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Abstract— A variety of approaches exist that tackle the
problem of humanoid locomotion. The spectrum ranges from
dynamic walking controllers that allow fast walking to systems
that plan longer footstep paths through complicated scenes.
Simple walking controllers do not guarantee collision-free steps,
whereas most existing footstep planners are not capable of
providing results in real time. Thus, these methods cannot be
used, not even in combination, to react to sudden changes in
the environment. In this paper, we propose a new fast search
method that combines A* with an adaptive 3D action set.
When expanding a node, we systematically search for suitable
footsteps by taking into account height information. As we show
in various experiments, our approach outperforms standard
A*-based footstep planning in both run time and path cost
and, combined with an efficient map segmentation, finds valid
footstep plans in 3D environments in under 50 ms.

I. INTRODUCTION

The field of humanoid robotics has extended to a wide
range of scenarios. Applications comprise logistics, help
on construction sites, or aid during disaster scenarios. Hu-
manoids also possess the potential to help in everyday
life, e.g., by supporting elderly and disabled people. Their
versatile movement capabilities allow for locomotion through
complicated and cluttered areas, which might be impossible
for wheeled robots. These abilities, however, come with the
cost of challenging balance keeping and high-dimensional
motion planning.

A difficult task that needs to be overcome is the develop-
ment of a reliable locomotion controller. In a general sce-
nario, using solely a motion controller is not sufficient, since
it does not guarantee the validity of the robot’s steps, which
may cause the robot to lose balance or lead to undesired
collisions between the robot and objects in the environment.
On the other hand, many methods exist that are capable of
planning a valid sequence of footsteps. Strategies include
searches for global plans in 2D, which are generally more
suitable for simpler obstacle avoidance on even terrain [1],
[2]. Other approaches consider the more general problem
of planning in 3D environments, which includes actions
to step onto and over objects [3]–[6]. Computing a whole
footstep plan to a distant goal location, however, entails the
disadvantages that inaccurate execution of steps decreases
the probability for validity of the plan with every step.
Additionally, it does not consider sudden changes in the
environment that may in general happen at any time and
to which the robot needs to react instantly.

All authors are with the Humanoid Robots Lab, University of Bonn,
53113 Bonn, Germany. This work has been supported by the Euro-
pean Commission under contract numbers FP7-ICT-600890-ROVINA and
FP7-610532-SQUIRREL and by the German Academic Exchange Ser-
vice (DAAD) under contract number 57178163.

Fig. 1: Result of an adaptive footstep search for the stepping capabilities of
the Atlas robot, developed by Boston Dynamics, Massachusetts, USA.

In our previous work, we have already successfully
demonstrated a method for fast local mapping combined
with a 2D geometric planning approach on a segmented
height map that both work in real time [7]. In this paper
we propose a new footstep planning method that couples the
advantages of an A* search with an adaptive node expansion
for 3D environments. Instead of relying on a fixed set during
each node expansion, we instead systematically search for
valid footsteps depending on the local environment. The
benefit over our previous planning approach is the extension
to 3D while using the same map segmentation approach.
We perform a systematic search to find valid and efficient
paths also through challenging scenes and achieve a planning
frequency of 20 Hz in complex local environments.

II. RELATED WORK

Since the initial development of humanoid robots, many
methods have been proposed that address the problem of
how to choose the next stepping action to reach a certain
navigation goal. In the following, we present the most
prominent ones.

Michel et al. developed a method using A* to find full,
global footstep paths [2]. While the A* search ensures
optimal plans for a given set of actions, it may lead to
computation times in the range of seconds for more lengthy
paths, which does not allow reacting to sudden changes.
Hornung et al. presented approaches that can more easily
be adapted to finding a plan in a limited time frame using
a combination of grid-based planning with A* and also by
using ARA* and R* [1], [8]. While with these methods,



footstep plans can generally be found more quickly, they are
still not capable of planning in real time in all scenarios. In
addition, all the mentioned techniques are restricted to be
used in 2D which only includes planar obstacles.

