
Predictive Collision Avoidance for the Dynamic Window Approach

Marcell Missura Maren Bennewitz

Abstract— Foresighted navigation is an essential skill for
robots to rise from rigid factory floor installations to much
more versatile mobile robots that partake in our everyday
environment. The current state of the art that provides this
mobility to some extent is the Dynamic Window Approach
combined with a global start-to-target path planner. However,
neither the Dynamic Window Approach nor the path planner
are equipped to predict the motion of other objects in the
environment. We propose a change in the Dynamic Window
Approach—a dynamic collision model—that is capable of
predicting future collisions with the environment by also taking
into account the motion of other objects. We show in simulated
experiments that our new way of computing the Dynamic
Window Approach significantly reduces the number of collisions
in a dynamic setting with nonholonomic vehicles while still
being computationally efficient.

I. INTRODUCTION

There is a rising demand for a new class of robots—
autonomous robots—that are able to safely locomote in
human environments and perform a large variety of tasks.
A few prominent examples are self-driving cars, package
delivery drones, and domestic service robots. The demand
for efficient and collision-free locomotion in such dynamic
settings is only partially met by what navigational software
can do today. Most of the state-of-the-art motion planners
still regard obstacles in the environment as stationary.

The state of the art constitutes of shortest path find-
ing in combination with a low-level motion controller for
path tracking and collision avoidance. The work of Wil-
low Garage [1] describes an extensive test of this control
paradigm. The used shortest path finder is a vanilla A* al-
gorithm in an occupancy map. An intermediate target along
this path then serves as a local goal for the Dynamic Window
Approach (DWA) that computes velocity commands for the
robot. This navigation stack is widely available in ROS [2].

The DWA [3] uses circular arcs to approximate the oth-
erwise complex trajectories of nonholonomic vehicles. After
systematic sampling of such arcs, the best of them is elected
according to an objective function that evaluates progress
towards the target and the clearance from obstacles. The
selected arc then yields the next velocity command that
is sent to the robot, and the entire process is reiterated.
The Global Dynamic Window Approach [4] uses an NF1
navigation function to guide the DWA. The NF1 function
is a precomputed lookup table of the length of the shortest
path from every cell of an occupancy grid to the target. The
NF1 table captures obstacles only as a static snapshot and
it is too costly to be updated at a high frequency. Ögren et

Both authors are with Humanoid Robots Lab, University of Bonn,
Germany

Fig. 1: Nonholonomic agent A detects future collisions with agent
D and predictively adjusts its course while heading for the target
location marked with the red cross. The sampled trajetories of
agent A do not indicate a collision with agent E, since it will have
moved out of the way by the time agent A reaches the end of the
trajectories. Agent B is using circular trajectories, agent C is using
a holonomic model.

al. [5] harnessed the global DWA scheme presented above
and proved with a few modifications in a model predictive
control setting convergence to the goal.

Earlier versions of navigational software relied on the
force field method [6] [7]. Obstacles in the environment exert
a repulsive force on the agent while the target is an attractor.
However, the purely reactive nature of this approach renders
foresighted motion out of reach. This was followed by a trend
heavily based on different flavours of the A* algorithm. Some
approaches rely on heuristic search of control actions for
cars [8] and for quadrocopters [9]. Computational feasibility
is achieved by a discretization of the state space rather
than the control space with the help of motion primitives
that move the vehicle between known points on a lattice.
Another class of planners attempts to refine an A* path to
a dynamically feasible motion trajectory on the fly. Quintic
splines [10], B-splines [11], Bezier curves [12], or elastic
bands [13] are used in a manner of online optimization.
While the path to begin with is collision free, the refined
trajectory is not necessary so, especially not if the obstacles
move between updates. In all of the aforementioned methods
moving obstacles are assumed to be stationary. When the
motion plan is replanned with a high enough frequency, it
may be sufficient for obstacle avoidance at low velocities,
but foresighted evasive maneuvers are not possible.

