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Abstract— In this paper, we consider the problem of efficient
path planning for humanoid robots by combining grid-based
2D planning with footstep planning. In this way, we exploit
the advantages of both frameworks, namely fast planning on
grids and the ability to find solutions in situations where grid-
based planning fails. Our method computes a global solution
by adaptively switching between fast grid-based planning in
open spaces and footstep planning in the vicinity of obstacles.
To decide which planning framework to use, our approach
classifies the environment into regions of different complexity
with respect to the traversability. Experiments carried out in a
simulated office environment and with a Nao humanoid show
that (i) our approach significantly reduces the planning time
compared to pure footstep planning and (ii) the resulting plans
are almost as good as globally computed optimal footstep paths.

I. INTRODUCTION

While path planning for wheeled robots can be considered
to be largely solved, navigating with robots possessing a
higher number of degrees of freedom, such as humanoid
robots, is still a challenging problem. For wheeled robots
operating in a planar, two-dimensional world, it is usually
sufficient to compute 2D paths in a grid-based representation
of the environment. These plans can be computed very
efficiently and can be easily followed.

This method can be also applied to humanoid robot
navigation with controllers to follow the collision-free 2D
paths, e.g., by planning footsteps in a local area around the
2D path [1], [2], or by executing fixed gaits [3]. However,
the 2D path itself may be non-optimal for humanoids since
it does not consider the capability to avoid obstacles by
stepping over them. For example, walking through obstacles
lying on the floor or climbing stairs is only possible with
discrete stepping motions. A conventional 2D planner would
have to choose a large detour or return no solution at
all. Several approaches, therefore, compute a sequence of
footstep actions that the robot executes (e.g., [4], [5], [6]). In
these approaches, planning is carried out in the space defined
by a given set of footsteps, which is more computationally
demanding than computing a 2D path due to the higher
number of possible state transitions. However, the resulting
paths are typically shorter than the ones resulting from
2D planning in cluttered environments. There are further
techniques for planning whole body motions to pass difficult
areas including steep or rough terrain. This is, however,
seriously more complex due to the high-dimensional search
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Fig. 1. We classify the environment into regions of different complexity
where adequate planners are employed. For open spaces, planning a coarse
2D path is sufficient. A detailed plan requiring more complex computation
(e.g., a footstep plan) is only generated where needed.

space and is not feasible yet for longer sequences during
real-time navigation [7], [8].

In this paper, we propose to combine detailed motion
planning in areas requiring complex navigation capabilities
and coarse global path planning in an efficient manner. Our
approach classifies the environment into areas of different
complexity and samples transitions to connect the individual
regions. Based on the classification result, the system decides
at which level of detail to plan the motion.

The advantages of our approach are two-fold. First, effi-
cient paths can be found since the difficult regions can be
passed instead of choosing detours around them. Second, the
computational burden of globally planning detailed motions
is seriously reduced. Our framework is generally applicable
for planning motions at different levels of detail depending
on the type of environment and the robot’s capabilities. It can
be also applied to plan with different modes of locomotion
for different types of terrain [7].

Here, we consider humanoid navigation in indoor environ-
ments. We apply fast 2D planning for open spaces and use
footstep planning to step over planar obstacles such as clutter
on the floor, uneven surfaces, or other areas that have to be
avoided in order to prevent a fall (see Fig. 1). To transition
between the individual areas, we densely sample the border
regions and use footstep planning in a precomputation step
to estimate the traversal costs for the difficult areas.

As the experiments obtained from simulation and with
a real humanoid show, our adaptive planning strategy has
significantly lower computational costs than pure footstep
planning while the resulting paths are similarly as efficient as
globally computed footstep paths. As a further contribution,
we extended our footstep planner implementation [4]. As a
result, we can now use Anytime Dynamic A* (AD*) for an
efficient replanning of footstep sequences1.

