
Minimal Construct: Efficient Shortest Path Finding for Mobile Robots
in Polygonal Maps

Marcell Missura1, Daniel D. Lee2, and Maren Bennewitz1

Abstract— With the advent of polygonal maps finding their
way into the navigational software of mobile robots, the
Visibility Graph can be used to search for the shortest collision-
free path. The nature of the Visibility Graph-based shortest
path algorithms is such that first the entire graph is computed
in a relatively time-consuming manner. Then, the graph can
be searched efficiently any number of times for varying start
and target state combinations with the A* or the Dijkstra
algorithm. However, real-world environments are typically too
dynamic for a map to remain valid for a long time. With the
goal of obtaining the shortest path quickly in an ever changing
environment, we introduce a rapid path finding algorithm—
Minimal Construct—that discovers only a necessary portion
of the Visibility Graph around the obstacles that actually get
in the way. Collision tests are computed only for lines that
seem heuristically promising. This way, shortest paths can be
found much faster than with a state-of-the-art Visibility Graph
algorithm and as our experiments show, even grid-based A*
searches are outperformed in most cases with the added benefit
of smoother and shorter paths.

I. INTRODUCTION

The research of mobile robots has experienced significant
breakthroughs in the last decades. Simultaneous localization
and mapping (SLAM) and the navigation of ground vehicles
have matured to a state where robots are able to move
about in realistic office environments for days [1] without
human intervention. Software components that accomplish
this task are widely available within the ROS [2] framework.
The underlying philosophy of the state-of-the-art navigation
software hinges on a rectangular grid-based occupancy map
where each cell of the grid represents a small spatial unit of
the environment that can be blocked, free, or unknown. This
map can then be searched, cell by cell, for a shortest path.

Polygonal maps are a promising alternative to grids due to
a number of advantages that can be leveraged to outperform
the success of the cell decomposition approach. Geometric
arrangements have a more compact memory footprint and
are also well suited to represent moving obstacles. They are
not prone to the pitfalls of discretization. Most importantly
for our focus of finding shortest paths, a polygonal map gives
rise to the Visibility Graph. The Visibility Graph consists of
the edges of the polygons in the scene and additional edges
that connect the pairs of polygon corners that can ”see” each
other, i. e., the line segment connecting the corners does not
intersect any of the polygons. It is well known that shortest
paths can be found in this graph [3]. Once the graph has been

1Marcell Missura and Maren Bennewitz are with Humanoid Robots Lab,
University of Bonn, Germany

2Daniel D. Lee is with the GRASP Laboratory, University of Pennsyl-
vania, USA

Fig. 1: Obstacle avoiding shortest paths in a polygonal map. The
walls were expanded by the size of the robot to polygonal areas
shown in light blue. The graph explored by our Minimal Construct
algorithm (shown with thin grey lines) is only a small fraction of
the entire Visibility Graph of this map. While the path found by an
A* search (shown in red) in an equivalent grid is a jagged path of
38 pieces and suboptimal length, the result of our Visibility Graph-
based Minimal Construct algorithm (blue) is optimal in length and
has a minimal complexity of three line segments.

constructed, smooth paths of optimal length and a minimal
number of line segments can be found quickly with the A*
algorithm as opposed to the jagged and suboptimal paths
emerging from a grid. An illustration is shown in Figure 1.

The construction of the Visibility Graph, however, requires
much more computation time than the search. The best
known algorithms can compute the Visibility Graph using
O(n2) operations where n is the number of the polygon
edges. Consequently, the construction time of the graph
is sensitive to the complexity of the map. At the same
time, frequent changes in the environment such as moving
people and objects, opening and closing doors, or simply the
exploration of an unknown part of the map, invalidate the
graph. It has to be repaired or reconstructed, which slows
down the process of finding the shortest path.

The Minimal Construct algorithm presented in this work
mitigates this issue by computing only the necessary portion
of the Visibility Graph during an A* search rather than
before. Graph edges are only checked for intersection with
polygons when they are popped from the priority queue.
Hence, the most expensive part of the computation—a large
number of line intersection tests—is reduced to those lines
that seem heuristically promising. The search always begins
with the minimal graph consisting of a straight line from the

start to the target. If the line is blocked by an obstacle, the
corners of the obstacle are connected to the graph and the
A* search is continued in this updated graph until the target
is reached, or, in the worst case, the entire Visibility Graph
is discovered.