With the advent of deep learning, in particular in combina-
tion with reinforcement learning, machine learned controllers
are on the rise that can account for motion. In [14], an end-to-

(a) Dilation (b) Contour detection (c) Removal (d) Blur

Fig. 2: The steps of our assumed perception pipeline that are needed to compute grid and polygonal representations of static and dynamic
objects. The yellow object is a robotic agent in motion. a) First, an occupancy map is computed from the raw sensor data and dilated
by the radius of the robot. b) Using contour detection, polygons are computed from the occupancy map. c) Cells that belong to moving
objects are removed, but the polygons remain. d) A blur filter smoothes the inflated occupancy map.

end motion planner was learned for small, static maps using
the raw sensor data as input, the motor controls as output,
and a ROS path planner as the expert teacher. In [15] and
[16] obstacles were represented by their position, velocity,
and radius before being fed as input into a network. The fact
that the variable number of obstacles is not a fixed sized input
is handled by an LSTM layer. This system appears to work
well and it does account for the motion of obstacles, but it
is limited to small circular obstacles so far. In [17] inverse
reinforcement learning was used to identify the parameters of
human trajectories that were modeled by cubic splines. The
result was a predictive system with human-like behavior.

An approach to obstacle avoidance most related to
ours that explicitly models the motion of other objects is
based on the concept named Reciprocal Velocity Obsta-
cles [18], [19], [20]. Velocity obstacles are geometric regions
in velocity space that describe the set of velocities an agent A
is not permitted to use in order to avoid collision with agent
B within a fixed time window. This geometric formulation
allows efficient computation of velocity commands using a
linear program. However, a number of assumptions need to
be made that may impair the performance. The agent and
the obstacles are assumed to be holonomic, both travel with
a constant velocity, and all participants make an effort to
avoid a collision using the same controller. Nonholonomic
control [20] is achieved by shifting the reference point of the
vehicle away from the center (and thereby also enlarging the
effective radius) to a point that can be fully controlled.

Our method makes the constant velocity assumption only
for the obstacles in the environment which are modeled as
moving polygons with a velocity attached. For the agent we
use trajectories that approximate accelerated nonholonomic
motion and intersect these with the moving polygons. The
output of our controller are nonholonomic accelerations
rather than velocity, which results in smoother steering and
physical feasibility. We implemented two versions of the
DWA in this setting, one using the traditional circular arcs,
and another where we convert to a holonomic model and
exploit its simplicity. In both versions, we predict collision
points between the trajectory of the vehicle and the edges
of the moving polygons in order to assess the quality of the
sampled trajectories, and select the best one to derive the
next incremental control.

II. WORLD MODELING

For the obstacle avoidance concept presented in this
contribution to work as intended, we make the following
assumptions. We assume that we have a dilated and blurred
occupancy map available that contains only stationary ob-
jects. Furthermore, stationary and moving objects are both
represented as polygons as well. The processing steps of our
assumed perception pipeline, which for now only exists as a
mock-up in simulation, are sketched in Figure 2.

An occupancy grid can be directly obtained from sensor
data by marking blocked cells that fall onto objects in the
sensor range of the robot. A dilation filter can then be
used to expand clusters of blocked cells by the radius of
the robot (or a little more). After the obstacles have been
inflated this way, the robot can be regarded as a point.
Polygons can be gained from the dilated occupancy map
using contour detection. We assume that by associating
polygon observations over multiple frames, we are able to
measure the velocities of the polygons and can thus group
them into two classes: stationary and moving. The cells
corresponding to moving polygons are removed from the
occupancy grid. A simple box blur filter then smoothes the
remaining occupancy grid. Dilation, blurring, and contour
detection algorithms are readily available in the OpenCV
library. The association of polygons over multiple frames can
be handled by the Hungarian Algorithm and their tracking,
i.e., velocity estimation, can be done by Kalman filtering.

Our system exploits each part of this hybrid world repre-
sentation in a specific way in order to be maximally efficient.
The blurred occupancy grid is used for fast collision checking
with stationary objects. The blurring results in careful driving
with a comfortable clearance from the obstacles that can be
sacrificed when having to move through narrow gaps. The
polygons of the stationary objects are used for shortest path
finding in a polygonal scene with the Minimal Construct al-
gorithm [21], a shortest path planner designed for polygonal
scenes. Finally, the moving polygons are used for dynamic
collision checking with our modified DWA.

III. THE DYNAMIC WINDOW APPROACH

The core philosophy of the DWA algorithm is to sample a
set of control parameters and to predict their outcome when
applied to the robot in its current state of motion, assuming

the controls stay constant for a short time. The resulting
trajectories are then evaluated according to an objective func-
tion that captures obstacle clearance and progress towards
a target. The controls of the best trajectory elected by the
objective function are then passed on to the robot to produce
the next motion increment. This entire process is repeatedly
executed while the robot is in motion. Figure 1 shows an
illustration of a robotic agent using the DWA.

