
Learning Adaptive Navigation Strategies
for Resource-constrained Systems
Armin Hornung1 and Maren Bennewitz1 and Cyrill Stachniss1

and Hauke Strasdat2 and Stefan Oßwald1 and Wolfram Burgard1

Abstract. The majority of navigation algorithms for mobile robots
assume that the robots possess enough computational or memory
resources to carry out the necessary calculations. Especially small
and lightweight devices, however, are resource-constrained and have
only restricted capabilities. In this paper, we present a reinforcement
learning approach for mobile robots that considers the imposed con-
straints on their sensing capabilities and computational resources, so
that they can reliably and efficiently fulfill their navigation tasks. Our
technique learns a policy that optimally trades off the speed of the
robot and the uncertainty in the observations imposed by its move-
ments. It furthermore enables the robot to learn an efficient land-
mark selection strategy to compactly model the environment. We
describe extensive simulated and real-world experiments carried out
with both wheeled and humanoid robots which demonstrate that our
learned navigation policies significantly outperform strategies using
advanced and manually optimized heuristics.

1 INTRODUCTION
Completing navigation tasks reliably and efficiently is one of the
most essential objectives for an autonomous robot. As a precondition
for finding the way to a target location, the robot needs to know its
pose in the environment. Especially in the case of small robots with
a limited payload, such as humanoids or unmanned aerial vehicles,
compact and lightweight cameras are often the only available sen-
sor for navigation. However, the movements of a mobile robot typi-
cally introduce motion blur in the acquired images, with the amount
of degradation depending on camera quality, on the lighting condi-
tions, and on the movement velocity. Figure 1 depicts two images of
patches of a wooden floor recorded with a downward-looking cam-
era on a wheeled robot and a humanoid robot walking through the
same corridor. As can be seen, the movements of the robots intro-
duce substantial motion blur to the image, which in practice will lead
to a considerable reduction of the accuracy of the position estimation
process. While there are methods to reduce the influence of motion
blur [22] or limit image acquisition to stable phases of a gait [13], the
degradation introduced by motion blur usually cannot be completely
eliminated by filtering techniques and cheap cameras typically do
not allow for an exact synchronization to the controllers executing
the motor commands or the walking gait.

Additionally, small humanoids or unmanned aerial vehicles are
often resource-constrained and possess only limited computational
power. For truly autonomous navigation in initially unknown envi-
ronments, however, the robot has to solve the so-called simultaneous

1 Dept. of Computer Science, University of Freiburg, Germany
2 Department of Computing, Imperial College London, UK

Figure 1. An indoor floor patch observed by a wheeled robot moving at
0.4 m/s (left), and by a walking humanoid robot (right). Significant motion
blur is introduced in the captured images, degrading their quality for feature

detection.

localization and mapping (SLAM) problem. This is computationally
demanding and the memory requirements increase with the num-
ber of landmarks that need to be maintained by the robot. In prac-
tice, there are many scenarios in which the number of visible land-
marks during a navigation task is significantly larger than the number
of landmarks that can be processed efficiently on an embedded de-
vice. This leads to the question which landmark should be stored and
maintained by the robot to optimally solve the navigation task.

In general, the goal of the robot is to accomplish its task as fast
as possible. However, as faster movements may introduce a higher
uncertainty in the pose estimate due to the decreased reliability of
the sensor data, they increase the risk of not being able to accom-
plish the mission. In principle, the robot therefore has to determine
the movement speed that provides the optimal trade-off between the
time needed to reach a designated target location and the risk of a
positioning failure. Such questions often arise on systems with lim-
ited computational resources. The systems are usually not able to
incorporate all the information into the state estimation processes
which introduces a corresponding information selection problem. In
this paper, we present a general approach towards learning optimal
policies for systems with limited computational or perceptional ca-
pabilities, which at the same time are efficient and lead to reliable
navigation behaviors. We use reinforcement learning (RL) to learn
which navigation actions to execute so as to reach the destination re-
liably and efficiently. At each time step, the robot decides whether it
should decrease the velocity or even stop to increase the quality of
its perceptions or to continue moving towards the goal. In previous
publications on vision-based navigation with wheeled and humanoid
robots [9, 10, 21], we discussed the key concepts of our approach.
Besides the localization problem, we investigate in this work how
reinforcement learning can be used to decide which landmark to in-

tegrate during navigation without a known map [28]. We present ex-
periments carried out in simulation and with real wheeled and hu-
manoid robots and demonstrate that the learned policies significantly
outperform manually optimized strategies and also techniques using
advanced heuristics.

