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Abstract— To autonomously carry out complex mobile ma-
nipulation tasks, a robot control system has to integrate several
components for perception, world modeling, action planning
and replanning, navigation, and manipulation. In this paper, we
present a modular framework that is based on the Temporal
Fast Downward Planner and supports external modules to
control the robot. This allows to tightly integrate individual
sub-systems with the high-level symbolic planner and enables a
humanoid robot to solve challenging mobile manipulation tasks.
In the work presented here, we address mobile manipulation
with humanoids in cluttered environments, particularly the task
of collecting objects and delivering them to designated places
in a home-like environment while clearing obstacles out of the
way. We implemented our system for a Nao humanoid tidying
up a room, i.e., the robot has to collect items scattered on the
floor, move obstacles out of its way, and deliver the objects
to designated target locations. Despite the limited sensing and
motion capabilities of the low-cost platform, the experiments
show that our approach results in reliable task execution by
applying monitoring actions to verify object and robot states.

I. INTRODUCTION

Robotic assistants should be able to autonomously solve
and execute their tasks. We see this trend also in the current
focus of the DARPA Robotics Challenge, to encourage for
more autonomy instead of pure tele-operation as in the
pre-final trials. To enable full autonomy, a robot needs to
learn and maintain a model of all relevant aspects of the
environment, to reason about its goals and its own actions
as well as their effects. Furthermore, it must robustly execute
the planned actions in the real world.

In this paper, we address autonomous mobile manipulation
with humanoids in cluttered environments. In particular, we
consider the task of collecting objects and delivering them to
designated places in a home-like environment cluttered with
obstacles. We present a modular system that tightly integrates
perception, world modeling, navigation, manipulation, and
action planning and replanning with a high-level symbolic
planner to solve this task.

In the application used to evaluate our approach, the robot
has to collect toys that are scattered on the floor, move
obstacles out of its way, and navigate to target locations,
as illustrated in Fig. 1. Objects that need to be tidied up
are picked up and carried by the robot. Other small objects
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Fig. 1. Left: Example tidy-up task to be solved by our integrated system.
All larger objects have to be picked up and placed into their corresponding
container. To complete this task, the robot has to reason about a sequence
of actions such as picking up an object, walking to a target location, and
moving an object out of the way. Right: The final state with all objects tidied
up, except for the green ball that was considered as clutter and moved aside
by the robot with its foot.

blocking the way are considered as clutter and will be
locally moved aside. Our approach is implemented on a real
humanoid that autonomously acts in the environment. The
robot uses onboard sensing to perceive the environment and
to continually monitor its action execution.

Note that simpler pick and place scenarios in open spaces
can potentially be solved with a scripted system or using a
state machine that follows the greedy heuristic of always
picking up the closest object and cleaning it up. In this
paper, however, we focus on a more sophisticated approach
that plans actions on a symbolic level and also carries out
observation actions to verify the state of the world during ma-
nipulation. More complex planning is needed, for example,
in cluttered environments where spatial constraints between
nearby objects need to be considered. Such scenarios require
the robot to plan the complete task on a symbolic level,
e.g., to move aside a blocking object and continue cleaning
it up at a later stage. To this end, we build upon and
extend our TFD/M planning framework [1] towards mobile
manipulation with humanoids. Since the robot has to deal
with uncertainty about the current world state and failures in
action execution, our system replans the actions if necessary
as detected by execution monitoring to verify object and
robot states.

In experiments with a Nao humanoid, we demonstrate
the capabilities of our planning approach and its reliability
despite the motion and sensing limitations of this low-cost
platform. Using our approach, the robot is able to tidy
up a cluttered environment while avoiding obstacles and
moving blocking objects out of its way. In our framework,



we integrate perception, world modeling, action planning and
replanning, navigation, and mobile manipulation of multiple
objects to realize truly autonomous behavior for humanoid
robots.