1Open source implementation in ROS available at
http://www.ros.org/wiki/footstep_planner



II. RELATED WORK

Research in the area of collision-free motion planning for
humanoids differs in terms of level-of-detail and planning
horizon. Several techniques concentrate on generating only
the next movements of the robot [9], [10]. Other approaches
plan discrete walking actions on a discretized grid [3], [11].
A drawback of these planning methods is that they are prone
to end up in local minima, as their fixed motion primitives
(e.g., walking straight, sideways, and turning in 45◦ steps)
do not correspond to the full flexibility of a humanoid, e.g.,
to step over obstacles.

Chestnutt et al. [5] proposed to plan the whole path
entirely with footsteps using A*. To make the search feasible,
the authors defined a set of seven possible actions. Later, the
authors extended their technique so that invalid footsteps can
be adjusted in a local area around the reference action [6].
Recently, Garimort et al. [4] introduced efficient, dynamic re-
planning using D* Lite for footstep planning. While footstep
planning exploits the stepping capability of humanoids and
is more efficient than planning for the whole body, it is still
computationally demanding for long distance path planning.

Further approaches plan a global 2D path for the robot and
then locally determine footsteps to follow the trajectory [1],
[2]. While these methods enable fast planning, in contrast to
our work they are prone to end up with non-optimal paths in
local minima as the global planner is not aware of the local
planner’s capabilities.

Some authors developed techniques to generate whole
body motions that also contain non-upright gaits. For exam-
ple, Hauser et al. [12] presented a probabilistic planner that
first samples contacts of predesignated parts of the robot’s
body and points of the terrain which are subsequently con-
nected by a probabilistic roadmap method. In a later work,
the authors make use of precomputed motion primitives
to guide the search and generate high-quality motions [7].
Kanoun et al. [8] combine footstep planning with inverse
kinematics to reach kinematic goals. The whole body is
controlled so that complex tasks, such as picking up an object
from the ground, can be carried out. The general problem
of planning whole body motions is that these approaches
require long planning times and are only applicable to short
paths. A promising approach, however, would be to include
whole-body motions as another mode of navigation in our
framework. A whole body planner would be invoked only
where needed, e.g., to climb ladders or traverse rough terrain.

Finally, there are motion planning approaches which also
plan at a varying level of detail or use a combination of
planners [13], [14], [15]. These methods adapt the planning
level in order to obtain accurate short-term results, and only
rough long-term results. This is particularly useful when
planning in highly dynamic environments. In order to avoid
local minima and decide on the feasibility of the plan in
more static scenarios, however, it is necessary to compute a
complete plan instead of using a set of local plans.

The authors in [16] and [17] plan motions in non-flat
environments by first decomposing the map into different

Fig. 2. Footstep parameterization for a humanoid with ten different steps,
shown as displacements of the left foot relative to the right supporting foot.

regions that are locally 2D. Depending on the terrain classi-
fication (e.g., slope, stairs, or flat ground), they use a local
planner based on motion primitives defined for that region.
The regions are then connected by heuristically choosing
sparse transitions and applying a global planner. While
this enables real-time capable planning, the results strongly
depend on the manually defined motion primitives and may
again be globally not optimal due to the prior decomposition
and the sparse transition between the regions. Therefore,
our approach uses a dense sampling of transition points and
allows an adaptive switching between the differently detailed
planners.

Using a similar idea as in our approach, Morales et al. [18]
proposed to classify the planning space with machine learn-
ing techniques in order to apply different roadmap-based
planners. Since this technique was particularly designed for
roadmap planners, it is unclear how it can be applied to using
separate search-based planners operating in different search
spaces.

In contrast to all these approaches, we plan a complete
path from the start to the goal by using detailed footstep
planning to cross complex obstacle regions and otherwise
applying a fast, more coarse 2D planner. In this way, our
approach generates highly efficient paths for humanoids.