A. Trajectory Sampling

In order to model the nonholonomic motion of wheeled
robots, we regard the unicycle model. The state of the unicy-
cle is defined by the vector su = (x, y, θ, v, ω), where (x, y)
are the Cartesian coordinates, θ is the heading of the robot,
v is the linear velocity, and ω is the angular velocity. If we
assume constant accelerations av and aω to be the control
parameters where av is the linear acceleration and aω is
the angular acceleration, then the motion of the unicycle is
described by the differential equation

(ẋ, ẏ, θ̇, v̇, ω̇) = (v cos θ, v sin θ, ω, av, aω). (1)

The integration of this equation [22] [23] is not well
suited for fast collision checking. The classic version of the
DWA [3] samples pairs of linear and angular velocities (v, ω)
as controls that describe circular arcs, which are only a
special case of nonholonomic trajectories, but they can be
used for the approximation of a future state

su(v, ω, t) = su0 +

v
ω (sin(θ + ωt)− sin(θ))
v
ω (cos(θ + ωt)− cos(θ))

ωt
0
0

 , (2)

and they can be intersected with polygons quite efficiently.
We adopt the circular arcs in our implementation, but we
maintain acceleration control parameters by creating the
following relation. We generate a set of control pairs

C = {(avi , aωj
)|i, j ∈ {0, ..., N − 1},

avi = −A+ i
2A

N − 1
,

aωj
= −B + j

2B

N − 1
}, (3)

where A = 20 m
s2 is the bound of the linear acceleration,

B = 10 rad
s2 is the bound of the angular acceleration, and

N is the number of samples per dimension. We set N = 7
and obtain 49 control pairs in total. We then convert the
acceleration pairs to a set of velocities

C ′ = {(vi, ωj)|i, j ∈ {0, ..., N − 1},
vi = v0 + δaviT,

ωj = ω0 + δaωjT}, (4)

where (v0, ω0) is the current velocity of the robot,
T = 300ms is the total time horizon of the DWA, and
δ = 0.5 is a tuning parameter that determines at which por-
tion of [v0, vT] and [ω0, ωT] the velocities are taken. When

we elect the best circular arc (vk, ωl) with the objective
function, we can relate to the assigned acceleration (avk , aωl

)
and use it to control the vehicle. Note that we also enforce
a velocity bound V = 5 ms by setting the accelerations to
zero, if the robot is already at the velocity limit.

B. Objective Function

Each of the velocity pairs in C ′ is evaluated with respect
to the objective function

F (v, ω) = α gridclearance(v, ω)

+ β polygonclearance(v, ω)

+ γ progress(v, ω). (5)

Our objective function F consists of three parts, including
two types of clearance functions. The grid clearance function

gridclearance(v, ω) =−max{grid(su (v, ω, tk)) |

k ∈ {1, ...,K}, tk = k
T

K
} (6)

captures the proximity of static obstacles that are represented
by our blurred occupancy map. It is computed by predicting
the location of the controlled agent using Eq. (2) at times
tk sampled from the interval [0, T] and evaluating the occu-
pancy grid in these points. Since we dilate the occupancy
grid, obstacles are relatively thick and a low number of
samples is sufficient. In our implementation, we use only
K = 2 samples—one in the middle of the trajectory and one
at the end point. The evaluation of the occupancy map with
the grid() function amounts to a table lookup that returns a
blurred occupancy value in the [0, 1] interval.

The polygonal clearance function polygonclearance() re-
turns the collision time tc ∈ [0, T], which indicates at what
time in the future the first collision will occur with any of the
edges of the moving polygons. If no collision occurs at all, or
the first collision occurs after the DWA time (tc > T), tc is
set to T . The details of the polygonal clearance function are
explained in Sec. III-C after the presentation of the objective
function. The collision time is then converted to a clearance
indicator tc

T ∈ [0, 1].
The progress indicator

progress(v, ω) = 1− |su (v, ω, T)− g|
argmax(vi,ωj)∈C′ |su (vi, ωj , T)− g|

(7)
computes the normalized Euclidean distance between the end
point of a trajectory and a target location g that is obtained
from the path planner. Each component of the objective
function is a normalized value in the [0, 1] range. This makes
it easy to weight them with the parameters α, β, and γ in
Eq. (5). We set α = 0.8, β = 1.0, and γ = 0.5.