II. RELATED WORK

Stilman and Kuffner introduced the concept of navigation
amongst movable objects (NAMO) [2]. Their method allows
a robot to manipulate its surroundings in order to reach the
goal. The NAMO approach decomposes the configuration
space and the underlying structure of the navigation problem
into disjunct regions of accessibility. The planner finally
searches for individual obstacle motions that connect two
disjoint regions and allow the robot the transition from
one region to the other. To provide fast results suitable
for navigation, the NAMO planner utilizes the connectivity
structure of these regions in a reduced problem domain. The
specialized domain of the planner prevents an application
to solve general tasks, e.g., cleaning up all objects. Stilman
et al. later employed NAMO on the humanoid robot HRP-
2 to plan and execute a path through an environment with
movable chairs and tables [3]. The world state here was com-
pletely observable from an external motion capture system.
NAMO was furthermore extended towards the exploration of
unknown space [4] and decision-theoretic planning under un-
certainty by means of hierarchical reinforcement learning [5].

Levihn et al. recently introduced environment aware plan-
ning, in which the robot may use parts of the environment to
reach navigation goals that are otherwise not reachable [6].
In this approach, a path planner is allowed to violate certain
constraints, such as a too high step height for climbing.
The violation is then locally resolved by modifying the
environment at the corresponding location, e.g., by placing
a small step that can be climbed in front. Similar to NAMO,
this heuristic is suitable for a reduced problem domain where
a violation can be resolved by moving a single object.

More general and domain-independent approaches com-
bine task planning at a symbolic level with geometric rea-
soning. Wolfe et al. considered pick-and-place tasks where
task and kinematic planning are combined [7]. The authors
proposed a hierarchical task network to model and take into
account lower-level synergies and conflicts. Kaelbling and
Lozano-Pérez plan for mobile manipulation in the belief
space to account for uncertainty about the current world state
and about the outcome of actions [8]. The authors use a
joint Gaussian distribution to represent the object and robot
poses and explicitly consider perception actions to reduce
uncertainty. Their approach is able to generate intermediate
poses for objects during planning similar to ours. Gaschler
et al. also consider geometric entities during planning by
modeling the world using 3d volumes [9].

Dornhege et al. discussed integrated task and motion plan-
ning for the PR2 robot [10], [11], [12]. Their approach com-
bines classical symbolic planning with geometric reasoning
in the TFD/M planner with semantic attachments [1]. To deal
with uncertainty about the current world state and failures in
action execution, Dornhege et al. apply execution monitoring

Fig. 2. Overview of the TFD/M planner in the continual planning loop
with its modules and plugins.

of actions and replanning if necessary. In the work presented
in this paper, we use the TFD/M planning framework and
extend it for pick-and-place tasks with humanoid robots. The
focus here is on navigation for mobile manipulation in a
domain where various objects have to be tidied up and where
the robot has to find its way through clutter.

III. TASK PLANNING

At the core of our system lies the symbolic planner
Temporal Fast Downward/Modules (TFD/M) with semantic
attachments [1]. The planner with the modules and plugins
used in this work is illustrated in Fig. 2. The planning task,
in our case cleaning up all known objects, is specified in
the PDDL format [13]. Planner plugins for state estimation
continuously update the robot state from the localization
estimate and the state of objects with a combined RGB and
depth perception. Modules are external procedures called
by the planner for reasoning at the geometric level, e.g.,
to determine navigation costs between different locations in
the environment. Once a symbolic plan is found, the plan is
executed with the execution plugins while being continuously
monitored by the planner. Whenever the current plan is no
longer valid, e.g., because the robot dropped a carried object
or new objects that influence successful task execution are
detected, the TFD/M planner replans.

A. Planning Using TFD/M

As described above, we employ continual planning, where
the task planner is embedded in a state estimation, moni-
toring, planning, and execution loop to be able to react to
unforeseen events in a real-world setting. After each executed
action, our approach estimates the current world state and
checks whether the remaining actions of the plan can still be
executed, i.e., their preconditions are fulfilled. If this is not
the case, replanning is triggered to adapt to the new situation.
TFD/M is an anytime planner, i.e., it computes a sub-optimal
plan quickly and improves it until a timeout is reached or
the optimal plan is found.