Further below, we present experiments where we system-
atically increase the complexity of a map and show that the
Minimal Construct algorithm consistently outperforms one of
the fastest known O(n2) algorithms [4] in terms of finding
the shortest path while having the same asymptotic complex-
ity. Leveraging the lower computational cost, shortest paths
in polygonal maps can be recomputed more frequently to
account for changes in the environment. We also include two
grid-based alternatives in our experiments, a standard eight-
connected A* search and the Lazy Theta* algorithm, for the
comparison of runtimes that can be achieved by searching a
grid.

II. RELATED WORK

The earliest works involving mobile navigation using
polygonal maps date back to the experiments performed with
the SHAKEY robot [5]. Even if the first layer of perception
has been a grid, the corners of grid segments were used for
navigation in a Visibility Graph-like manner.

Lozano-Perez et al. [3] were the first to propose using
shortest paths in the Visibility Graph for robot motion
planning. Their concept included the growing of the polygons
by the radius of the robot such that the robot can be regarded
as a point.

Lee [6] introduced a more efficient algorithm to compute
the Visibility Graph in O(n2 log n) time by using a radial
sweep technique. Asano et al. [7] proposed two O(n2)
algorithms, one based on triangulation and the other on a
polar sweep performed in the dual arrangement one vertex
at a time. A key feature of the sweep is a table lookup
that allows to find and remove a segment from a sorted
list in constant rather than in O(log n) time. Welzl [8] also
proposed an O(n2) algorithm based on a polar sweep that is
performed for all vertices simultaneously. The author exploits
the fact that a partial order over the slope of the line segments
is sufficient for the sweep to compute the correct graph and
a full sorting in O(n2 log n) can be avoided. The partial
order is computed in the dual arrangement with a topological
sort. Later on, Overmars and Welzl [4] presented a simpler
version of their algorithm using a rotation tree instead of
the dual arrangement. This version also needs less space in
memory. Ghosh and Mount [9] developed an output sensitive
algorithm using a triangulation and funnel splits in a planar
sweep that computes in O(e+n log n) where e is the number
of the edges in the output. The algorithm is optimal for
sparse graphs. However, the implementation of this algorithm
is more difficult than the others and it does not always
perform better than the O(n2) variants [10]. We are using
an implementation of the Overmars Welzl [4] algorithm to
evaluate the performance of our method.

Rohnert [11] devised an O(n+ f2 log n) algorithm where
f < n is the number of polygons in the scene. This is

not necessarily faster, but the work shows that between two
convex and disjoint polygons only the polygon edges and
up to four tangential lines can possibly contribute to the
shortest path. Unfortunately, convexity cannot be assumed in
realistic environments, but we inherit the use of tangential
edges for non-convex obstacles and can significantly reduce
the number of edges in the graph this way.

Huang at al. [12] approached the shortest path problem
similar to us in a way that they first identify a portion
of the Visibility Graph that the shortest path resides in.
A rectangular shaped active region around the direct line
between start and target is grown by adding more and more
obstacles to it until it is certain that the shortest path is
contained in the box. Then, the Visibility Graph is computed
using only the vertices that are inside the active region.
However, this approach has only been evaluated on a few
small examples and the reported runtimes are orders of
magnitudes larger than ours.

The A* algorithm [13] has been established as the de facto
standard for grid searching. Anytime versions [14] have been
investigated that inflate the heuristic to gain a suboptimal
solution in shorter time, and improve it with subsequent
searches until deliberation time runs out. Dynamic variants
such as D* Lite [15] are designed to be used by robots in
motion that discover unexpected changes in the environment
and keep previously computed information in order to speed
up replanning. Any-angle variants like Field-D* [16] and
Incremental Phi* [17] produce smoother paths using inter-
polation between actions or connecting a straight line back
to earlier nodes in the path rather than to the direct parent.
Lazy Theta* [18] backtracks an open node to its parent by
performing a line of sight check in the grid only when the
node is popped from the queue and is similar in spirit to our
algorithm. It produces smoother and shorter paths than A*
at the expense of the additional line-of-sight tests.

In addition to the Overmars Welzl Visibility Graph con-
struction method, we chose a standard eight-connected A*
as it was used in [1] as a benchmark of computational
performance, and we favor the Lazy Theta* [18] algorithm
due to its superior simplicity and efficiency as an any-angle
A* search to represent an example that produces high-quality
paths in a grid.