Maier et al. applied ARA* in combination with precom-
puted inverse height maps for a given set of footsteps to
allow for fast collision checking and stepping over and onto
objects [5]. In this approach, the robot was required to
frequently halt for a brief moment, to perform scan matching
with ICP and replan the footstep plan if necessary.

Baudouin et al. proposed to use an approximate swept
volume collision check [6] for stepping over objects and
performed a footstep search based on rapidly exploring
random trees (RRTs). Despite the ability for replanning
without stopping the walk, RRTs are not goal directed and
the method still takes seconds such that the replanning only
starts a couple of steps ahead.

Chestnutt et al. published a technique that uses A* with
a large set of footsteps in 3D environments [9], which
results in low-cost paths. However, a large set of steps
also leads to very long planning times in more complicated
scenarios. The authors developed another method that uses
an informed adaptive set of actions instead [10], which
leads to low-cost paths that are found in a shorter time
span. However, the planning times are still not real time
capable and unlike our full systematic search they only adapt
steps of a fixed footstep set if an instability is detected.
Nishiwaki et al. integrated this adaptive A* search into a full
navigation framework [11]. While the locomotion controller
runs at a high frequency, the footstep planner itself is not
included in these times.

Orthey et al. proposed a method for precomputing a large
amount of the contact points between the robot and known
objects with a given shape [12]. The approach combines
the precomputed contact point information with a standard
A* search and accomplishes a near real-time performance,
however, introducing general obstacle shapes and combining
it with stepping in 3D may lead to infeasible precomputation
times. Hildebrandt et al. introduced swept-sphere-volumes
for fast collision checks [13]. They created a framework that
reacts to unknown obstacles in real time using an onboard
RGB-D sensor where the walking direction is given by user
input. The method does currently not allow for avoiding large
obstacles or stepping onto new surfaces.

Others have applied more approaches that do not limit
the planning problem to a fixed set of steps. For example,
Stumpf et al. proposed to extend ARA* [5] to fit the 6 DoF
pose of the footsteps to the environment using ground contact
points while keeping the search space at 3 DoF [14]. While
providing valid footstep paths in 3D environments, this
technique directly operates on point clouds and leads to very
lengthy computation times. Deits et al. approached the foot-
step planning problem in 3D by first finding convex planar
regions [4]. Planning is then limited to the convex regions
using quadratic programming and paths in simpler scenes can
be found in the time frame of seconds. Fallon et al. presented
a method for continuous planning in 3D [3]. Computing the

Fig. 2: If only the robot trajectory length (red) is minimized, but not the
number of footsteps, for some situations very different plans lead to the same
overall cost, i.e., both plans in a) have the same robot trajectory, however,
the number of steps differs. If we define the cost as the distance between
the subsequent footstep positions as in b), we simultaneously minimize the
path length and the number of footsteps.

path takes a few seconds but they take advantage of the
time the robot needs to perform a step. While continuous
walk is possible without prior background knowledge of the
environment, they rely on strong hardware including a GPU.

Our goal is to realize a real-time search by minimizing
the number of expanded nodes during A* and adapting all
footsteps to the environment to achieve low-cost paths.

III. FOOTSTEP-BASED A*
In A*, the quality of a plan depends on a suitable

cost function for step execution. While it might seem that
minimizing the trajectory length of the robot’s center of
mass, automatically minimizes the number of footsteps, this
is not true in general. The humanoid can perform many short
steps in the forward direction, which leads to a similar robot
trajectory as a few larger steps (see Fig. 2 a)). It is possible
to minimize both, the number of steps and the length of
the trajectory, simultaneously by instead using the distance
between subsequent steps as shown in Fig. 2 b).

Since the visual analysis of the terrain by a robot generally
takes place along the forward direction, we prefer straight
footstep plans that follow the visible region. Furthermore,
we prefer longer footsteps in order to decrease the total
amount of necessary step actions. Thus, we define the cost k
for expanding a parent node at position x′ and height map
elevation e′ by a child node at position x and height e as
follows

k = ||x′ − x||+ ν · |θ|+ µ · |e′ − e|, (1)

where θ is the relative orientation between the steps. The
coefficients ν and µ scale the cost of the relative rotation
between subsequent steps and their height difference, respec-
tively. The geometry is illustrated in Fig. 3 a).