In addition to the capabilities of a classical planning sys-
tem, our TFD/M planner features so-called semantic attach-
ments [1]. To capture the geometric aspects of robotic tasks,
the semantic attachments specify conditions and effects that
to the planner appear to be symbolic, but are implemented
by an external procedure. For example, the cost value of
a walk action is determined by calling the path planner
from Section IV, which returns infinite costs in case the



path between start and goal is blocked (for efficient reuse,
such computations are cached [11]). In this way, plans are
guaranteed to be sound on the symbolic and geometric level.
Additionally, our planner generates different alternatives for
certain actions during planning, e.g., an intermediate location
to put down an object does not need to be specified in
advance (see Sec. VII).

B. Planning Domain

The planning domain defines the symbolic actions avail-
able to the planner. Each action specifies its cost, under what
conditions it can be applied, and what its effects are. In our
application, we use the following actions:
• The action detect objects is initially executed at the robot’s

starting pose to fill the planner with potential goals. The
system can also plan robot actions to reach pre-defined
scan locations from which detect objects is executed to
provide a better viewpoint on the environment. In addition,
the action is executed after a monitoring failure (e.g., after
losing a carried object) to account for possible changes in
the object positions. After execution, the robot updates the
poses of known objects and adds newly discovered ones to
the planning task. Whenever this action changes the world
state, e.g., by adding a new object, replanning is triggered.

• The action walk to target can be executed given there
exists a collision-free path as computed by the navigation
planner (see Sec. IV).

• To acquire objects, the action pick up object is performed
with one or two hands, depending on the object type. This
action requires the corresponding hand(s) to be empty and
the robot to be close to the manipulated object.

• When holding an object, the robot can place it into
a container or at an intermediate location (determined
according to Section VII) using the action place object.

• Small obstacles blocking the robot’s path (“clutter”) can
be moved out of the way with the feet if the robot is close
enough using the move obstacle action.
The goal for the tidy-up task is defined as the state in

which each object to be tidied up is put in its corresponding
container. The costs of each action correspond to the esti-
mated time of executing the action and were experimentally
determined.

IV. AUTONOMOUS NAVIGATION

To estimate the 3D pose of the robot in the environment,
we employ a particle filter using kinematic odometry of the
robot’s walking engine as well as data from the onboard
depth camera and IMU sensor [14]. We here use a 3D map
of static obstacles, which is known beforehand. Based on
the estimated pose, the robot then continuously integrates 3D
range data into a second representation that contains all other
detected objects in addition to the static obstacles [15]. Our
system uses this continuously updated world representation
for obstacle avoidance and path planning.

For navigation planning, we employ the ARA* plan-
ner [16] to plan a 2D path in a 2D projection of the
dynamically updated 3D map, with the vertical range of

Fig. 3. Whole-body motion for picking up a bucket by grasping its
handle (left) and for picking up a cube with both arms (right).

the 2D projection corresponding to the robot’s operation
height. In addition to path planning for reaching the next
target location during execution, the task planner uses ARA*
in the path cost module to obtain the costs between two
locations in the world state. The path costs are hereby
scaled corresponding to the execution time of the robot when
following the 2D path.

V. OBJECT DETECTION

To detect objects, the robot uses RGB-D data acquired
with its onboard sensors. In the point cloud, our approach
first performs a ground plane segmentation and then clusters
the remaining points into object hypotheses. To detect and
classify the actual object belonging to each cluster, we
employ a Haar features-based cascade classifier on the RGB
image. From the co-registered depth image, we then obtain
the actual location of the object in the 3D point cloud.
Note that a more general object detection method can easily
replace our current technique.

By using the robot’s pose estimate and the kinematic
estimate of its joint configuration, we finally obtain the global
pose of each detected object, which is then added to the
planner world state. Any remaining cluster that was not
classified as one of the objects to clean up is either a static
obstacle or clutter if it is sufficiently small.

VI. MANIPULATION AND GRASP VERIFICATION

Currently, we rely on a set of pre-defined whole-body
motion primitives to manipulate objects (see Fig. 3 for
examples). These primitives consist of whole-body joint
trajectories corresponding to each object type, which we
demonstrated to the robot with kinesthetic teaching. While
the motions are executed open loop and thus need accurate
positioning in front of the object, they require no expensive
whole-body planning and result in reliably picking up objects
while keeping balance.

