
Anytime Search-Based Footstep Planning
with Suboptimality Bounds

Armin Hornung Andrew Dornbush Maxim Likhachev Maren Bennewitz

Abstract—Efficient footstep planning for humanoid naviga-
tion through cluttered environments is still a challenging prob-
lem. Many obstacles create local minima in the search space,
forcing heuristic planners such as A* to expand large areas.
The goal of this work is to efficiently compute long, feasible
footstep paths. For navigation, finding the optimal path initially
is often not needed as it can be improved while walking. Thus,
we propose anytime search-based planning using the anytime
repairing A* (ARA*) and randomized A* (R*) planners. This
allows to obtain efficient paths with provable suboptimality
within short planning times. Opposed to completely randomized
methods such as rapidly-exploring random trees (RRTs), these
planners create paths that are goal-directed and guaranteed
to be no more than a certain factor longer than the optimal
solution. We thoroughly evaluated the planners in various
scenarios using different heuristics. ARA* with the 2D Dijkstra
heuristic yields fast and efficient solutions but its potential
inadmissibility results in non-optimal paths for some scenarios.
R*, on the other hand borrows ideas from RRTs, yields fast
solutions, and is less dependent on a well-designed heuristic
function. This allows it to avoid local minima and reduces the
number of expanded states.

I. INTRODUCTION

Despite the recent advances in the field of bipedal hu-
manoid robots, efficient motion generation for navigation in
cluttered environments is still a challenging problem.

Popular approaches compute footstep trajectories given a
finite set of possible footstep actions that are executable by
the robot to make the search for collision-free paths tractable.
A walking controller then computes joint angle trajectories
to walk on the planned footsteps. The search in the space
of footsteps is hereby carried out either using A*-based
methods including dynamic variants (e.g., [1], [2], [3], [4]) or
randomized methods [5]. While A* will find the optimal path
for a given footstep parameterization and state discretization,
its planning performance highly depends on the quality of
the heuristic function that guides the search. Randomized
methods find results fast but don’t have any guarantees on
the solution quality of the final path, which may be far from
optimal. Furthermore, they often depend on smoothing the
final path in a post-processing step [6].

In this paper, we propose to use anytime search-based
planners for efficient footstep planning. In case obstacles
pose local minima in the search space, these planners can
efficiently create sub-optimal solutions with guarantees on

A. Hornung and M. Bennewitz are with the Humanoid Robots Lab,
University of Freiburg, Germany. A. Dornbush and M. Likhachev are with
the Robotics Institute, Carnegie Mellon University, Pittsburgh, USA.

This work has partly been supported by the German Research Foundation
(DFG) under contract number SFB/TR-8.

start

goal

(a) A* (Euclidean heur.). Optimal
result after 11.9 s.

(b) R* (Euclidean heur., w=5).
First result after 0.4 s.

(c) ARA* (Euclidean heur.,
w=5). First result after 2.7 s.

(d) ARA* (2D Dijkstra heur.,
w=5). First result after 0.7 s.

Fig. 1. Footstep planning in a densely cluttered 4×4 m2 area. Blue (shaded)
areas denote the expanded states. Computing the optimal path with A* takes
a long time due to local minima, and requires expanding large areas of
the state space (a). Anytime-planners provide fast solutions for realtime
navigation with suboptimality bounds. R* explores the state space even with
the weakly informed Euclidean distance heuristic in short time (b). ARA*
depends more on the heuristic function for fast initial results (c)(d).

the solution quality. While it is desired to fully plan the
path from start to goal to decide on its feasibility, it is
often not necessary to initially find the optimal path since it
can be further improved while navigating. We first introduce
Anytime Repairing A* (ARA*, [7]) for footstep planning
and evaluate various heuristics for it. ARA* runs a series
of weighted A* (wA*) searches, thereby efficiently re-
using previous information. wA* inflates the heuristic by a
factor w. As a second planner, which depends less on the
heuristic function, we propose to use R* [8], an A* search
variant that combines wA* in a local deterministic search
with a randomized component, thereby trying to speed up
the search. In contrast to purely randomized approaches such
as rapidly-exploring random trees, R* provides probabilistic
guarantees on the sub-optimality of the solution.