Note the difference between our objective function and the
one originally suggested in [3]. We do not use the heading or
the velocity of the robot to measure progress, but simply use
the Euclidean distance to an intermediate target instead. Our
grid clearance is essentially the same as in [3], except that
we take the maximum of only two samples. The predictive
component for the polygon clearance is new.

Furthermore, in the classic version, inadmissible trajecto-
ries are discarded before being evaluated by the objective
function. We argue that it is harmful to discard inadmissible
trajectories, because cases may occur where choosing an
inadmissible trajectory is the only option. For example, if
an object suddenly appears in front of the agent that has
not been sensed before—this could be a child chasing a ball
that just rolled out onto the street—and a collision seems
unavoidable, it is still better to aim for the best inadmissible
trajectory that maximizes the time until collision and possibly
also minimizes damage by allowing more time to decelerate,
than the controller not knowing what to do at all. Instead of
the admissibility check, we differentiate between trajectories
that are in collision, i.e., tc < T , and ones that are not. We
elect the best candidate according to Eq. (5) only among
the trajectories that are not in collision. If there is no
such trajectory, then we set γ = 0 and choose the best
inadmissible trajectory with the largest clearance.

C. Dynamic Collision Checking

The polygonal clearance function polygonclearance()
used in Eq. (5) computes the time tc of a future collision
between the agent traveling along the circular arc implied
by the unicycle state su = (x, y, θ, v, ω) and a set of moving
polygons. To determine the earliest time of a collision, or
whether a collision occurs at all, an intersection has to be
computed with every edge of every polygon in the set.

Let (p, q) = (px, py, qx, qy) be a polygon edge defined by
its end points and vP = (vPx

, vPy
) the velocity of the poly-

gon P . To compute a dynamic intersection with this edge,
we first rectify the task by centering the coordinate system
on the center of the circular arc, rotating around the center
such that the edge becomes horizontal, and normalizing by
the radius of the arc. The center of the arc is given by

c =

(
x
y

)
+R

(
θ +

π

2

)(r
0

)
, (8)

where R is a rotation matrix and r = v
ω is the radius of the

arc. Let ψ = arctan
(
qy−py
qx−px

)
be the angle of the polygon

edge with respect to the x-axis. Then the rectified edge and
its velocity are

(p′, q′) =
1

r
R (−ψ) (p− c, q − c) , (9)

v′p =
1

r
R (−ψ) vp. (10)

Furthermore, we need the orbit angle φ = θ−ψ−sgn(r)π2 of
the position of the robot around the arc center c with respect
to the horizontal. This is illustrated in Figure 3. Then, the
time tc of collision between the edge and the robot is the
root of the equation

sin(φ+ ωtc)− v′Py
tc − p′y = 0. (11)

Unfortunately, we cannot solve for the root algebraically.
Instead, we split up the arc at ±π2 into y-monotonic segments
and use three iterations of the Illinois algorithm to find the
root of each segment in order. If a tc < T is found, we need

p’ q’

v
P
’

¶
c

!
robot

edge

1

Fig. 3: Dynamic collision check between the moving rectified
polygon edge (p′, q′) with velocity v′p and a circular trajectory
around the center c.

to check if p′x < cos(φ+ωtc)−v′pxtc < q′x to make sure that
the collision point is between the left and right boundaries of
the rectified edge, assuming p′x < q′x. We can abort as soon
as we find the first root. A bounding box test is effective at
quickly discarding cases that cannot possibly intersect before
the numerical method is run. In all discarded cases, and also
if tc > T , we set tc = T .

IV. HOLONOMIC MODEL

The need for a numerical method to intersect circular arcs
with moving edges is unsatisfying. Thus, we also consider a
computationally efficient model—a holonomic one [24].

A. Trajectory Sampling

Holonomic motion in a 2D plane is characterized by the
differential equation

(ẋ, ẏ, v̇x, v̇y) = (vx, vy, ax, ay) , (12)

where the state of motion is sh = (x, y, vx, vy) with (x, y)
the Cartesian coordinates in the plane and (vx, vy) the
respective velocities along the x and y axes. This system does
not have an explicit orientation, even though the direction
of the motion θ = arctan(

vy
vx
) does imply a heading. The

control parameters are the accelerations (ax, ay). This time,
we can easily integrate the equation of motion (12) and
obtain the state prediction function

sh(ax, ay, t) =

x+ vxt+

1
2axt

2

y + vyt+
1
2ayt

2

vx + axt
vy + ayt

 . (13)

The sampling of controls for the holonomic model in a DWA
fashion becomes

C = {(axi
, ayj)|i, j ∈ {0, ..., N − 1},

axi
= −A+ i

2A

N − 1
,

ayj = −A+ j
2A

N − 1
}, (14)

where A and N are the same parameters as before.