We assign four possible manipulation locations to objects
regarded as clutter, from which the robot can locally move
the object aside with its feet. Similarly, for each object to
be cleaned up, we consider four possible pickup locations.
Larger objects such as cubes and balls have to be grasped
with both arms, while a bucket for example can be grasped
at its handle with the left or right arm, depending on which
location is better accessible with the path planner. To pick up
an object, the robot first approaches the pickup location based
on its localization estimate. Once it is sufficiently close, the



Fig. 4. A clean-up scenario in which the red cubes have to be transported
into the container at the top right. The object configuration does not allow
the robot to clean up one object after another (left). Instead, it has to move
a blocking cube out of the way first (right). The symbolic planner samples
and grounds intermediate locations such as the one in the corner as needed.

robot switches to a local servoing mode for a higher accuracy.
Here, it relies on a close-range RGB perception to detect the
object in its local coordinate frame and repositions until it
reaches the object’s pickup location.

After executing the corresponding grasping action, the
robot actively verifies the success of the action. To this end,
we employ an evaluation of the measured arm joint angles or
a vision-based verification depending on the type of object.
Occasionally, the robot may also lose a carried object while
walking. When a loss of a carried object is detected, the robot
stops the current navigation plan, walks back a few steps and
performs an observation action to re-detect the object. Then,
the world state of the planner is updated and our system
replans to pick up the lost object again.

VII. FORESIGHTED OBJECT PLACEMENT

In some planning instances, objects may block the path
to a pickup or delivery location, so that the robot cannot
clean up the objects one by one. The robot then needs to
temporarily move an object away without impeding future
navigation plans. Unlike clutter that is just moved aside,
graspable objects need to be cleaned up at a later stage.
Such a scenario is depicted in Fig. 4. For efficiency, however,
the planner cannot consider all possible locations in the
environment for temporarily storing objects as this would
exponentially increase the planning state. We instead sample
object locations close to the robot that are not impeding paths
through the environment. For this purpose, the robot learns
a placement cost map for the environment beforehand by
applying its path planner between sampled start and goal
poses and counting how often each part of the environment
is traversed by paths. Fig. 5 shows the object placement costs
for an example environment. Areas close to outer walls and
in corners receive low costs, while narrow passages and other
parts that are regularly traversed receive high costs.

The symbolic planner regularly samples intermediate lo-
cations, hereby preferring low placement costs. A grounding
process inserts a fixed number of these locations as so-called
symbolic objects into the planning state if they are collision-
free with respect to other objects in the environment. In each
sampling iteration, we increase the maximum distance of
sampled locations from the robot to ensure a probabilistic

Fig. 5. Object placement costs from motion planning between sampled
start and end points in the environment of Fig. 4 (darker: higher costs).

completeness of the planner.

VIII. EXPERIMENTS

For the experiments presented in this paper, we use a Nao
humanoid that is equipped with a head-mounted Asus Xtion
Pro Live RGB-D camera for 3D perception. The camera is
mounted so that its optical axis faces the floor in a 30◦

angle while walking. We found this the best compromise
between observing the near range for obstacle detection and
looking ahead for localization. Except for the acquisition
of sensor data, we performed all further processing and
planning offboard on a standard PC. For the experiments,
we used three different object types, for which we trained
Haar classifiers. The number of objects of a specific type in
the environment is not known by the robot in advance.

We used the standard walking controller of the Nao to
follow the planned path through the environment. To make
the walking gait more robust and avoid a fall, we adjusted
the gait configuration (COM height, step frequency, and step
width) depending on which object the robot currently carries.
In addition, the robot needs to tilt back its head with the
camera to counter the weight of a bimanually carried object.

In our experiments, we use the anytime TFD/M planner
to find the first solution, which is potentially sub-optimal
with respect to the execution time, and continue searching
for another 15% of the elapsed computation time (at least
10 s) to improve the solution.