In order to ensure optimality of the search, we need to
define an admissible heuristic h. The lowest possible costs
to reach the goal g based on the costs k as defined above are
given by a path without relative rotations between steps, no
height difference, and taking the largest possible steps. We
define the approximate robot position of a footstep to its side
at a distance that is half the feet separation s during straight
walk as shown by the red dots in Fig. 3 b). The heuristic is
then defined by

h = r ·
√
f2

0 + s2

f0
, (2)



Fig. 3: Geometry of node expansion. a) x is the footstep position, e is the
height of the corresponding planar region, and θ the relative orientation
between the parent and child node. b) The heuristic given by Eq. 2 is based
on the maximum forward stepping capability f0, the feet separation during
straight walk s, and the estimated distance from the robot to the goal r.

where r is the Euclidean distance from the approximated
robot position of the footstep to the goal and f0 is the
maximum forward step distance. Fig. 3 b) shows that a
maximal forward step moves the robot by a distance f0

and leads to a cost increase given by
√
f2

0 + s2. Thus, we
multiply the Euclidean distance to the goal by a factor that
scales the robot movement distance to the actual cost increase
for forward walk.

IV. A* WITH AN ADAPTIVE FOOTSTEP SET

For footstep planning, the expansion set consists of a
selected number of footsteps which are all reachable from the
previous parent step. Usually, a fixed set of steps is used [5],
[8], [9], however, this can lead to cases in which no solution
path can be found, e.g., when moving in a highly cluttered
environment. An obvious solution for this issue is to extend
the set to include steps with more variety. This, however,
rapidly increases the search space which, in turn, increases
memory usage and the search time.

Therefore, we propose a method that systematically
searches for a small set of valid steps at every node expansion
to keep the search space small while also ensuring a high
success rate.

A. Reachability Map for Footstep Placements

In order to have quick access to viable footsteps relative
to the previous step, we use a finely discretized reachability
map that can be precomputed using inverse kinematics. The
structure of this map is organized such as to suit our search
strategy. Considering Fig. 4 the structure is as follows:
• Starting at the zero position Z located at the distance s to

the side of the previous step, the reachability map provides
the maximum displacement fα for an angle α relative to
the forward direction of the previous step.

• For a certain displacement on the line between Z and fα
the map provides the maximum displacements along the
upward and downward directions eup and edown , respec-
tively.

• Finally, depending on the footstep height in the range
between eup and edown the reachability map provides the
maximum possible rotation θmax of the footstep relative
to the forward direction of the previous step.

Fig. 4: The reachability map for footstep placements is based on rota-
tions and displacements relative to the previous step, see text for de-
tails (Sec. IV-A).

Furthermore, we denote the rotation of the new step relative
to the previous one θ.

B. Systematic Footstep Search

In each iteration, A* expands the node with the lowest
value for g + h by searching for a small set of valid steps.
During this search the search state of a footstep is defined by
three variables {α, d, θ}, where α was already defined above
and d is the displacement distance from Z. We set the value
of θ to

θ(α, d, e) = min(α, θmax (α, d, e)). (3)

As we are interested in a path with a preferably small number
of steps and few relative foot rotations, this definition of θ
helps in finding nodes that are as far as possible rotated in
the direction of the node displacement while still considering
the stepping capabilities of the humanoid. In the remainder
of this paper, θ is given by (3) without stating its dependence
on α, d, and e. The value for e is at any time automatically
determined by the absolute position of the step within the
height map such that no search along e is performed.

During the search, we carry out the following rough
validity checks for the successor nodes:
• Check if the height difference between the current and the

previous step is within the range of the reachability map.
• Check if the center falls onto a planar region, defined by

a normal vector in the vertical direction.
• Check if the four corners of the footstep all lie within

the same planar region. If this condition is not satisfied,
an edge must be located somewhere below the footstep,
making it invalid.