III. MINIMAL CONSTRUCT

A. Preliminaries

The most simple way of constructing the Visibility Graph
is an O(n3) algorithm that enumerates all O(n2) pairs of
vertices and tests the edges between them for intersection
with each of the n lines in the scene. This algorithm involves
the computation of a large number of line intersections. More
sophisticated algorithms, e. g., our favored Overmars Welzl
rotation tree [4], sweep the visible contour around a point and
keep track of the nearest visible line. During this polar sweep,
edges appear as events sorted by angle. Each event reports
visibility between two vertices and may update the nearest
visible line. Since there are O(n2) edges and every edge
is handled in amortized constant time, the entire algorithm

v
j

v
j+1

v
j1

v
i

(a) Tangential edge

vj

v
j+1v

j1

vi

(b) Non-tangential edge

vj

v
j+1v

j1

vi

(c) Concave corner

Fig. 2: a) An edge (vi, vj) is tangential in point vj if the adjacent
corners of the polygon vj−1 and vj+1 lie on the same side of the
edge. If the edge (vi, vj) is non-tangential b), or the corner vj is
concave c), the entire area of the triangle ∆ (vi, vj−1, vj+1) can be
seen from vi and (vi, vj) cannot be a part of a shortest path.

finishes after no more than O(n2) operations. However, a
change of the graph later on cannot be accommodated easily,
as for example the rotation tree is consumed during the sweep
and needs to be rebuilt.

Minimal Construct does not attempt to compute the entire
Visibility Graph. Typically, only a small portion of the graph
is discovered during the search for the shortest path. In order
to avoid collision checking of line segments that do not
directly contribute to the shortest path, the computation of
line intersection tests is delayed until they become necessary.
The line intersection tests that the algorithm does perform
are accelerated with the help of bounding boxes. When the
bounding box of an edge does not intersect the bounding
box of a polygon, none of the edges of that polygon need
to be tested for line intersection. Bounding box tests are
very fast to compute and increase the overall performance of
the algorithm. Furthermore, we exploit the fact that concave
corners and non-tangential edges can never be a part of a
shortest path. An edge (vi, vj) is tangential in a vertex vj
if both polygon corners vj−1 and vj+1 adjacent to vj lie on
the same side of (vi, vj). An example is shown in Figure 2.
Concave corners and edges that are not tangential in both
ends are discarded as soon as they are discovered.

B. The Minimal Construct Algorithm

We assume a geometric scene of disjunct and non-convex
polygons S consisting of n lines that intersect only in their
end points.1 The graph G = (V ,E) that Minimal Construct
discovers during the search contains a subset of the end
points of the lines, i. e., V = {vi<n} is a subset of the
corners of the polygons, and edges E = {(vi, vj) |vi, vj ∈
V , i 6= j} connecting pairs of these vertices. The start state
s and the goal state t are treated as two additional vertices
in the graph.

For the operation of the A* algorithm, which the Min-
imal Construct Algorithm is based on, we need to define
a unidirectional parent relationship that is used to extract
the shortest path by following the path from the target
parent to parent to the start after the search has termi-
nated. The functions PARENTOF(vi), SETPARENT(vi, vj),

1Note that the Minimal Construct algorithm works also in a scene of
intersecting, non-convex polygons. We increased our input requirements in
order to stay comparable with the Overmars Welzl algorithm.

and REMOVEPARENT(vi) used by Algorithm 1 work as one
would expect with SETPARENT(vi, vj) setting vertex vi as
parent of vj and REMOVEPARENT(vi) canceling the parent
of vi. A* opens vertices when they are pushed into the
priority queue and closes them after they have been popped
from the queue. For this, we use the functions ISOPEN(vi),
CLOSE(vi), and ISCLOSED(vi) to query and manipulate the
open and closed state of vertices.

Algorithm 1 shows the pseudo code of our algorithm,
which we describe in the following in detail. Minimal
Construct initializes the search with the trivial one-edge
graph from start to target by connecting s and t as neighbors,
setting s as parent of t, and pushing the target vertex into
the priority queue (lines 1 to 7 in Alg. 1). Note that s is
initialized to be closed and remains closed at all times. Then,
the program enters a loop where vertices are subsequently
popped from the queue. Each time a vertex v is popped, the
edge (u, v) between the vertex v and its parent u is tested
for line intersection with the scene (line 11). This is a rather
expensive O(n) operation.