We present our extensions to search-based footstep plan-
ning and provide a comprehensive comparison of the plan-
ners to existing approaches (see Fig. 1). We thoroughly



discuss the performance for different situations and heuristic
functions. As the experiments demonstrate, we are able to
plan even long footstep paths in short planning times. Due
to search-based planning, the paths are directed towards the
goal and have provable suboptimality bounds. ARA* requires
the 2D Dijkstra path heuristic to efficiently deal with local
minima such as walls blocking the path to the goal. This
heuristic is potentially inadmissible since it does not consider
stepping over obstacles, which leads to non-optimal results in
some scenarios. R* is less dependent on the heuristic function
and finds efficient results in short planning times even with
the less informed but admissible Euclidean distance heuristic.

Our framework builds upon and extends the capabilities
of the Search-based Planning Library (SBPL, [9]) and is
available open-source as part of our ROS footstep planner at
http://www.ros.org/wiki/footstep_planner.

II. RELATED WORK

In the last few years, several approaches to planning
paths for humanoids have been presented. First approaches
computed a local footstep path to follow a globally planned
2D path [10], [11]. The drawback here is that the globally
computed 2D path may be rather inefficient since it does not
consider actions to step over obstacles.

Gutmann et al. [12] and Candido et al. [13] use different
motion primitives according to the type of terrain/passage
and locally plan paths for regions based on the corresponding
motion primitive. These approaches consider various motion
behaviors but also do not adapt footstep locations to traverse
objects, which may lead to sub-optimal behavior.

Recently, several approaches have been presented that use
rapidly-exploring random trees (RRTs) [5] or probabilistic
roadmaps (PRMs) [6] to plan motions for humanoids, in-
cluding stepping over actions or highly complex and com-
putationally expensive whole body motions. The drawback
of these randomized methods is that no bounds on the quality
of the found solution can be given as it is the case for
A*-based planning methods. To this end, RRT* provides
probabilistic convergence to an optimal solution and was
recently extended for anytime motion planning [14], albeit
only for a wheeled vehicle so far.

Chestnutt et al. [3], [4] were the first who proposed to
plan footstep paths using A* search. With a set of possible
footstep actions, the robot is able to traverse obstacles by
stepping over them. In our previous work [2], we devel-
oped an extension of this approach and presented dynamic
replanning of footstep paths to be able to efficiently replan
paths, thereby reusing information from previous searches.
To obtain fast planning results for long distances, we pre-
viously relied on pre-computing footstep transitions across
obstacle areas in order to estimate the traversal costs [1].
Afterwards, an adaptive planner switched between 2D path
planning and footsteps depending on the difficulty of the
area. However, pre-computation is not always feasible, and
a densely cluttered environment would require estimating all
possible paths through it.

Parameter Value / Range

w 10 cm
h 16 cm
∆x [−10, 22] cm
∆y [12, 28] cm
∆θ [−0.23, 40.0]◦

Fig. 2. Footstep transition model (left) and parameterization for a large
humanoid such as HRP-2 or ASIMO, consisting of 14 different steps (middle
and right).

Vernaza et al. [15] presented search-based planning for
a quadruped robot. The authors compute global plans in
a stance graph with R*. Compared to humanoid footstep
planning, their quadruped only has point feet, and planning
was performed in a relatively small area of rough terrain.

To the best of our knowledge, we present the first thorough
evaluation of anytime search-based footstep planning with
the aim of near-realtime plan results over long distances.

III. PLANNING FRAMEWORK

A. States, Actions, Transition Model, and Lattice Graph

The robot’s state is described by the global position
and orientation of its stance foot s = (x, y, θ), alternating
between the right and left foot.

A single footstep action is parameterized by the dis-
placement of the moving foot (left or right) relative to the
stance foot, as illustrated in Fig. 2. Under the constraint that
humanoids move the left and the right leg alternating and that
the possible footsteps for both feet are symmetric, a footstep
action a can be parameterized by a = (∆x,∆y,∆θ) relative
to the position of the stance foot.