These checks do not fully guarantee the validity of the step,
e.g., a small object could be located somewhere beneath
it, but in most cases it provides a good first guess. Note
that before expanding any node by additional steps, we
fully analyze the footstep for validity first by checking for
underlying cells in the height map. We then estimate the
cells which are swept over from the previous step position
to detect the maximum height along the footstep trajectory.
If it exceeds a predefined height, i.e., the maximum height
the robot can lift the foot over an obstacle, the step is also
declared invalid.

The search for successor nodes starts at the state {0, f0, 0},
i.e., the maximum forward step and proceeds as follows:



Fig. 5: Search during node expansion. We perform a search around the
zero position Z by systematic rotation and displacement of the new step.
A detailed explanation on how the search proceeds is given in Sec. IV-B.

1) If any of the above checks for the current search
state fails, the displacement distance is decreased by an
amount c, which is equal to the size of a single height
map cell, e.g., for α = 0 and d = f0 the state changes
from {0, f0, 0} to {0, f0−c, 0}. This procedure continues
until we either find a valid step, or d = 0 as can be seen
in Fig. 5 a).

2) Should no valid step be found during 1), i.e., for
a given α, the search state changes according to
{α, d, θ} → {α+ δ, fα+δ, θ} (see Fig. 5 b)), where

δ(α) =
c

fα.
(4)

The definition for δ originates from the small angle
approximation and ensures that the position of any state
{α+ δ, fα+δ, θ} is approximately one cell distance away
from the position of the previous maximally displaced
step {α, fα, θ}. The search continues with 1), but now
with the new α.

3) Once a valid step has been found during 1), it is used
for the expansion of the current parent node while the
search state now changes by a larger value as given by
{α, d, θ} → {α+ ∆, fα+∆, θ} which can be seen in
Fig. 5 c), and we again continue with 1). The exact value
for ∆ is discussed further in Sec. V.

4) The search continues until we reach an angle αmax at
which point the node search is finished. Finally, we
add two additional fixed steps. First, a side step, i.e.,
{π/2, fπ/2, 0}, and secondly a zero step, if it has not
already been added during the search for α = 0. We
found that a zero and side step are necessary in order to
find paths around closely lying objects where forward
walk is not always possible. An example of possible
successors generated during node expansion with our
method are illustrated in Fig. 5 d).

V. EXPERIMENTS
We evaluated our approach in simple and also complicated

environments and compared the planning performance with
A* based on fixed sets. For the A* search with fixed action
sets, we used two different sets with a varying number of
steps relative to the support foot, which we denote A*-
Small (10 steps) and A*-Large (20 steps). Just as for our
approach, we perform the same brief validity checks, intro-
duced in Sec. IV-B, before adding footsteps to the priority
queue. The footstep dimensions and stepping capabilities
were chosen comparable to those of the Atlas robot and are

Fig. 6: Footstep sets for standard A*. a) A small set with ten steps used for
a search with A*-Small. b) A larger set with twenty steps used for a search
with A*-Large. Mirrored sets are used for the left foot.

shown in Fig. 6. We used a resolution of c = 1.5 cm for the
height map.

By comparing planning results in free space and with sin-
gle steppable objects, we experimentally determined suitable
values for ν and µ to be 0.1 and 3, respectively (see Eq. 1).
We chose these values such that the path was preferably
straight and only leads over steppable obstacles if a detour
around them requires multiple additional steps.

Since we plan locally in the space that lies ahead of the
robot, we set αmax = 135◦ in order to exclude steps that go
too far in the backward direction. We have also found that
expanding more than ten steps at each node has a strong
impact on the performance, especially for longer paths,
which needs to be reflected in our choice for ∆. Additionally,
since we prefer forward paths, it is advantageous to expand
more discrete steps in the forward direction than sideways,
hence, we set ∆ = 10◦ + 0.5 · α. In the case that α never
needs to be increased by δ, i.e., the highest possible number
of steps is expanded during the search, this choice of ∆ leads
to a maximum amount of eight expanded steps, including
the zero and side step, which is smaller than the ten steps
used for the smaller fixed set. Finally, our framework plans
to a local goal point which can be determined by, e.g., a
precomputed global path that does not take any obstacles
into account. All computations were performed on a single
Intel Core i7 3770 CPU.

