choose random Cell from Cells;
if cells in vicinity around Cell have similar normal
then

Fails← 0;
Plane← set of cells around Cell found by
region growing;
Cells← Cells \ Plane;
add Plane to Segments;

else
Cells← Cells \ Cell;
Fails← Fails+ 1

end
end
return Segments

Alg. 1 provides a general outline of the steps that are
performed during the segmentation. Our method randomly
selects grid cells and finds normal vectors using triangulation
between the selected cell and cells in a small vicinity. If
the normal vectors for the selected cell point in the same
direction, region growing then allows to find the set of
all cells that belong to the plane. The region is grown
by checking whether neighboring cells are not more than
a predefined threshold away from the plane given by the
average normal vector around the randomly chosen cell.

Right after segmentation we create a third map that
contains information about detected edges. While well-
established edge detection algorithms are able to accurately
detect edges in 3D environments or 2.5D height maps [15],
[16], the computation time can easily take several seconds
and is, thus, impractical for real-time footstep planning and
dynamic changes to the environment. As the segmentation
map already contains all necessary information about planar
regions that are possible candidates for footstep positions,
we define an edge grid cell as having at least one neighbor
that does not belong to the same planar region. The frontiers
between planar cells and shadows are, however, not defined
as edges. Since edges are used for collision checking during
path planning, this allows the path planner to plan into
unknown local regions, which will eventually be covered by
the sensors during navigation. On the right of Fig. 2 we
illustrate the segmented map as well as the different edges
for an example height map.

For path planning, we use a local map that is computed
from a certain number of previously calculated maps by
considering the estimated transform between subsequent
steps while the segmented regions are matched according to



Fig. 2: Example segmentation scenario. The middle image shows the
calculated height map where darker colors represent lower regions and
shadows are fully black. On the right image, detected planar regions are
colored in different shades of gray while uneven surfaces are orange. All
edges are represented in red and non-visible shadows are again black. The
small wooden stick on the right was not detected as planar, because it is too
narrow for finding the normal using triangulation and the width is smaller
than the humanoids foot size.

Fig. 3: Global path following. In order to follow a global path, the framework
selects local goal points using the furthest reachable point of the global path
that lies within the local map.

the largest overlap. We also create an artificial edge border
around the local map, to retain the planning within.

IV. PATH PLANNING

We use a two-stage approach for path planning. First, we
plan a 2D path that respects a safety distance dsafe to detected
edges and follows a global path. Then, we compute a footstep
plan that closely follows this local path.

A. Global Path Following

The goal point for the local path planning is calculated
based on a global path computed by A* on a global 2D grid
map that contains the static obstacles in the environment.
We assume the position and orientation of the robot relative
to the global path to be known, e.g., estimated by self-
localization. Our system first finds a local goal point by
determining the furthest collision-free point on the 2D path
inside the local planning region1, this is illustrated in Fig. 3.
In case no solution can be found by local path planning (as
described in the next subsection), the search is restarted with
a new local goal point closer by a predefined distance to the
current position of the robot until a successful plan is found.

1If the global 2D path lies fully outside the planning region, e.g., caused
by avoiding a large obstacle, replanning of the global path is necessary.

While walking along the path, the robot chooses a new
goal point for local planning once the distance between the
current one and the robot’s position falls below a threshold.
Furthermore, after every step the robot takes, we check the
remainder of the current 2D path for collisions. If a collision
is detected, planning is restarted with a new goal point which
is found as described above.

Even if the remainder of the path is collision-free, our
framework checks, at every iteration, if a recalculated
2D path to the current goal point is considerably shorter
than the one currently followed by the robot. This allows to
immediately react to changes to the local environment such
as removed obstacles or moving people.

B. Searching for a Local Path

We now introduce our method to compute a 2D path from
the current robot pose to the next goal point within the local
planning region. Our approach represents this path as a set of
connected line segments and iteratively tries to find a direct
connection to the goal point while checking for collisions
with cells belonging to the safety regions around detected
edges. The search consists of the following main steps:

1) The process starts with two nodes, one start node,
which is initially at the robot pose, and one node at
the local goal point. The line segment connecting these
nodes is checked for collisions beginning from the
start node. If a collision is detected, we start a search
for possible alternative directions as explained in the
following.

2) The line segment connecting the start node and the
point of collision is rotated by an angle ∆θ around the
start node and is checked for collisions. Should a colli-
sion again be detected, the end point of the segment is
changed to the new point of collision. This procedure
continues until a maximum rotation angle |θmax| is
reached in both directions. Both situations are shown
in Fig. 4a.