B. Objective Function

The objective function remains the same as equation (5),
except that F (ax, ay) now evaluates holonomic acceleration
inputs. The state prediction function that the gridclearance()
and progress() components use is now Eq. (13) instead of
Eq. (2), i. e., sh instead of su.

C. Dynamic Collision Checking

The most intriguing part of the holonomic model is the
easiness of the implementation of the polygonclearance()
function. Again, an intersection has to be computed for
every polygonal edge to find the earliest time of colli-
sion tc. Let (p, q) = (px, py, qx, qy) be a polygon edge
and vP = (vPx

, vPy
) the velocity of the polygon P . In the

holonomic case, we can subtract vP from the velocity of the
robot in order to regard the polygon edge as stationary and
set
(
v′x, v

′
y

)
=
(
vx − vPx , vy − vPy

)
. We then express the

equation of a collision with a line in a normal form

y(t) = ax(t) + b. (15)

and set a =
qy−py
qx−px and b = py−apx. Then, we use Eq. (13)

with (v′x, v
′
y) to expand Eq. (15) and set t = tc to obtain

y + v′ytc +
1

2
ayt

2
c = a

(
x+ v′xtc +

1

2
axt

2
c

)
+ b. (16)

Solving for tc yields the time of collision

tc =
(v′y − av′x)
(ay − aax)

±

√
(v′y − av′x)2

(ay − aax)2
− 2(y − ax− b)

(ay − aax)
.

(17)

From the two possible solutions of Eq. (17), we are interested
in the smaller positive one. If it exists and tc < T , we check
if px < x+ v′xtc +

1
2axt

2
c < qx, again assuming px < qx.

If this condition is true, we identified a collision time tc.
Otherwise—also when there is no solution—we set tc = T
and assume no collision.

D. Conversion

In order to harness the holonomic model to control a non-
holonomic vehicle, a conversion must be made. The conver-
sion from the unicycle input state su = (xu, yu, θu, vu, ωu)
to a holonomic state sh = (xh, yh, vxh

vyh) is given by
sh = (xu, yu, cos(θu) vu, sin(θu) vu). Then, sh can be used
to execute the holonomic DWA. This yields the holo-
nomic acceleration (ax, ay) that maximizes the objec-
tive function. However, it needs to be converted back
to a reasonable nonholonomic control signal (av, aω).
Since vu(t) =

√
(vxh

+ axt)2 + (vyh + ayt)2, it follows
that av = d

dtvu(t), i. e.,

av =
vxh

ax + vyhay√
v2xh

+ v2yh

. (18)

The angular acceleration aω is a little bit more tricky. Since
θu(t) = arctan(

vyh+ayt

vxh
+axt

) is the implied direction of the
holonomic motion, the instantaneous angular velocity must
be d

dtθu(t), i. e.,

ωh =
vxh

ay − vyhax
v2xh

+ v2yh
. (19)

However, since (ax, ay) is the output of the DWA and it is
not continuous, ωh is not continuous either. We obtain aω
by computing

aω =
ωh − ωu

σ
, (20)

with σ = 0.01 s, the time period of the main control loop,
and ωu, the current angular velocity of the nonholonomic
vehicle. We then bound the acceleration parameters using
the bounds A, B, and V . This way, we obtain a controller
that steers as fast as it can towards the angular velocity the
DWA suggests, but maintains continuous curvature.

V. EXPERIMENTAL RESULTS

We have performed extensive simulation experiments in
order to test our implementation of the DWA. We used two
different maps that are shown in Figure 4. The map on the
left is void of static obstacles and isolates the capability of
the controllers to deal with moving obstacles. The map on the
right is an office environment with narrow passages that are
more difficult to navigate. The accompanying video1 gives a
visual impression of these experiments.