When the footstep planner expands a state s, it determines
all successor states s′ resulting from applying the transitions
of all available actions a ∈ A: s′ = t(s, a). The resulting
states s′ are checked for collisions with obstacles and invalid
states are discarded.

The costs of a state transition from s to s′ are given by
the transition costs c(s, s′) that correspond to the execution
time according to

c(s, s′) = ‖(x, y), (x′, y′)‖+ k (1)

for s = (x, y, θ) and s′ = (x′, y′, θ′). Here, k are constant
costs associated to executing one footstep, leading to a
penalization of paths with a higher number of steps. We
hereby assume that the effort of changing the orientation
of a footstep can be neglected compared to the Euclidean
distance.

The iterative construction of states (x, y, θ) connected by
footsteps builds a sparsely-connected lattice graph, where the
single footstep actions correspond to the motion primitives
used in search-based planning. In contrast to search-based
motion planning for wheeled robots (e.g., [16], [17]), for
humanoids the available motion primitives are alternated
between left and right leg. In case only shallow obstacles are
considered, solely the end foot location of a footstep action
needs to be collision-free, as humanoids can step over these
obstacles.



The footstep set for a large humanoid robot that we use
throughout this work is shown in Fig. 2 (middle). Since this
represents a discrete set of stepping motions derived from the
kinematic range of the humanoid, the goal location (given
as a pair of footsteps or a single state) may not be exactly
reached, or require too many intermediate steps to reach.
Thus, we dynamically extend the footstep set with a transi-
tion to the goal if it is reachable from the current state.

B. Environment Model and Collision Checking

We use a 2D grid map consisting of equally-sized grid
cells that are marked as either free or occupied. As in [1], oc-
cupied cells also contain traversability information, enabling
the robot to differentiate between shallow obstacles that can
be stepped over (such as uneven floor or clutter), and obsta-
cles that have to be avoided with a larger clearance (such as
walls or furniture).

In order to validate a possible footstep, a planner needs
to check if the footstep collides with an obstacle in the
environment. Because this validation needs to be performed
for all successors of an expanded state, it should be as
efficient as possible. Here, we apply an efficient recursive
collision check in the distance map [2] and assume that the
humanoid’s footprint is rectangular, or can be approximated
by a rectangular bounding box.

C. Search-based Planning

On the lattice graph, search methods such as A* can be
applied. The costs to transition between states are given from
the transition model (1) and only valid states remain after
collision checking. The search is guided towards the goal by
a heuristic that can include different information.

Common heuristics for footstep planning are the straight-
line Euclidean distance to the goal, or the estimated costs
along a 2D path planned with A* or Dijkstra in a grid. The
latter is potentially inadmissible because it does not reflect
the humanoid’s capability of stepping over obstacles [2], [3].

IV. WEIGHTED A* SEARCH

As a basis for both ARA* and R*, we will first recapit-
ulate weighted A* (wA*) search. A* search expands states
according to the evaluation function

f(s) = g(s) + h(s), (2)

where g(s) are the actual costs of the best path from the
start to the current state s and the heuristic h(s) provides
the estimated costs to the goal from state s. h(s, s′) denotes
the heuristic costs from a state s to s′. For the optimality of
A* to hold, h(s) must be admissible, i.e.

∀s : h(s) ≤ c(s, goal), (3)

where c(s, goal) denotes the true costs of traversing from
state s to the goal.

wA* inflates h with a factor w ≥ 1 which results in
suboptimal paths that can be found faster, thereby expanding
fewer states. With this inflated heuristic, the quality of the

start goal

(a) w = 10 (b) w = 2 (c) w = 1 (A*)

Fig. 3. wA* and ARA* footstep planning (the paths and expansions are
identical) around an obstacle for different heuristic inflation weights w.
Here, the Euclidean distance to the goal was used as heuristic. The expanded
state area is shaded in blue. An inflated heuristic results in fewer expanded
states and faster planning times at the cost of suboptimal paths.

start goal

(a) initial w = 10, final w = 1 (b) initial w = 10, final w = 1

Fig. 4. ARA* planning around a local minimum with a 2D Dijkstra path
as informed heuristic. In (a), planning succeeded after 1.8 s with 267 288
expanded states. However, the heuristic wrongly leads into a non-traversable
narrow passage in (b) where planning succeeded after 15.0 s with 1 892 608
expanded states.

solution can be traded off for efficiency, while the resulting
paths are guaranteed to cost no more than w times the cost
of an optimal path [7]. For w = 1, this corresponds to a
regular A* search. As illustration, Fig. 3 shows the resulting
footstep plans around an obstacle and the expanded states
for different weights w.