If the edge (u, v) is found to be collision-free in line 12,
Minimal Construct can perform an A* expansion step in lines
13 through 28. This involves checking if the target has been
reached, otherwise closing the vertex v and expanding all
its neighbors. The expansion step applies a closed and open
check in lines 19 and 20. v is set as parent of neighbor vi,
g, h, and f are computed, and vi is pushed into the queue.

If the edge (u, v) is blocked, a new polygon p has been
discovered. The blocked edge is removed from the graph in
line 30. Then, vertex v is orphaned and reparented to the
vertex in the graph with the lowest path cost g that is closed
and has v as a neighbor. If such a parent has been found,
the path cost g(v) and the priority f(v) are updated and v
is pushed back into the queue. The parenting procedure is
shown in Algorithm 2. By reparenting v and pushing it back
into the open list, we maintain the completeness of the A*
search by setting it into the state it would have had if the
invalid edge (u, v) had not been present in the graph. Note
that v may remain entirely without a parent until it is perhaps
touched again at a later time.

After the reparenting in lines 31 and 32 of Algorithm 1,
the polygon p that blocked the edge (u, v) is added to the
graph in line 34 by calling Algorithm 3. The obstacle is
connected by adding each of its convex corners to the graph
and connecting them as a neighbor of every known vertex
in the graph so far, if the edge is tangential in both ends.
Following the linking into the graph, Algorithm 3 attempts to
find a parent for each polygon corner by calling Algorithm 2.
This preserves completeness by accommodating the fact that
if the A* search had known about the edges to the new
polygon, any of the new corners may have been pushed
into the queue at an earlier time. Polygons are closed after
discovery in line 35 of Algorithm 1 to make sure they are
added to the graph only once. The procedure is repeated until
either a path is found or the entire graph has been explored
and it is certain that no solution exists.

Algorithm 1 Minimal Construct
Input: Set of polygons S, Start vertex s, Target vertex t
Output: Path P

1: Priority q . We are using a priority queue q
2: Graph G = (V ,E) . Start with an empty Graph
3: V ← V ∪ {s, t} . Add start and target vertices
4: E ← E ∪ (s, t) . Add t to the neighbors of s
5: SETPARENT(s, t) . Set s as the parent of t
6: CLOSE(s) . Close the start vertex s
7: PUSH(t, q) . Push the target into the priority queue
8: while (q is not empty) do
9: v ← POP(q) . Pop the vertex v with the lowest f

10: u ← PARENTOF(v) . Get the parent of v
11: Polygon p ← LINEINTERSECTIONTEST(S, (u, v))
12: if (p == nil) then . If no polygon has been intersected
13: if (v = t) then . If the target has been reached
14: P ← EXTRACTPATH(v) . Follow parents to start
15: return P . Finished!
16: end if
17: CLOSE(v) . Close the vertex v
18: for all (vi, (vi, v) ∈ E) do . Expand neighbors of v
19: if (!ISCLOSED(vi)) then . If vi is not closed yet
20: if (!ISOPEN(vi) or g(v) + |v − vi| < g(vi)) then
21: SETPARENT(v, vi) . Set v as parent of vi
22: g(vi) ← g(v) + |v − vi| . Path cost g so far
23: h(vi) ← |vi − t| . Heuristic h to target
24: f(vi) ← g(vi) + h(vi) . Priority f
25: PUSH(vi, q) . Push vi into the priority queue
26: end if
27: end if
28: end for
29: else . A polygon p has been intersected
30: E ← E \ (v, u) . v is no longer neighbor of u
31: REMOVEPARENT(v) . Remove parent of v
32: FINDPARENT(v) . (Algorithm 2)
33: if (!ISCLOSED(p)) then . If polygon p is not closed
34: CONNECTOBSTACLE(p) . (Algorithm 3)
35: CLOSE(p) . Close the intersected polygon p
36: end if
37: end if
38: end while
39: return P . Search failed. Return empty Path

C. Time Complexity

The time complexity of the Minimal Construct algorithm
can be analyzed as follows. A* is known to have an asymp-
totic complexity of O(n2 log n) operations if it is operating
on a fully connected graph using a binary heap to implement
the priority queue. Since in Algorithm 3 we connect (almost)
every corner of a discovered obstacle with every known
vertex in the graph, we do have to assume a fully connected
graph. In addition to the A* search, our algorithm performs
line intersection tests (Line 11 of Alg. 1), tangential tests
(Line 5 of Alg. 3), parent finding (Line 32 of Alg. 1 and
Line 9 of Alg. 3), and connecting obstacles (Line 34 of
Alg. 1). We assume that deleting and creating parent and
neighbor relationships can be done in constant time. This is
for example possible with an adjacency matrix.

