
Search-Based Footstep Planning

Armin Hornung Daniel Maier Maren Bennewitz

Abstract— Efficient footstep planning for humanoid navi-
gation through cluttered environments is still a challenging
problem. Often, obstacles create local minima in the search
space, forcing heuristic planners such as A* to expand large
areas. Furthermore, planning longer footstep paths often takes
a long time to compute. In this work, we introduce and discuss
several solutions to these problems. For navigation, finding
the optimal path initially is often not needed as it can be
improved while walking. Thus, anytime search-based planning
based on the anytime repairing A* or randomized A* search
provides promising functionality. It allows to obtain efficient
paths with provable suboptimality within short planning times.
Opposed to completely randomized methods, anytime search-
based planners generate paths that are goal-directed and
guaranteed to be no more than a certain factor longer than
the optimal solution. By adding new stepping capabilities and
accounting for the whole body of the robot in the collision check,
we extend the footstep planning approach to 3D. This enables
a humanoid to step over clutter and climb onto obstacles. We
thoroughly evaluated the performance of search-based planning
in cluttered environments and for longer paths. We furthermore
provide solutions to efficiently plan long trajectories using an
adaptive level-of-detail planning approach.

I. INTRODUCTION

Compared to wheeled robots, the greater flexibility of
humanoid robots allows for unique capabilities such as
climbing stairs and stepping over or onto objects instead
of bypassing them. However, exploiting these capabilities
during path planning is far more complex because many
degrees of freedom have to be controlled. Planning whole
body motions for navigation in the real world is com-
putationally not feasible yet [1], [2]. A common solution
is to use predefined motions to walk on a sequence of
footstep locations, which reduces the problem to planning
a sequence of collision-free footsteps. The search in the
space of footsteps is hereby carried out either using A*-based
methods including dynamic variants (e.g., [3], [4], [5]) or
randomized methods [6]. While A* will find the optimal path
for a given footstep parameterization and state discretization,
its planning performance highly depends on the quality of
the heuristic function that guides the search. Randomized
methods find results fast but don’t have any guarantees on
the solution quality of the final path, which may be far from
optimal. Furthermore, they often depend on smoothing the
final path in a post-processing step [1].

In this paper, we introduce and compare several search-
based footstep planning approaches. In case obstacles pose
local minima in the search space, anytime planners can

All authors are with the Humanoid Robots Lab, University of Freiburg,
Germany. This work has been supported by the German Research Foun-
dation (DFG) under contract number SFB/TR-8 and within the Research
Training Group 1103.

Fig. 1. Footstep planning enables a biped robot to traverse even difficult and
three-dimensional terrain. Search-based planning hereby results in efficient
and goal-directed plans.

efficiently create sub-optimal solutions with guarantees on
the solution quality. While it is desired to fully plan the
path from start to goal to decide on its feasibility, it is
often not necessary to initially find the optimal path since it
can be further improved while the robot navigates. We first
describe Anytime Repairing A* (ARA*, [7], [8]) for footstep
planning and evaluate various heuristics for it. ARA* runs
a series of weighted A* (wA*) searches, thereby efficiently
re-using previous information. wA* inflates the heuristic by
a factor w. As a second planner, which depends less on the
heuristic function, we propose to use R* [8], [9], an A*
search variant that combines wA* in a local deterministic
search with a randomized component, thereby trying to speed
up the search. In contrast to purely randomized approaches
such as rapidly-exploring random trees, R* provides proba-
bilistic guarantees on the sub-optimality of the solution.

By adding new stepping capabilities and accounting for
the actual robot shape in the collision check, footsteps can
be planned not only in planar 2D environments but also in
3D. This enables a humanoid to step over clutter and climb
onto obstacles.

When planning long distances for navigation, the robot
may encounter large open spaces where no obstacles are
present. In these areas, a 2D plan is often sufficient and
more efficient to plan than footsteps. To this end, we
propose adaptive-level-of-detail planning [10] to efficiently
combine coarse global path planning with detailed motion
planning in areas requiring complex navigation capabilities.
The advantages of this approach are two-fold. First, efficient
paths can be found since the difficult regions can be passed
instead of choosing detours around them, as a strictly two-
dimensional planner would do. Second, the computational
burden of globally planning detailed motions is seriously
reduced.