V. FOOTSTEP PLANNING WITH ARA*
Anytime Repairing A* (ARA*) search runs a series of

wA* searches while efficiently reusing previous informa-
tion [7]. An initially large w causes the search to find a
non-optimal initial solution quickly. Then, as time allows, the
search reruns with incrementally lower values for w while
reusing much of the information from previous iterations.
Given enough time, ARA* finally searches with w = 1,
producing an optimal path. If the planner runs out of time
before, the cost of the best solution found is guaranteed to
be no worse than w times the optimal solution cost. This
allows ARA* to find some solution faster than regular A*,
and to approach optimality as time allows.

As any heuristic search, the efficiency of ARA* depends
on the quality of the used heuristic. The more informed it is
of the environment, the fewer states need to be expanded. The
standard heuristic of the Euclidean distance to the goal will
create local minima around obstacles that block the straight
path to the goal, and forces the planner to expand large areas
of the state space (Fig. 3(c)).

Compared to that, using a 2D Dijkstra path to the goal
as heuristic is better informed of obstacles. This results in
expanding states on paths around the obstacles instead of
local minima (Fig. 4(a)), and it has been shown to result in
more efficient planning times [2], [3]. However, this heuristic



Algorithm 1: Single iteration of R*
select unexpanded state s ∈ Γ (priority to states not labeled as AVOID)
if path of edge bp(s)→ s not computed yet then

try to compute path bp(s)→ s with wA*
if failed then label s as AVOID
else

update g(s) based on cost of found path and g(bp(s))
if g(s) > w · h(sstart, s) then label s as AVOID;

else // expand s by growing Γ
let SUCCS(s) be k randomly chosen states at distance ∆ from s
if goal within distance ∆ from s then add goal to SUCCS(s);
foreach s′ ∈ SUCCS(s) do

add s′ and edge s→ s′ to Γ
bp(s′) := s // set backpointer to predecessor s

is potentially inadmissible and may even result in inefficient
or no solutions at all in the case of footstep planning. It
may also be susceptible to other types of local minima,
again leading to inefficient planning. As an example, consider
Fig. 4(b) with a narrow passage through the obstacle. The
2D Dijkstra heuristic will lead the planner to expand states
through this passage even though it is not traversable with
stepping motions. “Inflating” the obstacles by the robot’s
circumcircle for computing the 2D heuristic path would
prevent this specific problem, but essentially degrades the
planning process to planning footsteps around a 2D path,
resulting in non-optimal paths since the robot can no longer
step through clutter [1]. To keep this capability, only the foot
incircle can be used as the maximum obstacle inflation radius
for the heuristic.

In case a location is surrounded by planar obstacles or
clutter, there does not even exist a valid Dijkstra path as
heuristic. This is the case e.g. with shallow steps, where each
edge must be treated as an obstacle.

All in all, ARA* is highly dependent on a well-designed
heuristic function for efficient results. Designing this heuris-
tic becomes a challenging problem in itself for complex
environments.

VI. FOOTSTEP PLANNING WITH R*

The randomized A* search (R*) aims to solve that problem
by depending less on the quality of the heuristic function [8].
The search avoids local minima by running a series of short-
range, fast wA* searches towards randomly chosen sub-
goals. The exploration of the search space with random
sub-goals relates to randomized planners such as RRTs.
But contrary to them, R* aims to minimize the solution
cost and provides probabilistic guarantees of the solution
suboptimality [8]. In the context of navigation planning, R*
is able to solve more problems and provide better solutions
than RRTs.