A. Picking Up Objects

We first evaluated the success rate of picking up objects
using the whole-body motion primitives. To this end, we
placed three different objects at different positions relative
to the robot. In our example scenario, we used a small
bucket that has to be grasped at its handle, a soft ball, and
a large cube made of foam. Fig. 6 shows the success rate
of picking up the three objects with the motions illustrated
in Fig. 3. Despite the open-loop motions, the robot was able
to successfully pick up all objects within a margin of a few
centimeters. In all cases, the verification of the grasp, either
by monitoring the arm joint angles or by visually detecting
the object in the hand as in the case of the bucket, returned
the correct state of the object. Note that during execution, the
high-level planner invokes relocalization and repositioning of
the robot in case of a failed pickup attempt.



(a) Bucket (b) Ball (c) Cube

Fig. 6. Success rate for picking up a bucket, a ball, and a cube at different
positions relative to the robot (N=5 tries for each location). The numbers
indicate the success rate of the object placed at the corresponding location
while the robot remains at the same location, as seen from the top.

Fig. 7. Nao humanoid in a simulated environment. The clean up task
is complete when the robot has placed all of the six objects into their
corresponding container (Scenario 1). Optional movable obstacle locations
are marked with a * and are used in Scenario 2.

B. Planning Time

Next, we performed simulation experiments to evaluate the
planning performance. Here, the robot navigates and executes
all actions open-loop and has perfect world knowledge. The
simulation environment is depicted in Fig. 7 and has a size
of 2.5 m × 2.5 m. In Scenario 1, the robot had to pick up
six objects that are either cubes (red) or buckets (blue) and
transport them to the corresponding container. Some of the
objects prevented the action of picking up or putting down
another one. For example, Bucket 5 blocked picking up
Cube 3 and Cube 2 blocked access to the container for
buckets (blue). The planner thus had to find a valid order
of the actions to execute by employing the path planning
module to check for accessibility. Note that, in general, each
object can be picked up from four different locations next to
it.

Table I shows the planning and execution times in the sim-

TABLE I
PLANNING AND EXECUTION TIME IN THE SIMULATION ENVIRONMENT

Scenario Num. objects Planning time [s] Execution time [s]

Scenario 1 6 265 935.71
5 155 783.20
4 37 622.57
3 18 421.23
2 4 290.53
1 1 214.02

Scenario 2 3 12 343.51

Scenario 3 3 71 456.52

ulation environment for different numbers of objects (Sce-
nario 1). A planning run with N objects hereby contains
the objects numbered 1 − N from Fig. 7 in addition to the
two containers. The planning time scales exponentially with
the number of objects, since for every additional object the
planner can rearrange the order in which objects are picked
up and transported.

In a second scenario in the same environment, the robot
had to clean up only Cylinder 1 (all other objects were
removed) but with two additional movable obstacles con-
sidered as clutter (marked by *) that blocked the path.
Such clutter has to be moved aside to allow for traversal,
which corresponds to a NAMO setting [3]. Our planning
system was also able to successfully solve this task, with the
planning and execution times shown in Table I as Scenario 2.

In Scenario 3 depicted in Fig. 4, three cubes had to be
cleaned up into the container at the top right. However, the
path to the container was blocked so that the robot could not
clean up the objects one by one. Instead, it had to generate
intermediate locations during planning using the foresighted
object placement approach described in Sec. VII. The cost
map from which new locations were generated is displayed
in Fig. 5. Note that the planning time for this task was higher
than for three objects in Scenario 1 because of the additional
placements to be considered.

C. Integrated System

In a final experiment, we evaluated our approach in a real
environment with a Nao humanoid. Fig. 8 shows snapshots
from a video accompanying this paper. In the experiment, the
Nao successfully cleaned up the environment and placed all
objects into their containers. In this scenario, the robot could
not observe the complete scene from its initial position. To
complete its world knowledge before cleaning up all objects,
it had to execute the detect objects action after delivering
the cube. The initial planning time in this scenario was 22
seconds, with an additional planning time of 56 seconds after
the second object detection. The complete execution of the
experiment took 530 seconds.