We present our extensions to search-based footstep plan-
ning and provide a comprehensive comparison of the plan-
ners to existing approaches. We thoroughly discuss the
performance for different situations and heuristic functions.
As the experiments demonstrate, we are able to plan even
long footstep paths in short planning times. Due to search-
based planning, the paths are directed towards the goal and
have provable suboptimality bounds.

II. RELATED WORK

In the last few years, several approaches to planning
paths for humanoids have been presented. First approaches
computed a local footstep path to follow a globally planned
2D path [11], [12]. The drawback here is that the globally
computed 2D path may be rather inefficient since it does not
consider actions to step over obstacles.

Gutmann et al. [13] and Candido et al. [14] use different
motion primitives according to the type of terrain/passage
and locally plan paths for regions based on the corresponding
motion primitive. These approaches consider various motion
behaviors but also do not adapt footstep locations to traverse
objects, which may lead to sub-optimal behavior.

Chestnutt et al. [4], [5] were the first who proposed to plan
footstep paths amongst planar obstacles using A* search.
With a set of possible footstep actions, their humanoid was
able to traverse obstacles by stepping over them. Garimort
et al. [3] presented an extension of this approach and
presented dynamic replanning of footstep paths to be able
to efficiently replan paths, thereby reusing information from
previous searches.

Perrin et al. [6] and Baudouin et al. [15] also investigated
footstep planning and evolved it further to account for the
3D shape of the humanoid and the obstacles. They perform
collision checks for the legs of the robot by precomputing
swept volume approximations of the leg trajectories. These
approaches use rapidly-exploring random trees (RRTs) to
plan motions for humanoid.

Hauser et al. [1] apply probabilistic roadmaps (PRMs) to
generate movements for humanoids, including stepping over
actions or highly complex and computationally expensive
whole-body motions. The drawback of all these randomized
methods is that no bounds on the quality of the found
solution can be given as it is the case for A*-based planning
methods. To this end, RRT* provides probabilistic conver-
gence to an optimal solution and was recently extended for
anytime motion planning [16], albeit only for a wheeled
vehicle so far.

Vernaza et al. [17] presented search-based planning for
a quadruped robot. The authors compute global plans in
a stance graph with R*. Compared to humanoid footstep
planning, their quadruped only has point feet, and planning
is performed in a relatively small area of rough terrain.

To the best of our knowledge, we present the first thorough
evaluation of anytime search-based footstep planning with
the aim of near-realtime plan results over long distances.

Parameter Value / Range

w 10 cm
h 16 cm
∆x [−10, 22] cm
∆y [12, 28] cm
∆θ [−0.23, 40.0]◦

Fig. 2. Footstep transition model (left) and parameterization for a large
humanoid such as HRP-2 or ASIMO, consisting of 14 different steps (middle
and right).

III. PLANNING FRAMEWORK

A. States, Actions, Transition Model, and Lattice Graph

In a planar world model, the robot’s state is described by
the global position and orientation of its stance foot s =
(x, y, θ), alternating between the right and left foot.

A single footstep action is parameterized by the dis-
placement of the moving foot (left or right) relative to the
stance foot, as illustrated in Fig. 2. Under the constraint that
humanoids move the left and the right leg alternating and that
the possible footsteps for both feet are symmetric, a footstep
action a can be parameterized by a = (∆x,∆y,∆θ) relative
to the position of the stance foot.

When the footstep planner expands a state s, it determines
all successor states s′ resulting from applying the transitions
t of each available action a ∈ A: s′ = t(s, a). The resulting
states s′ are checked for collisions with obstacles and invalid
states are discarded.

The costs of a state transition from s to s′ are given by
the transition costs c(s, s′) that correspond to the traversed
distance according to

c(s, s′) = ‖(x, y)T − (x′, y′)T ‖+ k (1)

for s = (x, y, θ) and s′ = (x′, y′, θ′). Here, k are constant
costs associated to executing one footstep, leading to a
penalization of paths with a higher number of steps. We
hereby assume that the effort of changing the orientation
of a footstep can be neglected compared to the Euclidean
distance.