III. FOOTSTEP PLANNING

We first recapitulate footstep planning, which constitutes a
common approach for humanoid motion planning. By com-
puting a sequence of collision-free footstep positions to the
goal, this method inherently takes the capability of humanoid
robots to step over obstacles into account. A discrete set of
footstep transitions, illustrated in Fig. 2, is used in a heuristic
search such as A∗ [5]. States hereby consist of the position
and orientation (x, y, θ) of the current supporting foot. The
next state can be reached by applying one of the possible
footstep actions and changing the supporting foot.

Starting from the initial state, the planner successively
adds footstep transitions in order to find the most cost-
efficient path to the goal. The transition costs are given by the
costs of executing the corresponding step, i.e., they are based
on the distance the step covers and a constant cost in order to
favor paths with fewer steps. Each new state is checked for
collisions and is discarded in case it collides with obstacles.
Otherwise the planner expands it further by investigating the
next transitions. The search is hereby guided by a heuristic
that helps to focus on promising states leading to the goal.

Common heuristics for footstep planning are to use the
straight-line distance to the goal, or the estimated costs along
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Fig. 3. Overview of our system. See text for explanation.

a 2D path planned with A*. The latter is potentially inadmis-
sible because it does not reflect the humanoid’s capability of
stepping over obstacles. In practice, however, the resulting
paths are usually no less efficient and significantly faster to
compute as the heuristics guides the search more focused
towards the goal [4], [5].

Note that, in contrast to standard 2D path planning,
footstep planning takes also the orientation of the states
into account. The higher number of possible state transitions
and the more complex collision checks are the reasons why
footstep planning is computationally more demanding than
2D path planning.

For this work, we extended our footstep planner [4] to
build upon the Search-based Planning Library (SBPL, [19]).
We apply the Anytime Dynamic A* (AD*) search [20] for
efficient anytime replanning during navigation.

IV. ENVIRONMENT REPRESENTATION AND
CLASSIFICATION

A. Environment Representation

We assume the environment to be given and represented as
an annotated 2D grid map containing planar and non-planar
obstacles. Each cell of the grid map contains information
about whether or not the cell is covered by an obstacle and
about the type of the obstacle. Planar obstacles correspond
to areas which the robot can avoid by stepping over, such as
uneven floor, clutter, or edges of stairs. Non-planar obstacles
are walls or furniture, which the robot generally has to avoid.

B. Classification and Segmentation

Our proposed method, illustrated in Fig. 3, first classi-
fies a given environment map M into regions of different
complexity where individual planners are applied. In this
work, we consider two different complexities: wide areas in
which it is sufficient to plan 2D paths for safe navigation
and areas containing narrow passages or planar obstacles
requiring more detailed planning.

To classify the environment, we segment the map based
on the humanoid’s walking circumcircle, also considering its
swaying walking motion. This corresponds to the clearance
needed during walking when following a 2D path while
neglecting more detailed motion planning. Using a distance
map D containing the Euclidean distance to the closest
obstacle for each cell (x, y), we determine connected areas
larger than the clearance radius r. In the corresponding
regions, 2D path planning can be applied to generate efficient
paths avoiding obstacles. This free area is denoted as A ⊆M

planar obstacles

wall

Fig. 4. Classification of an indoor environment: General obstacles are
black, planar obstacles gray. The white area was classified to be suitable
for 2D planning. In the yellow areas, a footstep planner can be used to
plan efficient, collision-free paths. The close-up on the right shows sampled
contour points (red dots) and an exemplary footstep path between two points.

and computed according to

A = {(x, y) ∈M | D (x, y) ≥ r} , (1)

followed by a segmentation into individual disjunct regions

A = A1 ∪A2 ∪ · · · ∪An . (2)

In standard 2D planning with an enlarged robot circum-
circle, the remaining areas F =M \A would be avoided to
not risk collisions. In contrast to that, our approach applies
more detailed, complex planning in these regions, taking into
account more degrees of freedom to find collision-free paths.
This directly results in shorter paths since, e.g., obstacles can
be closely passed or stepped over. F is also segmented into
disjunct regions

F = F1 ∪ F2 ∪ · · · ∪ Fm , (3)

which we call obstacle or footstep regions.
Fig. 4 displays the classification of a typical indoor envi-

ronment with various planar and non-planar obstacles.