IX. CONCLUSION

In this paper, we presented a modular approach that
enables humanoid robots to solve complex mobile manip-
ulation tasks autonomously. The core of the system consists
of a high-level planner that tightly integrates perception,
world modeling, action planning, navigation, and mobile
manipulation as well as a monitoring component that verifies
object and robot states for successful task execution. We
build upon the Temporal Fast Downward Planner (TFD/M)
for symbolic planning and extend it for pick-and-place tasks
including navigation with humanoid robots.

We illustrated the performance of our system in exper-
iments with a Nao humanoid cleaning up cluttered scenes
in home-like environments. The robot first estimates the
locations of the objects to be cleaned up using its on-
board sensors. Then it plans an action sequence to pick
up and deliver all objects to their target location while



Fig. 8. A Nao humanoid cleans up a cluttered environment using our approach. The robot first has to move the small ball aside, and then pick up the red
cube. After placing it into a container, the robot can clean up the remainder of the scene. A video of this sequence accompanies the paper submission.

moving clutter out of its way and avoiding collisions with
static items. By continually monitoring the outcome of
planned actions, our approach leads to reliable execution
of the planned actions. The planning time of the symbolic
planner scales exponentially with the number of objects.
Specialized heuristics could speed up solving the clean-up
task considered here. However, with the employed general
symbolic planner, we can easily solve other tasks such as
delivery by adapting the planning domain. Our system is
highly modular, which means that individual components
can be interchanged, e.g., different techniques for object
perception, grasping, or motion planning can be employed.
Core components of our approach are available open source
at http://wiki.ros.org/humanoid_navigation
and http://wiki.ros.org/symbolic_planning.

In future work, we plan to extend the abilities of the robot
towards more sophisticated object recognition [17], grasping
unknown objects [18], and whole-body motion planning for
object manipulation [19].
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planning in belief space,” Int. Journal of Robotics Research (IJRR),
vol. 32, no. 9-10, pp. 1194–1227, 2013.

[9] A. Gaschler, R. P. A. Petrick, M. Giuliani, M. Rickert, and A. Knoll,
“KVP: A knowledge of volumes approach to robot task planning,” in
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2013, pp. 202–208.

[10] C. Dornhege and A. Hertle, “Integrated symbolic planning in the
tidyup-robot project,” in AAAI Spring Symposium - Designing Intelli-
gent Robots: Reintegrating AI II, 2013.

[11] C. Dornhege, A. Hertle, and B. Nebel, “Lazy evaluation and subsump-
tion caching for search-based integrated task and motion planning,” in
Proceedings of the IROS Workshop on AI-Based Robotics, 2013.

[12] B. Nebel, C. Dornhege, and A. Hertle, “How much does a household
robot need to know in order to tidy up your home?” in AAAI Workshop
on Intelligent Robotic Systems, 2013.

[13] M. Fox and D. Long, “PDDL2.1: An extension to PDDL for ex-
pressing temporal planning domains,” Journal of AI Research (JAIR),
vol. 20, pp. 61–124, 2003.

[14] A. Hornung, S. Oßwald, D. Maier, and M. Bennewitz, “Monte
Carlo localization for humanoid robot navigation in complex indoor
environments,” International Journal of Humanoid Robotics, vol. 11,
no. 2, 2014.

[15] D. Maier, A. Hornung, and M. Bennewitz, “Real-time navigation in 3D
environments based on depth camera data,” in Proc. of the IEEE-RAS
Int. Conf. on Humanoid Robots (Humanoids), 2012.

[16] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with
provable bounds on sub-optimality,” in Proc. of the Conf. on Neural
Information Processing Systems (NIPS), 2004.

[17] W. Wohlkinger, A. A. Buchaca, R. Rusu, and M. Vincze, “3dnet:
Large-scale object class recognition from cad models,” in Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA), 2012.

[18] J. Stückler, R. Steffens, D. Holz, and S. Behnke, “Efficient 3d object
perception and grasp planning for mobile manipulation in domestic
environments,” Robotics and Autonomous Systems, vol. 61, no. 10,
pp. 1106 – 1115, 2013.

[19] F. Burget, A. Hornung, and M. Bennewitz, “Whole-body motion
planning for manipulation of articulated objects,” in Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2013.