The iterative construction of states (x, y, θ) connected by
footsteps builds a sparsely-connected lattice graph, where the
single footstep actions correspond to the motion primitives
used in search-based planning [18].

The footstep set for a large humanoid robot used through-
out this work is shown in Fig. 2 (middle). Since this
represents a discrete set of stepping motions derived from
the kinematic range of the humanoid, the goal location (given
as a pair of footsteps or a single state) may not be exactly
reached, or require too many intermediate steps to reach.
Thus, we dynamically extend the footstep set with a transi-
tion to the goal if it is reachable from the current state.

B. Environment Model and Collision Checking

We use a 2D grid map consisting of equally-sized grid
cells that are marked as either free or occupied. As in [10],
occupied cells also contain traversability information, en-
abling the robot to differentiate between shallow obstacles
that can be stepped over (such as uneven floor or clutter),



and obstacles that have to be avoided with a larger clear-
ance (such as walls or furniture).

In order to validate a possible footstep, a planner needs
to check if the footstep collides with an obstacle in the
environment. Because this validation needs to be performed
for all successors of an expanded state, it should be as
efficient as possible. Here, we apply an efficient recursive
collision check in the distance map [3] and assume that the
humanoid’s footprint is rectangular, or can be approximated
by a rectangular bounding box. Extensions to 3D will be
discussed in Sec. V.

C. Search-based Planning

On the lattice graph, search methods such as A* can be
applied. The costs to transition between states are given from
the transition model (1) and only valid states remain after
collision checking. The search is guided towards the goal by
a heuristic that can include different information.

Common heuristics for footstep planning are the straight-
line Euclidean distance to the goal, or the estimated costs
along a 2D path planned with A* or Dijkstra in a grid. The
latter is potentially inadmissible because it does not reflect
the humanoid’s capability of stepping over obstacles [3], [4].

IV. ANYTIME SEARCH-BASED FOOTSTEP PLANNING

A. Weighted A* Search

As a basis for both ARA* and R*, we will first recapit-
ulate weighted A* (wA*) search. A* search expands states
according to the evaluation function

f(s) = g(s) + h(s), (2)

where g(s) are the actual costs of the best path from the
start to the current state s and the heuristic h(s) provides
the estimated costs to the goal from state s. h(s, s′) denotes
the heuristic costs from a state s to s′. For the optimality of
A* to hold, h(s) must be admissible, i.e.

∀s : h(s) ≤ c(s, goal), (3)

where c(s, goal) denotes the true costs of traversing from
state s to the goal.

wA* inflates h with a factor w ≥ 1 which results in
suboptimal paths that can be found faster, thereby expanding
fewer states. With this inflated heuristic, the quality of the
solution can be traded off for efficiency, while the resulting
paths are guaranteed to cost no more than w times the cost
of an optimal path [7]. For w = 1, this corresponds to a
regular A* search. As illustration, Fig. 3 shows the resulting
footstep plans around an obstacle and the expanded states
for different weights w.

B. Footstep Planning with ARA*

Anytime Repairing A* (ARA*) search runs a series of
wA* searches while efficiently reusing previous informa-
tion [7], [8]. An initially large w causes the search to find a
non-optimal initial solution quickly. Then, as time allows, the
search reruns with incrementally lower values for w while
reusing much of the information from previous iterations.

start goal

(a) w = 10 (b) w = 2 (c) w = 1 (A*)

Fig. 3. wA* and ARA* footstep planning (the paths and expansions are
identical) around an obstacle for different heuristic inflation weights w.
Here, the Euclidean distance to the goal was used as heuristic. The expanded
state area is shaded in blue. An inflated heuristic results in fewer expanded
states and faster planning times at the cost of suboptimal paths.

start goal

(a) initial w = 10, final w = 1 (b) initial w = 10, final w = 1

Fig. 4. ARA* planning around a local minimum with a 2D Dijkstra path
as informed heuristic. In (a), planning succeeded after 1.8 s with 267 288
expanded states. However, the heuristic wrongly leads into a non-traversable
narrow passage in (b) where planning succeeded after 15.0 s with 1 892 608
expanded states.

Given enough time, ARA* finally searches with w = 1,
producing an optimal path. If the planner runs out of time
before, the cost of the best solution found is guaranteed to
be no worse than w times the optimal solution cost. This
allows ARA* to find some solution faster than regular A*,
and to approach optimality as time allows.