V. EFFICIENT PLANNING

We now present our planning approach which relies on the
classified and segmented environment. We first describe how
traversability costs for the obstacle areas Fi are estimated,
which are subsequently used to aid global planning.

A. Estimation of Traversability Costs

The contour C(Fi) of a footstep area Fi contains the
2D map cells of the free area A which lie on the border
to Fi. To determine the actual traversability of all Fi and
to estimate the corresponding path costs, we densely sample
pairs of entry and exit points tj :

Ti = {t1, . . . , tni} ⊂ C(Fi)× C(Fi) (4)

Our system then applies a footstep planner for all pairs in
T =

⋃
i Ti. At this stage, the start and goal orientations for

footstep planning are given by the straight-line connection
between the corresponding entry and exit points and we
apply footstep planning with the admissible straight-line
heuristic (see Sec. III) to connect them.
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Fig. 5. Comparison of different path planning methods for a humanoid in an indoor office environment. Left: A conventional 2D path (blue dots) can
be quickly computed but takes detours around cluttered areas and needs to respect larger safety margins to obstacles. Middle: A footstep path exploits the
stepping capabilities of humanoid robots resulting in a more efficient path, but takes substantially more time to compute. Right: Our proposed approach
combines the advantages of both methods by using a conventional 2D path planner in open spaces and footsteps planning in more complex regions.

If a footstep path is found, the resulting costs yield an
estimate of traversing the area Fi from the corresponding
entry point to the exit point. Note that this value is only
an estimate for the global planning stage later, since then
the pose orientation may be different from the one used for
precomputation. In this way, we obtain the costs of traversing
the obstacle region Fi between each pair of states in Ti.

The preplanning process is carried out once for a given
map. The estimation is reasonably fast because the footstep
plans are comparably short and they can be easily paral-
lelized as all plans are independent. To avoid the precom-
putation e.g. in non-static environments, a heuristic can be
derived from once learned traversal costs. It estimates the
costs based on the the average traversal costs normalized by
the straight-line distance.

Note that the above technique cannot handle situations
in which start or goal are inside an obstacle area. To deal
with these situations, we sample contour points inverse
proportional to their Euclidean distance to the starting/goal
location and perform footstep planning to connect them.

B. Global Planning
Input to the global planner, which computes the path

between the current robot pose and the desired goal state, is
an augmented map consisting of an annotated 2D map M ,
regions Ai and Fi, and the costs of traversing each Fi for
the transitions Ti. For global planning, we allow transitions
between all neighboring cells in the free areas A and addi-
tionally between all entry and exit points in the Ti with the
precomputed traversal costs.

Note that it is important to have a unified cost metric
for all different planners. In our case, the footstep planning
costs correspond to the time it takes the robot to execute
the footsteps. Hence, we scale the costs of 2D paths in the
map so that they are normalized with respect to the footstep
planner. Accordingly, the costs for a 2D path of a certain
length is the same as walking on a footstep plan of the same
distance between start and goal. By adjusting the scaling
factor, it is possible to give preference to one plan over the

other, e.g., when single footsteps are executed slower than a
fast path following behavior.

Global planning now corresponds to an AD* search that
proceeds by expanding states in A and T . The heuristic that
estimates the costs based on the straight-line distance to the
goal hereby guides the search. Whenever the goal is reached,
the computed path so far consists of a sequence of 2D path
segments and obstacle region traversals. Then, a footstep plan
for each segment crossing an obstacle region is generated.
Opposed to the preplanned estimate, this footstep plan now
uses the correct orientation of the entry and exit poses which
is given by the connecting 2D path segments.

This global planning strategy is highly efficient and yields
cost-minimal paths in terms of the given cost metric. Only
due to the sampling of transitions, the paths might differ
from the optimal footstep paths found by globally planning
footstep actions, which we will evaluate in Sec. VI.