A. World Representation

In order to achieve real-time footstep planning, we first
need a suitable representation of the local environment
around the robot. As already presented in our previous
work [7], we use height maps that are segmented into planar
regions with edges defined between adjacent regions. Fig. 7
illustrates one example of a segmented height map and the
relative position to the humanoid within the local map.

B. Planning in Free-Space Environments

At first, we compared our approach to A* in environments
with planar ground and no obstacles in order to show that
our method does not present any disadvantages in simple
scenarios. We planned a path to goal points on a circle
with radius 3 m at different directions around the robot.
The results are summarized in Table I. The results show that
using our approach strongly outperforms A* on even terrain
in terms of computation time for both the small and large



Fig. 7: Two visualizations of a segmented height map. a) Top view, b) 3D
view. Planar regions are displayed in gray while regions that are either non-
planar or too small to step on are orange. Edges (red) are defined between
adjacent regions.

Rot. A*-Small A*-Large Our approach
Time Cost Exp. N. Time Cost Exp. N. Time Cost Exp. N.

0◦ 0.09 4.10 10 0.10 4.10 10 0.09 4.10 10
15◦ 0.17 4.14 29 0.40 4.16 67 0.18 4.16 35
30◦ 0.38 4.17 84 0.42 4.17 58 0.12 4.18 17
45◦ 0.49 4.49 103 3.69 4.48 650 0.16 4.19 26
60◦ 1.75 4.62 399 1.01 4.50 176 0.32 4.62 53
75◦ 1.85 4.91 476 5.32 4.86 948 1.74 4.93 405
90◦ 18.92 5.43 5812 8.44 4.88 1510 2.73 5.15 682

TABLE I: Planning in free-space. Planning was done to a goal located on a
circle with radius 3 m around the robot and at different relative orientations.
Exp. N. denotes the number of expanded nodes and times are given in ms.

set while keeping very similar absolute path costs. This is
mainly due to the fact that we expand fewer steps per node
and no large search has to be performed, as all steps are free.

C. Planning through Cluttered Scenes

We performed further comparisons in various cluttered
environments. In all cases, the planning region had dimen-
sions 2.4 m × 2.4 m and the local goal was located at the
opposite side on the map relative to the robot. The choice
of the map size corresponds to the approximate region that
is visible by the depth camera used in the experiments with
real data described in Sec. V-D. We compared our resulting
footstep plan with both A*-Small and A*-Large for absolute
planning time and the final path costs and summarized the
results in Table. II. The resulting footstep plans are shown in
Fig. 8. A* with a smaller footstep set has the disadvantage
that highly cluttered scenes can lead to unnecessary footstep
combinations; this is the case for planning with A*-Small in
map 1. Both our approach and A*-Large led to a direct path
through the clutter with similar costs, however, our approach
resulted in a reduced planning time by over 75%.

While a humanoid has the potential to step upon obstacles,
finding a low-cost plan across them by using a limited
action set can lead to many additional steps, which are
necessary to find suitable footstep combinations, especially
if the steppable objects are narrow (see A*-Small in map 2).

Map A*-Small A*-Large Our approach
Time Cost Exp. N. Time Cost Exp. N. Time Cost Exp. N.

1 85.68 7.61 28260 60.26 3.99 13835 14.34 3.70 1516
2 32.02 9.93 14118 32.22 4.98 7596 19.69 4.33 1520
3 67.23 6.91 22374 75.01 5.00 16805 48.74 4.34 5852

TABLE II: Planning in a local region with clutter. Planning was performed
on maps with dimensions 2.4 m × 2.4 m to a goal point on the opposite
side of the robot and are shown along with the final footstep plans in Fig. 8.
Exp. N. denotes the number of expanded nodes and times are given in ms.