As any heuristic search, the efficiency of ARA* depends
on the quality of the used heuristic. The more informed it is
about the environment, the fewer states need to be expanded.
The standard heuristic of the Euclidean distance to the goal
will create local minima around obstacles that block the
straight path to the goal, and forces the planner to expand
large areas of the state space (Fig. 3(c)).

Compared to that, using a 2D Dijkstra path to the goal
as heuristic is better informed of obstacles. This results in
expanding states on paths around the obstacles instead of
local minima (Fig. 4(a)), and it has been shown to result in
more efficient planning times [3], [4]. However, this heuristic
is potentially inadmissible and may even result in inefficient
or no solutions at all in the case of footstep planning. It may
also be susceptible to other types of local minima, again
leading to inefficient planning as demonstrated in Fig. 4(b).
The 2D Dijkstra heuristic will lead the planner to expand
states through the narrow passage even though it is not
traversable with stepping motions. With a larger obstacle
inflation for the 2D heuristic path this specific problem could
be avoided. However, this degrades the planning process to
planning footsteps around a 2D path, resulting in non-optimal
paths since the robot can no longer step through clutter [10].

All in all, ARA* is highly dependent on a well-designed
heuristic function for efficient results.



start goal

(a) w = 10 (b) w = 2 (c) w = 1

Fig. 5. R* iterations for different heuristic inflation weights w. As heuristic
the Euclidean distance to the goal was used.

C. Footstep Planning with R*

The randomized A* search (R*) aims to solve that problem
by depending less on the quality of the heuristic function [8],
[9]. The search avoids local minima by running a series
of short-range, fast wA* searches towards randomly chosen
sub-goals. The exploration of the search space with random
sub-goals relates to randomized planners such as RRTs.
But contrary to them, R* aims to minimize the solution
cost and provides probabilistic guarantees of the solution
suboptimality [9].

R* iteratively constructs a graph Γ of sparsely placed
states in the same lattice graph as the dense search. At each
iteration, a state in Γ is expanded by generating k random
successor states at a distance ∆. Any goal state (as left or
right foot) within ∆ is added to the successors of s as well.

Each edge in Γ between two random states corresponds
to a path in the original, dense search graph, which is
determined by a local search with wA*. R* hereby first tries
to find all “easy” local paths. If a local path requires too many
expansions, planning it is delayed for a later stage when it
is required to meet the suboptimality bounds. During the
whole expansion from start to goal, R* provides probabilistic
guarantees on the suboptimality of the solution by heuristic
inflation w of the local wA* search. As in ARA*, R*
iteratively lowers w and re-runs the search if a given planning
time limit permits.

Generating the random nodes in Γ ensures the exploration
of the search space. For footstep planning with humanoid
robots, we randomly sample a direction and place a state s′

at distance ∆ from the current state. The leg of the state (left
or right) is also chosen randomly, whereas its orientation
is given by the initial random direction to favor forward
walking. If s′ is collision-free, it is added to Γ along with
the edge s→ s′.

Examples for different weights in the scenario with a local
minimum are shown in Fig. 5, using the Euclidean distance
heuristic. At the beginning, R* sparsely samples the state
space towards the goal and around the obstacle. As the
heuristic inflation w approaches 1, the state space expansion
grows more densely in order to find the optimal path. Only
then the expansion resembles wA* and ARA* expansions.

V. EXTENSIONS TO 3D

Up to now, the footstep transition model and collision
checks were implemented in 2D for comparing the different
planners. With 3D sensing, a robot can build an elevation

Fig. 6. Example 3D map (left) and the corresponding traversability map
for the extended Dijkstra heuristic (right).

map of its surroundings (Fig. 6, left). When planning in this
representation, each footstep is associated a height based on
the underlying terrain in addition to the 2D position and
orientation. The set of footsteps needs to be extended with a
valid height range to climb onto obstacles, and the complete
body of the robot needs to be collision-checked against
the environment over the robot’s whole-body trajectory of
executing one step. This ensures that the robot won’t collide
with an obstacle while stepping over it. For efficiency, this
can be done with swept volumes of the robot’s collision
mesh model [6] or with a so-called inverse height map [19].
This representation contains the minimum clearance of the
robot over the ground while executing a stepping motion.
The inverse heightmaps are precomputed for each stepping
motion, resulting in simple comparisons when applying them
on the elevation map to check for collisions.