C. Plan Execution and Replanning

For execution, the robot can follow the 2D paths easily by
walking with an omnidirectional controller to sub-goals on
the path. As soon as a footstep plan segment is reached, the
robot then switches to the footstep controller.

Note that it is necessary to compute a complete path at
the beginning to decide on the feasibility of the plan and to
avoid local minima. During plan execution, changes in the
environment or an updated localization estimate may render
the current plan invalid. With AD* planning, however, parts
of the original plan can be reused for efficient replanning in
these cases [4].

VI. EXPERIMENTS

We finally present experimental results obtained in a
simulated environment and in a real robot experiment. The
simulation environment consists of a hallway with three
rooms in a 8×8 m2 office (see Fig. 4). This environment
contains various planar obstacles (e.g., outlets, clutter, edges)
as well as non-planar ones (e.g., walls and furniture). We
used a map resolution of 1 cm for accurate collision checks.



The footstep parameterization for the footstep planner is
displayed in Fig. 2.

A. Precomputation

First, we evaluate the computational costs required to
estimate the traversal costs in the precomputation phase.
Table I displays the average precomputation times for differ-
ent densities of sampled contour points T and the planning
performance for ten different planning problems as average
and standard deviation. We exploit parallelization in the
classification phase by running four threads on a 3.4 GHz
Intel Core i7 CPU. As can be seen, a costly dense estimation
is not required to yield acceptable planning performance in
terms of time and path costs. Only when there are too few
transitions across obstacle areas (more than 0.6 m apart), the
performance degrades. We hence use a distance of 0.2 m
between the contour points of footstep regions.

B. Qualitative Evaluation

Fig. 5 shows the resulting plans of the different methods
for an example scenario. Planar obstacles are displayed in
gray, all other obstacles in black. The 2D plan (left image)
was fast to compute in less than a second, but takes the
robot on a longer path as it requires detours. The global
footstep plan (middle image) takes substantially longer to
compute (29 s), but results in a more efficient path as planar
obstacles are stepped over instead of walking around them.
For this global footstep planning, we used the shortest 2D
path as heuristic during the search to enable the fastest
planning times and required AD* to converge to the optimal
solution. Compared to that, our approach combines the
advantages of both in that it is as fast as 2D planning and
results in an efficient path (right image). Footstep planning is
only invoked where needed. The path costs in this scenario
are only 2% higher compared to the footstep plan, while
being 51% less compared to 2D planning.

C. Statistical Evaluation

For a thorough comparison, we plan a 2D path, a footstep
path, and a path using our adaptive method between ten
different start and goal configurations in the environment,
each requiring a path length of approximately 8 m in the
optimal case. As evaluation criteria we use the planning
time (on a single core of a 3.4 GHz Intel Core i7 CPU) and
path costs for each plan. The path costs are normalized with
respect to footstep planning, as explained in Sec. V-B.

Table II displays the aggregated results as average and
standard deviation. Footstep planning yields the best paths,
but takes up to 94 s to return the solution in the most
complicated scenario. Conventional 2D planning is faster, but
the resulting paths are significantly longer as they cannot pass
close to obstacles or step over objects. In contrast to that, our
adaptive approach yields fast results and leads to paths that
are as efficient as full footstep plans. The average planning
time, which includes planning the short footstep sequences to
pass obstacles, is even smaller than with 2D planning since
fewer states are expanded.

TABLE I
OVERVIEW OF PRECOMPUTATION EFFORT AND PERFORMANCE.

Precomputation Planning performance

Density [m] # plans time [s] time [s] Path costs

0.05 32266 3640 0.44 ± 0.18 12.05 ± 1.11
0.1 7820 884 0.47 ± 0.20 11.97 ± 1.19
0.2 1892 202 0.41 ± 0.32 11.78 ± 1.08
0.4 516 51 0.49 ± 0.47 12.16 ± 1.16
0.6 236 27 0.35 ± 0.20 12.47 ± 0.68

TABLE II
PERFORMANCE COMPARISON BETWEEN PLANNING METHODS.