3) If a collision-free rotation is found, we expect there
to be a discontinuity in detected edges and use the
rotated line segment to create a new node as follows.
We recheck the entire line segment, from the start to
the border of the local map, for collisions. The distance
between the new point of collision and the end point is
denoted as dc. A new node is then either created in the
middle between these two points or, if dc > 2 · dsafe,
at the distance dsafe from the end point. This is shown
in Fig. 4b. The motivation behind selecting the new
node in this way is that the path leads closely around
obstacles.

4) The search can result in three possible outcomes, either
no free rotation is found in either direction or free
rotations can be found in one or both directions. If
only one free rotation exists, the newly created node is
used as the new starting point and the search to the goal
starts over beginning with Step 1. If two nodes were
created, however, the search continues using the node



Fig. 4: Creation of a new node. Left: If a collision along the direct line from
the robot’s pose s to the goal point is detected the framework systematically
searches for possible free rotations. Right: If a free rotation is found, a new
node is created and the path search continues using the new node.

Fig. 5: Example search graph. The search first inspected the nodes 1 and 2
but did not find a free way to the goal and thus continued starting from
node 3. The order of processed nodes during the search is thus: start-1-2-
1-start-3-4-5-goal.

that causes the minimum change of rotation relative to
the previous segment.
If no free rotation is found, the node is declared termi-
nal and we return to the previous node. Should either
search direction have not yet reached the maximum
search angle, the search first continues on this node
until a free path is found or this node is declared
terminal as well. This search and backtracking proce-
dure continues until either a path to the goal could be
found, or the original start node is declared terminal,
in which case the path search was unsuccessful. A
possible graph is depicted in Fig. 5.

C. Footstep Planning

Once a path to the local goal has been found, our system
computes a sequence of footsteps starting from the current
support foot of the humanoid. We hereby use a step region for
the feet defined by two ellipses centered at the zero points
of the feet. The zero point is at a distance of 2d0 in the
inward direction from the support foot. The axes depend
on the maximum stepping distances of the humanoid in the
forward, sideway, and backward directions, mf , ms, and mb

respectively. Furthermore, the ellipses are limited by inward
angles αf and αb as depicted on the left of Fig. 6.

Fig. 6: Footstep calculation. Left: The reachable area of the next footstep is
defined by an ellipse-shaped region with axes mf , ms, and mb displaced
by a distance 2d0 from the support foot. Middle: Intersection P1 of the
boundary of step region with side lines provides the position for the
subsequent step. Right: If no intersection with the side line is found, we
instead use the intersection between the boundary of step region and the
line connecting the zero point and the closest point to it on the side line.

In order to calculate positions of subsequent footsteps, our
system uses side lines situated at distances d0 on both sides
of the 2D path to the local goal, one for each foot. The next
step position is then found by checking for intersections Pi

of the stepping region with the according side line and
choosing the one that has the minimum distance to the
end of the current line segment. In addition, the rotation
of the step is aligned with the current segment, while the
maximum rotation is limited by the rotation capabilities of
the humanoid and possible overlaps to the previous support
foot. This is depicted in Fig. 6b. Even though the safety
margin around edges leads to collision free footstep plans
in most cases, it is possible that a slight overlap between
steps and edges occur. We thus check every footstep for
collisions and adjust it according to the stepping capabilities
of the robot. Note that further constraints, e.g., a different
step region depending on the foot rotation can easily be used.

If no intersection between the side line and the boundary
of the step region exists, we instead use the intersection of
the line connecting the zero point and the point closest to
it on the side line as shown in Fig. 6c. This situation only
occurs at nodes with a large angular change between the line
segments.

Once either step reaches the end of the side line segment,
one final footstep is added to the current segment but rotated
half-way according to the direction of the following one
which is then used for the subsequent steps.