R* iteratively constructs a graph Γ of sparsely placed
states in the same lattice graph as the dense search (see
Algorithm 1). At each iteration, a state in Γ is expanded
by generating k random successor states at a distance ∆.
Any goal state within ∆ is added to the successors of s as
well. For footstep planning, there can be up to two valid goal
states, corresponding to the left and the right foot.

Fig. 5. R*-expansion of a state s ∈ Γ (dark gray) to which a local footstep
path (light gray / dashed) exists. k successors are determined in a random
direction at distance ∆. If a successor s′ is collision-free, it is added to
Γ with the edge s → s′ and the pointer to its predecessor bp(s′) = s is
stored. At the next expansion of s′, the search tries to find a local footstep
path between s and s′.

start goal

(a) w = 10 (b) w = 2 (c) w = 1

Fig. 6. R* iterations for different heuristic inflation weights w. As heuristic
the Euclidean distance to the goal was used.

Each edge in Γ between two random states corresponds
to a path in the original, dense search graph, which is
determined by a local search with wA*. R* hereby first tries
to find all “easy” local paths. If a local path requires too many
expansions, it is labeled as AVOID and will only be planned
when required to meet the suboptimality bounds. During the
whole expansion from start to goal, R* provides probabilistic
guarantees on the suboptimality of the solution by heuristic
inflation w of the local wA* search. As in ARA*, R*
iteratively lowers w and re-runs the search if a given planning
time limit permits.

Generating the random nodes in Γ ensures the exploration
of the search space. For footstep planning with humanoid
robots, we randomly sample a direction and place a state
s′ at distance ∆ from the current state, as illustrated in
Fig. 5. The leg of the state (left or right) is also chosen
randomly, whereas its orientation is given by the initial
random direction to favor forward walking. If s′ is collision-
free, it is added to Γ along with the edge s→ s′.

Examples for different weights in the scenario with a local
minimum are shown in Fig. 6, using the Euclidean distance
heuristic. At the beginning, R* sparsely samples the state
space towards the goal and around the obstacle. As the
heuristic inflation w approaches 1, the state space expansion
grows more dense in order to find the optimal path. Only
then the expansion resembles wA* and ARA* expansions.

VII. EXPERIMENTS

In the experiments, we evaluate and compare the perfor-
mance of ARA* and R* for footstep planning. We chose a
lattice graph resolution (discretization) of 1 cm for x/y and 5◦

for θ with the footstep parameterization from Fig. 2. This
discretization is used to check equality when expanding states
on the lattice. The occupancy maps for collision checks have



1 m

start goal

(a) ARA* with Euclidean heuristic after 43 s (b) ARA* with Dijkstra heuristic after 5 s (c) R* with Euclidean heuristic after 5 s

Fig. 7. Footstep planning with a time limit of 5 seconds between two rooms of an indoor environment. Gray areas denote shallow obstacles that the
robot can step over, black areas denote objects that the robot has to avoid (tables and walls). ARA* with the Euclidean heuristic fails to find a path
within the time limit and requires 43 s to find a first solution with w = 10. With the Dijkstra heuristic, ARA* finds a near-optimal path within the time
limit (final w = 1.4). R* finds a path even with the Euclidean heuristic (final w = 7).

1 m

start

goal

clutter

(a) ARA* with Euclidean heuristic after 92 s (b) ARA* with Dijkstra heuristic after 5 s (c) R* with Euclidean heuristic after 5 s

Fig. 8. Footstep planning with a time limit of 5 seconds through a cluttered passage. ARA* with the Euclidean heuristic fails to find a path within the
time limit and requires 92 s to find a first solution with w = 10. The inadmissible Dijkstra heuristic results in a detour due to the clutter blocking the
heuristic path. R* finds a path even with the Euclidean heuristic (final w = 8).

a resolution of 1 cm and angles are preserved to be contin-
uous in the collision check. The robot needs to maintain a
clearance of 15 cm to obstacles marked as walls. The inflation
radius for the 2D Dijkstra heuristic is the foot incircle
radius of 5 cm, as explained in Sec. V. We experimentally
determined ∆=1.5 m, k=20, and the expansion limit for easy-
to-find paths as 500 for R*. Planning a distance of 1.5 m in
collision-free space requires 100–200 A* expansions with
our footstep parameterization. All planning times are given
for a single core of a desktop CPU (Intel Core i7, 3.4 GHz).