To account for stepping over obstacles of varying height,
we introduce an extended Dijkstra heuristic that is in-
formed of the environment, while still being admissi-
ble [19]. Obviously, small obstacles cannot be simply treated
non-traversable since they could be stepped onto. In our
traversability map for the extended Dijkstra heuristic (Fig. 6,
right), we mark a cell as non-traversable (black) if the
obstacle exceeds the robot’s maximum step height. Small
height changes result in increased costs for the cell (gray) to
account for the additional time the robot needs to traverse the
elevation. All other cells, i.e., planar surfaces, are considered
free (white).

VI. ADAPTIVE LEVEL-OF-DETAIL PLANNING

In large open spaces without obstacles, it is often not
necessary to employ footstep planning. A 2D path on a grid
representation can be easily computed, and followed by a
humanoid with a corresponding walking controller. Close
to obstacles, however, footstep planning offers a greater
flexibility and results in more efficient plans since the robot
can step close to or over obstacles. Thus, we propose to
combine fast 2D planning in open spaces with footstep
planning in areas containing obstacles [10].

We first classify the environment into regions of differ-
ent complexity in an optional preprocessing step by seg-
menting the environment map, labeled as traversable and
non-traversable obstacles, based on the humanoid’s walking
circumcircle for clearance (Fig. 8). This results in a set of
open areas where 2D planning can be employed and obstacle



1 m

start

goal

clutter

(a) ARA* with Euclidean heuristic after 92 s (b) ARA* with Dijkstra heuristic after 5 s (c) R* with Euclidean heuristic after 5 s

Fig. 7. Footstep planning with a time limit of 5 seconds through a cluttered passage. ARA* with the Euclidean heuristic fails to find a path within the
time limit and requires 92 s to find a first solution with w = 10. The inadmissible Dijkstra heuristic results in a detour due to the clutter blocking the
heuristic path. R* finds a path even with the Euclidean heuristic (final w = 8).

regions that contain planar obstacles as well as areas close to
other obstacles. On the contour of the obstacle regions, we
then sample transition points and apply a footstep planner
between all transition points of one obstacle region. This
estimates the traversal costs of the obstacle region for the
planning stage.

Planning now corresponds to a search in the new state
space, consisting of all 2D cells in the free areas and the
sampled points on the obstacle contours. Transitions between
all neighboring cells in the free areas are allowed, as well as
between the sampled transition points. The costs are hereby
given by the traversal estimates from the preplanning stage,
or by a heuristic. As soon as the search reaches the goal,
the segments crossing an obstacle region are converted into
footsteps by using a footstep planner from the entry to the
exit point of the obstacle region, illustrated in Fig. 8 (right).
During execution, the robot then uses a walking controller
to execute the planned footsteps and a velocity controller to
follow the 2D path.

This approach results in efficient plans using the level of
detail required for the type of region in the environment.
By classifying regions as free, planar, or three-dimensional
objects we can also avoid using expensive 3D footstep
planning and collision checking when not needed.

VII. EXPERIMENTS

A. Anytime Planning Results

In a first set of experiments, we evaluate and compare
the performance of the anytime planners ARA* and R*
for footstep planning. We chose a lattice graph resolution
(discretization) of 1 cm for x/y and 5◦ for θ with the footstep
parameterization from Fig. 2. This discretization is used to
check equality when expanding states on the lattice. The
occupancy maps for collision checks have a resolution of
1 cm and angles are preserved to be continuous in the
collision check. The robot needs to maintain a clearance
of 15 cm to obstacles marked as walls. The inflation radius
for the 2D Dijkstra heuristic is the foot incircle radius of
5 cm. We experimentally determined ∆=1.5 m, k=20, and
the expansion limit for easy-to-find paths as 500 for R*. All

planar obstacles

wall

Fig. 8. Environment classification for adaptive level-of-detail planning:
General obstacles are black, planar obstacles gray. The white area was
classified to be suitable for 2D planning. In the yellow areas, a footstep
planner can be used to plan efficient, collision-free paths. The close-up on
the right shows sampled contour points (red dots) and an exemplary footstep
path between two points.

planning times are given for a single core of a desktop CPU
(Intel Core i7, 3.4 GHz).