A* pops each vertex at most once from the queue, so we
know that the while loop in line 8 of Algorithm 1 is exe-
cuted at most O(n) times. Consequently, a line intersection
test is performed O(n) times, each of which taking O(n)

Algorithm 2 Find Parent
Input: Vertex v

1: minPathCost ← inf . Init the min path cost with infinity
2: u ← nil . Init the new parent with nil
3: for all (vi, (vi, v) ∈ E) do . For all neighbors of v
4: if (ISCLOSED(vi)) then
5: if (g(vi) + |vi − v| < minPathCost) then
6: minPathCost ← g(vi) + |v − vi| . Update min cost
7: u ← vi . Remember vi as new parent
8: end if
9: end if

10: end for
11: if (u != nil) then
12: SETPARENT(u, v) . Set u as new parent of v
13: g(v) ← g(u) + |v − u| . Update path cost g
14: f(v) ← g(v) + h(v) . Update priority f
15: PUSH(v, q) . Push v into the priority queue
16: end if
17: return

Algorithm 3 Connect Obstacle
Input: Polygon p

1: for all (vi in VERTICES(p)) do . For all corners vi of p
2: if (isConvex(vi)) then . If the corner vi is convex
3: V ← V ∪ vi . Add the corner vi to the graph
4: for all (vj ∈ V , j 6= i) do . For all known vertices vj
5: if (isTangential(vi, vj)) then
6: E ← E ∪ (vi, vj) . Make vi a neighbor of vj
7: end if
8: end for
9: FINDPARENT(vi)

10: end if
11: end for
12: return

operations, summing up to O(n2) in total.
The ConnectObstacle() routine is called O(n) times in

line 34 of Algorithm 1. Regardless, it loops only once over
every vertex and connects each of them with O(n) neighbors
after performing a tangential test in lines 4, 5 and 6 of
Algorithm 3. The tangential test and creating a neighbor
relation are both in O(1). Thus, the ConnectObstacle()
function contributes O(n2) operations in total.

Finding a parent in Algorithm 2 performs constant time
operations for O(n) neighbors of a vertex v. The FindPar-
ent() routine is called at most once for every vertex in Line 32
of Algorithm 1 inside the while loop starting in line 8, and
again at most once for every vertex inside the outer for loop
starting in line 1 of Algorithm 3. These two occurrences
amount to O(n2) operations spent on parenting in total.

In conclusion, all additional operations performed by
Minimal Construct on top of the A* search are of amortized
O(n2) complexity. This means that the A* search dominates
the runtime of the algorithm with O(n2 log n). The Overmars
Welzl algorithm [4] has the same upper bound with O(n2)
for the graph construction dominated by O(n2 log n) for
the search for the shortest path, but with a closer look
we find that the construction of the entire Visibility Graph
also has a lower bound of Ω(n2). The lower bound of the
Minimal Construct algorithm, however, is Ω(n). This is the

case when there is a line-of-sight between the start and the
target and the line intersection test needs to be performed
only for the single edge between s and t. Consequently,
with both approaches having the same upper bound, but
finding the shortest path only having a smaller lower bound
than constructing the entire graph, the Minimal Construct
approach must statistically find the shortest path in less time.
This observation is supported by the systematic experiments
presented in the next section.

IV. EXPERIMENTAL RESULTS

We evaluated the performance of the Minimal Construct
algorithm with respect to the Overmars Welzl algorithm [4]
and also with respect to the grid-based A* and Lazy Theta*
algorithms. We made effort to implement each of these
algorithms as efficiently as possible by using code profiling
techniques to improve computation time and reusing allo-
cated memory for subsequent runs. Most notably, since the
Overmars Welzl algorithm does not actually need to compute
line intersections, it only needs to decide whether a point lies
in front of or behind the nearest visible edge, we allowed it
to exploit this advantage by using a fast scalar product-based
test instead of computing actual line intersections or using a
square root to determine a distance. A* and Lazy Theta*
have been implemented using integer arithmetic for state
transitions. The line-of-sight tests that Lazy Theta* needs
are computed with the Bresenham algorithm.