We successively filled the maps with up to ten agents.
The agents were started in a random configuration and
commanded to drive to a goal location. Whenever an agent
reached its goal, it randomly picked a new goal and continued
driving. One agent was chosen to test four different versions
of obstacle avoidance—an arc-based DWA with predictive
collision avoidance and without, and a holonomic DWA
with predicitve avoidance and without. All other agents
were always driven by an arc-based predictive controller.
We simulated ten runs of five minutes with each type of
controller and each number of agents in the map, i. e.,
testing one controller amounted to 500 minutes simulation
time. Whenever we switched the type of controller, we
reseeded the random number generator with the same seed
so that each controller would be faced with the same initial
configuration and with the same sequence of goal locations.
We recorded the number of times the observed agent collided
with something, the number of targets it reached, and the
average runtime of the DWA controllers. We computed the
average and the standard deviation of these figures over the
ten runs each controller was evaluated for.

The results are shown in Figure 5. The predictive and
static versions of the holonomic controllers are paired in blue
color, the arc-based controllers in orange and red color. In
the first row, we can observe that in both maps the predictive
controllers reach more goals than their static counter parts
and the difference is increasing with the number of agents in

1Video: https://youtu.be/Y14CAtCNBDE

Fig. 4: The maps that were used in our experiments. Left: Void
map. Right: Office map.

 110

 115

 120

 125

 130

 135

 140

 145

 150

 1 2 3 4 5 6 7 8 9 10

G
oa

ls

#Agents

Void Goals

Arc dynamic
Arc static
Holonomic dynamic
Holonomic static

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10

G
oa

ls

#Agents

Office Goals

Arc dynamic
Arc static
Holonomic dynamic
Holonomic static

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10

C
ol

lis
io

ns

#Agents

Void Collisions

Arc dynamic dynamic
Arc dynamic static
Holonomic dynamic
Holonomic static

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10

C
ol

lis
io

ns

#Agents

Office Collisions

Arc dynamic
Arc static
Holonomic dynamic
Holonomic static

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 1 2 3 4 5 6 7 8 9 10

R
un

tim
e

[m
s]

#Agents

Void Computation Times

Arc dynamic
Arc static
Holonomic dynamic
Holonomic static

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 1 2 3 4 5 6 7 8 9 10

R
un

tim
e

[m
s]

#Agents

Office Computation Times

Arc dynamic
Arc static
Holonomic dynamic
Holonomic static

Fig. 5: Data recorded during our experiments (mean and standard deviation). The left column shows the results obtained in the void map,
the right column the results of the office map (see maps in Fig. 4). Most notably, the number of collisions is drastically reduced when
using predictive collision avoidance considering the motion of dynamic obstacles.

the map. The arc-based controllers appear to perform better
than the holonomic ones in terms of reaching goals.

In the second row, we can see that the predictive versions
dramatically reduce the number of collisions. The remaining
collisions typically occur in situations where agents approach
each other so closely that they enter each others’ inflation
zones where the DWA is not effective. We switch to a force
field method in this case that attempts to push the vehicles
apart, but it also induces turning that may result in light
touches between the agents. In terms of collision avoidance,
the holonomic controller seems to perform a bit better. All
four controllers are able to navigate the office map without
a single collision as long as there are no other agents.

The computation times shown in the third row are in the
order of tens of microseconds. The static runtimes remain
constant while the runtimes of the dynamic controllers scale
linearly with the number of moving obstacles present. Most
interestingly, despite the numeric method that was needed to
compute intersection with the arcs, arc-based collisions can
be computed just as fast as holonomic ones. We attribute this
phenomenon to the rectification step that rotates the polygon

edges into a horizontal position. This way, the bounding
box checks are more effective at discarding non-colliding
cases since they only need to check a box against a line
as opposed to the holonomic case, where the bounding box
of the trajectory is checked against the bounding box of a
slanted line. We can expect to still be in the millisecond
range when extrapolating to 1000 obstacles, which would
undoubtedly saturate the sensory range of a robot.

VI. CONCLUSIONS

We have introduced a new version of predictive a DWA
controller that explicitly models moving objects as polygons
with velocities and computes future collisions. In our exper-
iments, we demonstrated that the predictive nature of our
DWA implementation is highly effective at reducing colli-
sions and improves the all around navigational performance
at very little computational cost. We compared two distinct
types of motion models—circular arcs and a holonomic
model—and found no significant difference to report. In
future work, we intend to adopt a precise nonholonomic
model [22] into our framework and to evaluate our system
in real-world scenarios.

REFERENCES

[1] E. Marder-Eppstein, E. Berger, T. Foote, B.P. Gerkey, and K. Konolige.
The office marathon: Robust navigation in an indoor office environ-
ment. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2010.