1) Indoor Environment with Limited Time: In a first exper-
iment, we evaluated the algorithms qualitatively in an indoor
environment containing several rooms with shallow obstacles
and obstacles that have to be avoided (walls). To obtain
near-realtime plans suitable for navigation, we set the time
limit for the planners to 5 seconds and the initial heuristic
inflation weight w=10. While the 2D Dijkstra heuristic works
well in some cases, e.g., passing through the hallway, it
is problematic for the start and goal configuration shown
in Fig. 7. Here, the optimal path leads through a passage
blocked by clutter that the robot can step over. A similar
situation arises when there is a door sill that the robot should
avoid stepping onto, which poses an obstacle completely
blocking the doorway in 2D. In this scenario, ARA* with
the 2D Dijkstra heuristic wrongly expands a non-optimal
path despite w reaching 1.4 after 5 s. This is because the
suboptimality guarantees no longer hold due to the heuristic
inadmissibility, and demonstrates that the Dijkstra heuristic is
a poor choice for footstep planning in cluttered environments.
With the Euclidean distance heuristic, ARA* fails to find a
plan within the time limit due to expansions being misled
into local minima. In comparison, even with the Euclidean



0 2 4 6 8
0

20

40

60

80

100

Time [s]

Pr
ob

le
m

s
so

lv
ed

[%
]

R* Euclidean heur.
ARA* Dijkstra heur.

ARA* Euclidean heur.

Fig. 9. A densely cluttered area (left) and the success rate for 12 random
start and goal configurations in it (right). The percentage of solved problems
within a certain time is shown for the first solution with w=5.

TABLE I
FOOTSTEP PLANNING PERFORMANCE FOR FIRST SOLUTIONS IN A

DENSELY CLUTTERED ENVIRONMENT

Planner Heuristic Planning time [s] Path costs

R* (w=5) Euclidean 0.32 ± 0.23 16.45 ± 3.16
ARA* (w=5) Euclidean 2.15 ± 2.21 13.57 ± 1.15
ARA* (w=5) 2D Dijkstra 0.56 ± 1.13 20.41 ± 5.08

Optimal: A* (w=1) Euclidean 33.31 ± 15.00 11.06 ± 1.20

heuristic R* finds good initial solutions quickly.
2) Initial Plan Results in Dense Clutter: The next set

of experiments is designed to evaluate how the different
planners can cope with densely cluttered scenes such as the
4 × 4 m2 area shown in Fig. 9 (left). To this end, we plan
footstep paths between 12 random start and goal locations
approximately 3.5 m apart and analyze the planning time
and path quality. A* with the Euclidean distance heuristic
requires on average 33 s to find the optimal paths containing
37 single steps on average. Fig. 9 (right) shows the success
rate for the anytime planners to find the first solution with
w=5 and Table I shows the aggregated statistics as mean and
standard deviation.

As before, R* succeeds in finding fast results in general.
ARA* with the admissible Euclidean heuristic requires more
planning time even for initial suboptimal results, while it
needs less time with the inadmissible Dijkstra heuristic,
although it still requires more time than R*. However, the
Dijkstra heuristic leads to longer paths, since it overestimates
in some instances. All anytime planners find paths signifi-
cantly faster than A*, at the cost of longer paths for the initial
solution. Given enough planning time, both R* and ARA*
with the Euclidean heuristic will converge to the optimal
result from A* planning.

B. 3D Planning Results

1) Planning and Execution with a Nao Humanoid: When
using the 3D footstep planning approach introduced in Sec. V
for a Nao humanoid, we could extend the capabilities of the
robot in cluttered environments. As demonstrated in Fig. 10,
the robot can now step over small obstacles and onto stairs
using footstep planning. To this end, we added a special
stepping motion to the humanoid’s footstep set so that it can
step over an obstacle and a parameterized motion to climb
up and down objects of different heights.

Fig. 10. 3D footstep planning results in more efficient navigation plans for
a small Nao humanoid. Instead of walking around all obstacles in 2D (left),
it can step over or even onto some of them (right).