The experiments were performed in two artificially gen-
erated maps of different nature. The maps are shown in
Figure 3. The first type of map has a fixed size of 100x100
meters and includes a parameterized number of non-convex
obstacles. By systematically increasing this parameter and
adding more and more obstacles to the map, we were able
to explore the runtimes of the aforementioned algorithms
with respect to the number of polygon edges present in
the environment. The maps shown in Figure 3 on the left
have a medium degree of clutter with approximately 1500
edges. As can be seen in the plot on the left of Figure 4,
Minimal Construct outperforms the other algorithms by a
large margin. Up to approximately 2000 polygon edges in
the map, Minimal Construct finishes in under a millisec-
ond (runtimes are measured by averaging 1000 randomly
chosen start and target combinations in the map). In this
environment, Minimal Construct is able to exploit its full
potential by adding only a relatively low number of obstacles
into the graph and thus avoiding the vast majority of the
line intersection tests that the Overmars Welzl algorithm
has to perform. The grid-based algorithms are not aware
of the number of obstacles in the scene. They search for
a path in an occupancy grid that represents the obstacles as
closely as possible. We used a cell size of 10 cm for the
grid. The runtimes of the grid-based searches stay more or
less constant, no matter how many obstacles are present.

The second map was designed to predict how well these
algorithms would perform in an indoor environment. Mim-
icking an office building, we generated a map with square
shaped rooms that are laid out on both sides along a corridor.

The corridor runs in a loop around a square shaped building.
The rooms have a wall length of 3 meters. This time, the
varied parameter is the number of rooms along one side
of the building. The smallest building has a size of 21x21
meters with seven rooms along one side of the building. The
map shown in Figure 3 on the right has 12 rooms along
one side. We evaluated maps with up to 50 rooms and a
150 square meters large footprint, even though the actual
space inside the building is much smaller since the inner
yard of the building is not used. This environment represents
a hard case for the Minimal Construct algorithm, because
the whole interior ring of rooms is one large polygon that
gets in the way of nearly every path while contributing a
large number of edges to iterate over when computing a line
intersection test. The bounding box acceleration of the line
intersection checks is not effective for such large obstacles
that intersect with almost every line. Even so, by delaying
the line intersection tests, Minimal Construct is still able to
reliably outperform the entire construction of the Visibility
Graph. The grid-based searches A* and Lazy Theta* perform
worse for smaller versions of the Office map, but their
runtime is less sensitive to the size. Starting from buildings
with a size of 30 rooms per side, a standard A* search begins
to find paths in less time than Minimal Construct. Real world
maps can perhaps be broken up into smaller polygons and
topological mapping [19], [20] could be used in order to
reduce the size of the map that needs to be searched for
a shortest path in order to maintain the upper hand of a
polygonal map representation for large environments.

V. CONCLUSIONS

We presented a novel, Visibility Graph-oriented path
search algorithm that significantly reduces the computation
time of finding the shortest path in a polygonal map. With the
philosophy of not constructing the entire Visibility Graph, but
only a necessary portion, the Minimal Construct algorithm is
consistently able to compute shortest paths in cluttered and
indoor-like environments faster than one of the best known
O(n2) Visibility Graph construction algorithms combined
with an A* search. Our algorithm performed well even in
comparison to standard, eight-connected A* grid searches.

Polygonal planning and modeling comes with the added
benefit of a non-discrete action set and continuous world
representation that yields smooth and optimal shortest paths
with a minimum number of path segments. We envision to
gain further benefits of a polygonal representation in future
work in the context of dynamic motion planning by lever-
aging mathematical expressions to predict collision points
by intersecting motion trajectories with edges of possibly
moving polygons.

REFERENCES

[1] E. Marder-Eppstein, E. Berger, T. Foote, B.P. Gerkey, and K. Konolige.
The office marathon: Robust navigation in an indoor office environ-
ment. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2010.

[2] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng. ROS: an open-source robot
operating system. In ICRA Workshop on Open Source Robotics, 2009.