A. Planning in an Indoor Environment with Limited Time

In a first experiment, we evaluate the algorithms quali-
tatively in an indoor environment containing several rooms
with shallow obstacles and obstacles that have to be
avoided (walls). To obtain near-realtime plans suitable for
navigation, we set the time limit for the planners to 5 seconds
and the initial heuristic inflation weight w=10. The results
are shown in Fig. 7. With the Euclidean distance heuristic,
ARA* fails to find a plan within the given time. It requires
43 seconds for a first solution due to expansions being misled
into local minima. In this planning scenario, the 2D Dijkstra
path heuristic is very well suited due to the connectivity
of the rooms through the hallway and relatively few planar
obstacles. This leads ARA* with the Dijkstra heuristic to find

a first solution after 0.7 ms and a near-optimal path (w=1.4)
within 5 s. In comparison, R* with the Euclidean heuristic
finds a first solution after 1 s and a solution with w=7 within
the time limit of 5 s. It expands fewer states than ARA*
with the same heuristic. Since we are mainly interested in
using this admissible heuristic, we omit results of R* with
the Dijkstra heuristic.

The problem of using the 2D Dijkstra heuristic becomes
evident in a second scenario with different start and goal
locations. Here, the optimal path leads through a passage
blocked by clutter that the robot can step over (Fig. 8). A
similar situation arises when there is a door sill that the
robot should avoid stepping onto, which poses an obstacle
completely blocking the doorway in 2D. Again, ARA* with
the Euclidean distance heuristic fails to find a path within
reasonable time while R* succeeded within the time limit
of 5 seconds. In this scenario, the Dijkstra heuristic is no
longer admissible since the clutter blocks its path through
the doorway. As a result, ARA* with this heuristic wrongly
expands a non-optimal path despite w reaching 1.4 after 5 s.
This is because the suboptimality guarantees no longer hold
due to the heuristic inadmissibility, and demonstrates that the
Dijkstra heuristic is a poor choice for footstep planning in
cluttered environments.



0 2 4 6 8
0

20

40

60

80

100

Time [s]

Pr
ob

le
m

s
so

lv
ed

[%
]

R* Euclidean heur.
ARA* Dijkstra heur.

ARA* Euclidean heur.

Fig. 9. A densely cluttered area (left) and the success rate for 12 random
start and goal configurations in it (right). The percentage of solved problems
within a certain time is shown for the first solution with w=5.

TABLE I
PERFORMANCE COMPARISON FOR FIRST SOLUTIONS IN A DENSELY

CLUTTERED ENVIRONMENT

Planner Heuristic Planning time [s] Path costs

R* (w=5) Euclidean 0.32 ± 0.23 16.45 ± 3.16
ARA* (w=5) Euclidean 2.15 ± 2.21 13.57 ± 1.15
ARA* (w=5) 2D Dijkstra 0.56 ± 1.13 20.41 ± 5.08

Optimal: A* (w=1) Euclidean 33.31 ± 15.00 11.06 ± 1.20

B. Planning Through Dense Clutter: Initial Plan Results

The next set of experiments is designed to evaluate how
the different planners can cope with densely cluttered scenes
such as the 4 × 4 m2 area shown in Fig. 9 (left). Here,
we analyze the planning time and path quality of the first
solution. To this end, we plan footstep paths between 12
random start and goal locations approximately 3.5 m apart.
A* with the Euclidean distance heuristic requires on average
33 s to find the optimal paths containing 37 single steps on
average. Fig. 9 (right) shows the success rate for the anytime
planners to find the first solution with w=5 and Table I shows
the aggregated statistics as mean and standard deviation.

As in the indoor experiments, R* succeeds in finding
fast results in general. ARA* with the admissible Euclidean
heuristic requires more planning time even for initial subop-
timal results, while it needs less time with the inadmissible
Dijkstra heuristic. The Dijkstra heuristic also leads to some
longer paths, since it overestimates in some instances. All
anytime planners find paths significantly faster than A*, at
the cost of longer paths for the initial solution. Fig. 1 shows
the paths and expanded states in comparison for one start
and goal location. Given enough planning time, both R*
and ARA* with the Euclidean heuristic will converge to the
optimal result from A* planning.