Approach Planning time [s] Path costs

2D planning 0.51 ± 0.11 19.18 ± 5.28
Footstep planning 43.70 ± 25.66 11.78 ± 1.16
Adaptive with precomputation 0.41 ± 0.32 11.78 ± 1.08
Adaptive, no precomputation 0.99 ± 0.54 12.41 ± 1.43

Precomputing footsteps to estimate the traversal costs
is not always practical in dynamically changing environ-
ments. Thus, we derive a heuristic from our classification
as described in Sec. V-A. Planning performance with no
precomputation available results in 5% longer plans with
a small increase in planning time, as more non-relevant
footstep segments are planned.

D. Real-world Evaluation

We now evaluate our approach in a real-world scenario
with a Nao humanoid robot. As before, we compare a 2D
plan, a footstep plan, and our adaptive planning approach.
In this experiment, the robot has to pass a narrow passage
of planar obstacles with start and goal approximately 0.85 m
apart.

Our humanoid is equipped with a Hokuyo URG-04LX
laser range finder mounted in a modified head. By inter-
preting the data of the laser range finder and the robot’s pro-
prioception, our localization system can account for motion
drift and accurately determine the robot’s pose [21].

Nao’s walking engine can be controlled with both omni-
directional velocities for path-following and single footstep
placements for more accurate control. When following 2D
paths, we can let the walking engine generate the joint angle
trajectories in real-time but there is no direct control over
the exact foot placements [22]. With footstep control, Nao
can walk on a planned sequence of footsteps. For footstep
planning, we use a set of 12 footsteps in Nao’s stepping
range [4].

The environment and the resulting 2D path is shown in
Fig. 6. Because there is no control over the exact foot place-
ments when following a 2D path, a larger clearance (shaded
gray) is needed to ensure collision-free motion. In this
scenario, this results in a detour with twice the path costs
of the other plans. While a smaller clearance allows the
robot to avoid the detour, it results in a collision with the
obstacles (Fig. 6, right). Both of these 2D paths can be
planned within less than 0.01 s.
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Fig. 6. Left: A conventional 2D path for the Nao humanoid has to respect
a larger clearance to ensure collision-free motion, leading to detours around
narrow passages. Right: Using a smaller distance to obstacles allows the
2D path to pass the obstacles, but risks collisions because there is no direct
control over the exact foot placement.
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Fig. 7. Left: Footstep planning allows the robot to safely pass tight spaces
with no collisions, but requires longer planning times than a 2D path. Right:
Our approach uses a a 2D path and applies footstep planning wherever
needed, resulting in efficient planning times.

Contrary to that, the greater flexibility of footstep planning
allows the robot to pass the obstacles collision-free (Fig. 7,
left). However, planning this sequence of footsteps takes
0.45 s. Using our adaptive approach, the robot efficiently
plans within 0.05 s and is able to pass the obstacles. The
advantage of our approach is that costly footstep planning is
only invoked where needed.

VII. CONCLUSIONS AND OUTLOOK

We presented a novel path planning approach for hu-
manoid robots leading to highly efficient paths. Our method
first classifies the environment into regions of different
complexity with respect to the traversability. To decide on
the traversability and to obtain an initial estimate of the
traversal costs, we employ footstep planners between points
sampled on the contours of obstacle regions as an optional
preprocessing step. Fast but coarse 2D planning is used in
the open areas that are sufficiently distant to obstacles. These
plans are augmented with detailed footstep plans through
the obstacle regions. A heuristic enables efficient planning
when the environment is not static and precomputation is
not possible.

We evaluated our approach in a large office environment
and with a real Nao humanoid. While our resulting plans
are almost as efficient as paths resulting from planning the
complete trajectory on footstep basis, they are significantly
faster to compute. Our framework is general enough to be
applied to other robotic systems in different scenarios, e.g.,
with different modes of locomotion to cross different types
of terrain. In future work, we plan to augment our framework
with efficient collision checks in 3D where required [23].
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