(a) Overmars Welzl (b) Minimal Construct (c) Overmars Welzl (d) Minimal Construct

Fig. 3: The maps that have been used to evaluate our shortest path finding algorithms in comparison to a full construction of the Visibility
Graph. The two images on the left show a cluttered type of map where obstacles are randomly scattered in a 100x100 meters large square.
The two images on the right show an office building that we generated. a) An example path found in the fully constructed Visibility
Graph. The collision-free edges of the Visibility Graph are shown with grey lines. b) The identical path found by the Minimal Construct
algorithm. Collision-free graph edges that were tested for line intersection are shown with grey lines. c) The full Visibility Graph of
the Office map and the shortest path found within that graph. d) The same path found by our Minimal Construct algorithm and the
collision-free edges that were tested for line intersection.

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000

T
im

e
 [

m
s]

Edges

A*
Lazy Theta*

Overmars Welzl
Minimal Construct

(a) Clutter

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000

T
im

e
 [

m
s]

Edges

A*
Lazy Theta*

Overmars Welzl
Minimal Construct

(b) Office

Fig. 4: Average runtimes in a) the Clutter map and b) the Office map with increasing map complexity in terms of polygon edges. In the
Clutter map, the Minimal Construct algorithm is able to exploit its full potential and computes shortest paths much faster than the other
algorithms. The Office map is a hard case for our algorithm and it performs worse, even though it still finds shortest paths significantly
faster than the full construction of the Visibility Graph and faster than the grid based searches up to a building size of approximately 30
rooms per line or 150 m2.

[3] T. Lozano-Pérez and M.A. Wesley. An algorithm for planning
collision-free paths among polyhedral obstacles. Communications of
the ACM, 22(10):560–570, 1979.

[4] M. H. Overmars and E. Welzl. New methods for computing visibility
graphs. In Proc. of the Symposium on Computational Geometry (SCG),
pages 164–171, 1988.

[5] N.J. Nilsson. A mobile automaton: An application of artificial intelli-
gence techniques. In Proc. of the Int. Conf. on Artificial Intelligence
(IJCAI), pages 509–520, 1969.

[6] D.T. Lee. Proximity and Reachability in the Plane. Dissertation,
University of Illinois at Urbana-Champaign, 1978.

[7] T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai. Visibility
of disjoint polygons. Algorithmica, 1(1):49–63, 1986.

[8] E. Welzl. Constructing the visibility graph for n-line segments in o(n2)
time. Information Processing Letters, 20(4):167 – 171, 1985.

[9] K.G. Subir and M.M. David. An output-sensitive algorithm for
computing visibility graphs. SIAM Journal on Computing (SICOMP),
20(5):888–910, 1991.

[10] J. Kitzinger. The Visibility Graph Among Polygonal Obstacles: A
Comparison of Algorithms. University of New Mexico, 2003.

[11] H. Rohnert. Shortest paths in the plane with convex polygonal
obstacles. Information Processing Letters, 23(2):71–76, 1986.

[12] H.-P. Huang and S.-Y. Chung. Dynamic visibility graph for path
planning. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots &
Systems (IROS), 2004.

[13] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE Trans. on Systems,
Science, and Cybernetics, SSC-4(2):100–107, 1968.

[14] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun. Any-
time search in dynamic graphs. Artificial Intelligence, 172(14):1613
– 1643, 2008.

[15] S. Koenig and M. Likhachev. D∗ Lite. In Proc. of the National
Conference on Artificial Intelligence (AAAI), 2002.

[16] D. Ferguson and A. Stentz. Field D∗: An Interpolation-Based Path
Planner and Replanner, pages 239–253. Springer Verlag, 2007.

[17] A. Nash, S. Koenig, and M. Likhachev. Incremental Phi∗: Incremental
any-angle path planning on grids. In Proc. of the Int. Conf. on Artificial
Intelligence (IJCAI), 2009.

[18] A. Nash, S. Koenig, and Craig A. Tovey. Lazy Theta*: Any-angle
path planning and path length analysis in 3D. In Proc. of the National
Conference on Artificial Intelligence (AAAI), 2010.

[19] F. Blöchliger, M. Fehr, M. Dymczyk, T. Schneider, and R. Siegwart.
Topomap: Topological mapping and navigation based on visual SLAM
maps. CoRR, abs/1709.05533, 2017.

[20] Sebastian Thrun. Learning metric-topological maps for indoor mobile
robot navigation. Artificial Intelligence, 99(1):21 – 71, 1998.