[2] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng. ROS: an open-source robot
operating system. In ICRA Workshop on Open Source Robotics, 2009.

[3] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to
collision avoidance. IEEE Robotics Automation Magazine, Mar 1997.

[4] Oliver Brock and Oussama Khatib. High-speed navigation using the
global dynamic window approach. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), pages 341–346, 1999.

[5] P. Ögren and N. E. Leonard. A convergent dynamic window approach
to obstacle avoidance. IEEE Transactions on Robotics, 21(2):188–195,
April 2005.

[6] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. In Proceedings. 1985 IEEE International Conference on
Robotics and Automation, volume 2, pages 500–505, March 1985.

[7] E. Rimon and D. E. Koditschek. Exact robot navigation using artificial
potential functions. IEEE Transactions on Robotics and Automation,
8(5):501–518, Oct 1992.

[8] Maxim Likhachev and Dave Ferguson. Planning long dynamically fea-
sible maneuvers for autonomous vehicles. The International Journal
of Robotics Research, 28(8):933–945, 2009.

[9] Sikang Liu, Nikolay Atanasov, Kartik Mohta, and Vijay Kumar.
Search-based motion planning for quadrotors using linear quadratic
minimum time control. CoRR, abs/1709.05401, 2017.

[10] B. Lau, C. Sprunk, and W. Burgard. Kinodynamic motion planning
for mobile robots using splines. In Proc. of the IEEE/RSJ Int. Conf.
on Intelligent Robots & Systems (IROS), 2009.

[11] Vladyslav C. Usenko, Lukas von Stumberg, Andrej Pangercic, and
Daniel Cremers. Real-time trajectory replanning for mavs using
uniform b-splines and 3d circular buffer. CoRR, abs/1703.01416, 2017.

[12] Sterling McLeod and Jing Xiao. Real-time adaptive non-holonomic
motion planning in unforeseen dynamic environments. In IROS, pages
4692–4699. IEEE, 2016.

[23] Alonzo Kelly and Bryan Nagy. Reactive nonholonomic trajectory
generation via parametric optimal control. I. J. Robotics Res., 22(7-
8):583–602, 2003.

[13] C. Rösmann, F. Hoffmann, and T. Bertram. Kinodynamic trajectory
optimization and control for car-like robots. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots & Systems (IROS), pages 5681–5686,
Sept 2017.

[14] Mark Pfeiffer, Michael Schaeuble, Juan I. Nieto, Roland Siegwart, and
Cesar Cadena. From perception to decision: A data-driven approach
to end-to-end motion planning for autonomous ground robots. CoRR,
abs/1609.07910, 2016.

[15] Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P. How.
Socially aware motion planning with deep reinforcement learning. In
IROS, pages 1343–1350. IEEE, 2017.

[16] Michael Everett, Yu Fan Chen, and Jonathan P. How. Motion planning
among dynamic, decision-making agents with deep reinforcement
learning. CoRR, abs/1805.01956, 2018.

[17] Henrik Kretzschmar, Markus Spies, Christoph Sprunk, and Wolfram
Burgard. Socially compliant mobile robot navigation via inverse
reinforcement learning. I. J. Robotics Res., 35(11):1289–1307, 2016.

[18] Jur van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity
obstacles for real-time multi-agent navigation. pages 1928–1935, 05
2008.

[19] Jur van den Berg, Stephen J. Guy, Ming Lin, and Dinesh Manocha.
Reciprocal n-body collision avoidance. In Cédric Pradalier, Roland
Siegwart, and Gerhard Hirzinger, editors, Robotics Research, pages
3–19, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[20] Jamie Snape, Jur van den Berg, Stephen J. Guy, and Dinesh
Manocha. Smooth and collision-free navigation for multiple robots
under differential-drive constraints. In IROS, pages 4584–4589. IEEE,
2010.

[21] M. Missura, D. D. Lee, and M. Bennewitz. Minimal construct:
Efficient shortest path finding for mobile robots in polygonal maps.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots & Systems
(IROS), 2018 (to appear).

[22] M. Missura and S. Behnke. Efficient kinodynamic trajectory genera-
tion for wheeled robots. In Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 2011.

[24] M. Missura, D. D. Lee, O. von Stryk, , and M. Bennewitz. The
synchronized holonomic model: A framework for efficient motion
generation. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots

& Systems (IROS), 2017).