With a localization system running to correct for motion
drift, the planned paths can be directly used for humanoid
navigation [2]. The robot can hereby continue to plan while
executing an already planned suboptimal solution, dynami-
cally switching to the better plan after each step.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented footstep planning with the any-
time search algorithms ARA* and R*. As we demonstrated
in the experiments, this enables planning efficient paths
with provable suboptimality within short planning times. We

found ARA* with the 2D Dijkstra path heuristic suitable for
some planning scenarios, but generally in danger of yielding
non-optimal paths. ARA* with the admissible Euclidean
heuristic takes too much time and expands too many states in
the presence of local minima. R*, on the other hand, yields
fast solutions even with the Euclidean heuristic and avoids
local minima.

Although plan execution and re-planning was not the focus
of this work, an anytime variant of D* can be employed
similar as in our previous work [1], [2]. This enables efficient
plan re-usage in case of updated localization estimates or
changes in the environment while the robot is walking. Our
approach can be extended to 3D when collision checks
are also performed between the robot’s 3D model and the
environment, similar to [5].

REFERENCES

[1] A. Hornung and M. Bennewitz, “Adaptive level-of-detail planning for
efficient humanoid navigation,” in Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2012.

[2] J. Garimort, A. Hornung, and M. Bennewitz, “Humanoid navigation
with dynamic footstep plans,” in Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2011.

[3] J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K. Hodgins, and
T. Kanade, “Footstep planning for the Honda ASIMO humanoid,” in
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2005.

[4] J. Chestnutt, K. Nishiwaki, J. Kuffner, and S. Kagami, “An adaptive
action model for legged navigation planning,” in Proc. of the IEEE-
RAS Int. Conf. on Humanoid Robots (Humanoids), 2007.

[5] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida, “Fast
humanoid robot collision-free footstep planning using swept volume
approximations,” IEEE Transactions on Robotics, vol. 28, pp. 427–
439, 2012.

[6] K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited humanoid loco-
motion planning,” in Proc. of the IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoids), 2005.

[7] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with
provable bounds on sub-optimality,” in Proc. of the Conf. on Neural
Information Processing Systems (NIPS), 2004.

[8] M. Likhachev and A. Stentz, “R* search,” in Proc. of the National
Conf. on Artificial Intelligence (AAAI), 2008.

[9] M. Likhachev, http://www.ros.org/wiki/sbpl, 2010.
[10] K. Okada, T. Ogura, A. Haneda, and M. Inaba, “Autonomous 3D

walking system for a humanoid robot based on visual step recognition
and 3D foot step planner,” in Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 2005.

[11] T.-Y. Li, P.-F. Chen, and P.-Z. Huang, “Motion planning for humanoid
walking in a layered environment,” in Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2003.

[12] J.-S. Gutmann, M. Fukuchi, and M. Fujita, “A modular architecture for
humanoid robot navigation,” in Proc. of the IEEE-RAS Int. Conf. on
Humanoid Robots (Humanoids), 2005.

[13] S. Candido, Y.-T. Kim, and S. Hutchinson, “An improved hierarchical
motion planner for humanoid robots,” in Proc. of the IEEE-RAS
Int. Conf. on Humanoid Robots (Humanoids), 2008.

[14] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller,
“Anytime motion planning using the RRT*,” in Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2011.

[15] P. Vernaza, M. Likhachev, S. Bhattacharya, S. Chitta, A. Kushleyev,
and D. D. Lee, “Search-based planning for a legged robot over rough
terrain,” in Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2009.

[16] M. Likhachev and D. Ferguson, “Planning long dynamically-feasible
maneuvers for autonomous vehicles,” in Int. Journal of Robotics
Research (IJRR), 2009.

[17] M. Pivtoraiko and A. Kelly, “Generating near minimal spanning
control sets for constrained motion planning in discrete state spaces,”
in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2005.