Fig. 11. 3D perception and footstep execution with a Nao humanoid.

2) Quantitative Evaluation of 3D Planning: To evaluate
the performance of the footstep planner with 3D extensions,
we randomly generated ten different maps of size 2.5 m
× 2.5 m containing obstacles such as bars, platforms, and
blocks of varying width, length, and height at a resolution
of 4 mm. We randomly sampled ten different start and
goal locations at similar distances, and evaluated the ARA*
planner with time limits of 5 and 10 seconds and the two
heuristics: Euclidean straight-line distance to the goal and
the extended Dijkstra heuristic for elevation maps. All 100
planning problems could be solved within the given time
limits of 5 s and 10 s, respectively. On average, it took 97 s
to compute the optimal plan, whereas our anytime algorithm
generates a first solutions within short time and afterwards
improves the found motion plan. Table II shows mean and
standard deviation of the path cost suboptimality (difference
from the optimal solution) and the time for planning the
initial solution with w=8. The extended Dijkstra heuristic
leads to more efficient solutions that are closer to the optimal
path compared to the Euclidean distance heuristic.

TABLE II
EVALUATION OF THE 3D FOOTSTEP PLANNER

Heuristic Dijkstra Euclid Dijkstra Euclid
t-Limit 10 s 10 s 5 s 5 s

Suboptimality 1.03±0.05 1.12±0.14 1.07±0.10 1.19±0.19
tinit sol [s] 0.74±0.86 0.57±0.51 0.72±0.83 0.55±0.5



1 m
start

goal

clutter

Fig. 12. Comparison between full footstep planning (left) and an adaptive
combination of footstep and 2D planning (right) in an indoor office
environment. In the latter, footstep planning is only employed in complex,
cluttered regions and close to obstacles. Fast conventional 2D planning (blue
dots) is used in the open spaces.

TABLE III
PERFORMANCE COMPARISON BETWEEN ADAPTIVE LEVEL-OF-DETAIL

AND REGULAR PLANNING METHODS.

Approach Planning time [s] Path costs

2D grid planning 0.51 ± 0.11 19.18 ± 5.28
Footstep planning 43.70 ± 25.66 11.78 ± 1.16
Adaptive with precomputation 0.41 ± 0.32 11.78 ± 1.08
Adaptive, no precomputation 0.99 ± 0.54 12.41 ± 1.43

C. Adaptive Level-of-Detail Planning Results

In the large open areas of the indoor office environment,
adaptive level-of-detail planning can provide a significant
planning speedup. For this evaluation, we compare the results
and planning time of the optimal solution with 2D path
planning and footstep planning. A 2D-only path was fastest
to compute in less than a second but resulted in a significant
detour through the hallway since it could not pass the clutter.
The global footstep plan (Fig. 12, left) took substantially
longer to compute (29 s), but resulted in a more efficient
path as planar obstacles are stepped over instead of walking
around them. Compared to that, adaptive level-of-detail plan-
ning combines the advantages of both in that it is as fast as
2D planning and resulted in an efficient path (Fig. 12, right).
Footstep planning was only invoked where needed. The path
costs in this scenario were only 2% higher compared to the
optimal footstep plan, while being 51% less compared to 2D
planning.

For a statistical evaluation, we planned a 2D path, a
footstep path, and a path using our adaptive method between
ten different start and goal configurations in the environment.
Each required a path length of approximately 8 m in the
optimal case. As evaluation criteria in Table III, we used
the planning time and execution costs for each plan (mean
and standard deviation). Footstep planning yielded the best
paths, but took up to 94 s to return the optimal solution in
the most complicated scenario. Conventional 2D planning
was faster, but the resulting paths were significantly longer
as they cannot pass close to obstacles or step over objects.
In contrast to that, our adaptive approach yielded fast results
and lead to paths that were as efficient as full footstep plans.