V. EXPERIMENTS
We thoroughly evaluated our approach on multiple sce-

narios in both simulated and real-world environments. The
experiments and performance tests were done using an ASUS
Xtion Pro Live, mounted onto the head of a Nao robot, and
an Intel Core i7 3770. The resolution of the camera was
640x480 and images were acquired at 30 fps. A single height
map contained 200x200 grid cells and covered a 60x60 cm2

area at a distance of 20 cm in front of the robot, leading to a
resolution of about 3x3mm2 per grid cell. The combined
local map contained 300x300 cells with a resolution of
4x4mm2 and extended 60 cm to the left and right of the
robot and ranged from -30 cm behind up to 90 cm in front
of the robot. For simulation, we used maps with randomly



Fig. 7: Example 2D paths with footsteps calculated by our approach. We
sampled a random numbers of objects in the local map. Images a-d show
plans for the step distances for the Nao robot. In Figs. e and f we have
increased the step distances to show resulting paths for a robot with a
larger step length. All images are cropped to the regions that contain the
corresponding 2D path.

sampled objects to show the performance of our footstep
planning approach. The start and goal points were always
located at the mid bottom and at random points at the top
of the map and we omitted those maps where the goal point
was unreachable. Fig. 7 shows examples of maps along with
2D paths and footsteps calculated by our system.

A. Performance Evaluation

We first evaluated the performance of our mapping ap-
proach. The test started after the robot had already taken
seven steps such that a total of eight maps were combined
for the local map. In the experiments, several objects were
constantly in the field of view. We summarize the results in
Table I.

Task Avg. Time
Convert image to height map. 6.14± 2.9ms
Find planar regions and create segmented map. 2.11± 1.12ms
Detect edges and create edge map. 0.20± 0.12ms
Combine available maps. 4.25± 1.78ms

TABLE I: Performance results. The timings are averaged over 1000 itera-
tions and the errors define one standard deviation. We combined a total of
eight maps for the local map.

We then evaluated run times for footstep planning depend-
ing on the amount of segments of the 2D path and run times
of the calculation and collision checks for different numbers
of footsteps. All tests were done using randomly sampled
maps comparable to those in Fig. 7. The results are presented
in Figs. 8 and 9.

Additionally, we conducted experiments in which we
randomly sampled objects and evaluated the run times with

Fig. 8: Run times depending on the number of segments of the final path
averaged over 1000 iterations.

Fig. 9: Run times for footstep step calculation. We used five different
sufficiently long paths and averaged over 5000 iterations per step count.

Fig. 10: Run times depending on the number of randomly sampled objects
averaged over 1000 iterations.

respect to the number of objects contained in the local map.
The corresponding results are presented in Fig. 10.

B. Real-World Experiments with Dynamic Changes

To demonstrate the real-time capabilities of our frame-
work, we conducted an experiment by throwing a ball in the
path of the robot. The resulting footstep paths at different
points in time are depicted in the sequence of images in
Fig. 11. As can be seen, our approach instantly generates
collision-free paths.

C. Qualitative Experiments with the HRP-4 and Nao

In order to show the practical applicability of our ap-
proach, we have ported the system to run onboard a real
Nao robot at a stable rate of 10 Hz. Furthermore, we have
tested our system both on a HRP-4, as presented in Fig. 12.

VI. DISCUSSION AND FUTURE WORK

While the adaptations to dynamic changes in the en-
vironment are very fast and footstep plans are provided



Fig. 11: Ball rolling in front of the robot. When a ball is rolled in the path
of the robot, our framework allows a reaction in real time.

Fig. 12: Experiments using a HRP-4 both in simulation and in the real
world.

near-instantaneously, we would like to address potential
limitations to the system. Compared to other search algo-
rithms, e.g., based on A*, our planner does not seek optimal
solutions. While paths with only few line segments result in
near-optimal paths, the possibility to end up with non-optimal
solutions increases with the complexity of the planning
problem. Thus, we favor run time over optimality, however,
as shown, our approach yields reasonably short solutions also
for planning problems with increased complexity.

Additionally, our search is currently limited to 2D as
collisions are only checked on ground level. As a next step,
we are working on extending our technique to searches
on full 2.5D maps, taking into account the possibilities of
stepping over obstacles and on top of further planar regions.

VII. CONCLUSION

In this paper, we have presented a fully integrated sys-
tem that is capable of analyzing 3D point cloud data and
recalculating a local 2D path including footstep locations in
only 18 ms on average. Taking advantages of grid-based
height maps and 2.5D plane segmentation, our approach can
almost instantly react to changes in the vicinity of the robot
while following a 2D path. Since the analysis of the local
environment only takes a few milliseconds, our technique is
specifically useful for dynamic walking, which requires fast

adaptations to changes in the local environment, as suddenly
stopping the motion of the robot is not possible.

Moreover, we ported the system to run onboard a Nao
robot at a stable rate of 10 Hz and have also done first
experiments with an HRP-4.
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