Fig. 8: Our approach compared to A* with fixed sets. A*-Small contains 10
and A*-large 20 fixed steps. As can be seen, our approach provides footstep
paths with fewer steps and fewer relative rotations.

Our approach, however, was faster on both, map 2 and map 3,
and in both cases reduced the overall costs of the path.

D. Planning on Real Data

It is of high importance that a real-time footstep planner
is capable of providing a high quality and valid footstep
plan within a given time frame. During the path search,
our algorithm keeps track of the node that is closest to the
local goal point. Thus, we can start the search with a given
maximum planning time and in case no plan fully reaches the
goal in this time frame, our planner instead returns the path
leading to the node that is closest to the goal. Our framework
does a full planning cycle after every height map update to
check whether a better plan can be found or to replace a
footstep plan that becomes invalid after changes in the map.
Thus, in general only the next single step of the plan will
actually be executed by the robot after which further planning
may replace subsequent steps.

In order to demonstrate that our approach works both on
real data and in real time, we have combined it with our map
segmentation framework and set the maximum planning time
to 50 ms. For this experiment we used an ASUS Xtion Pro
Live running with a resolution of 640 × 480 for perception
of the environment and learning the height map [7].

The real scenario is depicted on the top-right of Fig. 9. For
the experiment, we moved the wooden pallet rapidly in the
way of the previously planned footstep plan. The remaining
images show snapshots of how our footstep planner imme-
diately finds new valid plans around and across the pallet.
Even though we used a maximum planning time of 50 ms
the planner actually operated at a frequency of 110 Hz on
average during this experiment.



Fig. 9: Planning on real data. We combined our map segmentation [7] with
the new footstep planner with a maximum planning time set to 50 ms. When
suddenly moving a steppable obstacle in the way of the path, our planning
immediately adapts the footstep plan to the newly detected changes. While
the maximum planning time was set to 50 ms, the planner operated at 110 Hz
on average in this scenario.

This experiment may be compared to a possible disaster
scenario, e.g., moving through a collapsed house. Should any
unstable debris suddenly fall in the path of the robot, our
framework could immediately provide a new footstep plan
helping the robot to maintain a continuous walk.

VI. DISCUSSION

While we present a framework that has the capability of
finding valid footstep paths in real time that considers the
stepping capabilities of the humanoid robot, a locomotion
controller is necessary to execute the steps. In the future, we
will work on combining our planner with a suitable controller
that takes into account the changes in the footstep plan in
order to achieve smooth walking capabilities in dynamic
environments. Such a framework can be combined with a
coarse global path to a target location, which does not need
to take into account non-static obstacles, to provide local sub
goal points in the local map region.

As described in Sec. V-D, we keep track of the path that
leads closest to the local goal point for those cases where the
maximum planning time is exceeded. While this approach
provides the next step to be performed, a possibility remains
that an incomplete path might lead into local minima. The
risk for this to happen is reduced by the fact that a newly
planned path on an updated local region after performing
the next step could already find a path around the local
minimum.

Since our map segmentation framework provides normals
for all planar regions, we can also easily extend our footstep
planning to include inclined planes to allow for a 6D search.

VII. CONCLUSION

In this paper we presented a method for combining an
adaptive footstep search with A* to efficiently find valid

footstep paths through complex 3D environments. Our key
idea is to perform a systematic and fast local search for
valid steps during node expansion. In this way, we increase
the success rate at finding nodes in complex scenes while
keeping the overall expansion count small. We compared our
method to other approaches that use a fixed set of footsteps.
As we demonstrate in a variety of experiments, our approach
outperforms A* with small or large fixed sets in both overall
path costs and computation time. We combined our new
search algorithm with our real-time map segmentation based
on depth data [7] and showed that our framework can quickly
react to sudden large changes in the environment and adapt
the footstep plan accordingly.
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