Ideally, the environment is known and the costs to traverse

obstacle regions can be estimated in a pre-processing step.
When precomputation is not possible, e.g., because the
environment is not completely static, a heuristic can be used
to estimate the obstacle traversal costs. As can be seen in
Table III, this resulted in 5% longer plans with a small
increase in planning time since more non-relevant footstep
segments were planned.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed search-based footstep planning
for biped navigation. The anytime algorithms ARA* and R*
enable planning efficient paths with provable suboptimality
within short planning times. In the presence of local minima
due to obstacles, we found ARA* with the 2D Dijkstra
path heuristic in danger of yielding non-optimal paths.
On the other hand, ARA* with the admissible Euclidean
heuristic needs much more time since it expands too many
states. R*, in contrast, yields fast initial solutions even with
the Euclidean heuristic and avoids local minima. With 3D
sensing and collision checking, footstep planning can be
extended to 3D, thus enabling humanoids to reliably step
over or onto objects. To this end, we introduced a novel
admissible Dijkstra heuristic. For efficiently planning longer
paths, we presented adaptive level-of-detail planning, which
combines fast but coarse 2D planning in the open areas
with detailed footstep planning through obstacle regions.
Open problems for future work include building consistent,
accurate and global 3D world models, as well as integrating
a reactive walking controller for uneven terrain and external
disturbances.

REFERENCES

[1] K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited humanoid loco-
motion planning,” in Proc. of the IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoids), 2005.

[2] K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, and B. Wilcox, “Motion
planning for legged robots on varied terrain,” Int. Journal of Robotics
Research (IJRR), 2007.

[3] J. Garimort, A. Hornung, and M. Bennewitz, “Humanoid navigation
with dynamic footstep plans,” in Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2011.

[4] J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K. Hodgins, and
T. Kanade, “Footstep planning for the Honda ASIMO humanoid,” in
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2005.

[5] J. Chestnutt, K. Nishiwaki, J. Kuffner, and S. Kagami, “An adaptive
action model for legged navigation planning,” in Proc. of the IEEE-
RAS Int. Conf. on Humanoid Robots (Humanoids), 2007.

[6] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida, “Fast
humanoid robot collision-free footstep planning using swept volume
approximations,” IEEE Transactions on Robotics, vol. 28, pp. 427–
439, 2012.

[7] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with
provable bounds on sub-optimality,” in Proc. of the Conf. on Neural
Information Processing Systems (NIPS), 2004.

[8] A. Hornung, A. Dornbush, M. Likhachev, and M.Bennewitz, “Anytime
search-based footstep planning with suboptimality bounds,” in Proc. of
the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2012.

[9] M. Likhachev and A. Stentz, “R* search,” in Proc. of the National
Conf. on Artificial Intelligence (AAAI), 2008.

[10] A. Hornung and M. Bennewitz, “Adaptive level-of-detail planning for
efficient humanoid navigation,” in Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2012.

[11] K. Okada, T. Ogura, A. Haneda, and M. Inaba, “Autonomous 3D
walking system for a humanoid robot based on visual step recognition
and 3D foot step planner,” in Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 2005.



[12] T.-Y. Li, P.-F. Chen, and P.-Z. Huang, “Motion planning for humanoid
walking in a layered environment,” in Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2003.

[13] J.-S. Gutmann, M. Fukuchi, and M. Fujita, “A modular architecture for
humanoid robot navigation,” in Proc. of the IEEE-RAS Int. Conf. on
Humanoid Robots (Humanoids), 2005.

[14] S. Candido, Y.-T. Kim, and S. Hutchinson, “An improved hierarchical
motion planner for humanoid robots,” in Proc. of the IEEE-RAS
Int. Conf. on Humanoid Robots (Humanoids), 2008.

[15] L. Baudouin, N. Perrin, T. Moulard, O. Stasse, F. Lamiraux, and
E. Yoshida, “Real-time replanning using 3d environment for humanoid
robot,” in Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids), 2011.

[16] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller,
“Anytime motion planning using the RRT*,” in Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2011.
[17] P. Vernaza, M. Likhachev, S. Bhattacharya, S. Chitta, A. Kushleyev,

and D. D. Lee, “Search-based planning for a legged robot over rough
terrain,” in Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2009.

[18] M. Pivtoraiko and A. Kelly, “Generating near minimal spanning
control sets for constrained motion planning in discrete state spaces,”
in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2005.

[19] D. Maier, C. Lutz, and M. Bennewitz, “Autonomous biped navigation
in unknown 3D environments,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2013, submitted for publica-
tion.