This paper is structured as follows. We first give an overview over
related work in Sec. 2, followed by the background about state esti-
mation and reinforcement learning in Sec. 3. Sec. 4 details our learn-
ing approach. Finally, in Sec. 5 we present the experimental results.

2 RELATED WORK

In the last few years, various frameworks have been presented which
employ active methods in the context of localization and naviga-
tion. Kollar and Roy [15] use reinforcement learning to optimize the
robot’s trajectory during exploration. Similar to our approach, the au-
thors learn optimal parameters of the navigation controller. While we
consider the problem of reaching the destination reliably and as fast
as possible, Kollar and Roy learn the translational and rotational be-
havior which minimizes the uncertainty in SLAM (simultaneous lo-
calization and mapping). Huynh and Roy [12] generate control laws
by combining global planning and local feedback control to obtain
trajectories which minimize the pose uncertainty during navigation.
Cassandra et al. [5] introduced dual-mode controllers as heuristics
for POMDPs. A threshold on the entropy as a measure of the uncer-
tainty determines whether a greedy action or an action reducing the
uncertainty is selected.

A different method of minimizing the uncertainty about the state
of the robot is to plan a path for the robot which takes the information
gain into account. A popular approach in this context is the so-called
coastal navigation introduced by Roy et al. [23]. Recently, He et
al. [8] have applied this technique to a quadrotor helicopter for indoor
navigation with a short-range laser range finder.

Michels et al. [18] proposed to learn a control policy for high
speed obstacle avoidance of a remotely controlled car. Based on
depth estimation with a monocular vision system, steering directions
are learned. The authors focus on obstacle avoidance whereas we
consider the effect of fast movements on the observation quality and
adapt the speed accordingly. Kwok and Fox [16] apply reinforcement
learning to increase the performance of soccer-playing robots by ac-
tive sensing. In their approach, the robot learns where to point its
camera to localize relevant objects.

Bennewitz et al. [3] developed a localization method based on vi-
sual features and presented experiments with a humanoid robot. The
authors mentioned the impact of motion blur on feature extraction,
but did not address the problem specifically. Instead, their robot in-
terrupted its movement at fixed intervals to make observations. To
overcome the problem of motion blur in the context of humanoid
robots, Ido et al. [13] explicitly consider the shaking movements of
the head while walking and acquire images only during stable phases
of the gait.

Pretto et al. [22] proposed an additional image processing step
prior to feature extraction, in particular for humanoid robots. The au-
thors estimate the direction of the motion blur for image patches and
present a novel feature detection and tracking scheme. While their
approach increases the matching performance, motion blur cannot
be completely removed by filtering. However, such a pre-processing
technique could be easily combined with our learning approach to
further improve the navigation performance of the robot.

Miura et al. [19] presented a method for adaptive speed control
in partially unknown environments. In this approach, the velocity is

chosen to be as fast as possible while still being safe in the sense
that potential collisions with obstacles are avoided. The authors use
heuristics which depend on the distance of the robot to unexplored
areas and empirically determined safety margins around obstacles.

In this paper, we do not only investigate the ability to localize a ve-
hicle but also to build maps under constraint settings. The standard
method for SLAM relies on the extended Kalman filter (EKF) [6] or
its variants such as the unscented Kalman filter (UKF) [14]. Using
these approaches, the computational requirement and memory de-
mand increase at least quadratically with the number of landmarks
since the full correlation between the position of all landmarks is
taken into account. There are many approximative filtering tech-
niques for SLAM [20, 30]. These methods do not incorporate the
full correlation between the landmarks, so that the computational
constraints are less restrictive. However, their memory demand in-
creases at least linearly with the number of landmarks used.

Recently, Sala et al. [25] presented a graph-theoretic formulation
for the selection problem of visual features to perform navigation in
known environments. The optimal set of features is defined as the
minimal set with which navigation is possible. Zhang et al. [32] pro-
posed an entropy-based landmark selection method for SLAM. This
method specifies a measure of which visible landmark is best in terms
of entropy reduction. However, it only provides a vague guideline for
how many features should be selected at a given point in time. Fur-
thermore, Lerner et al. [17] presented another quality measure for
landmark selection in known environments which is based on the
comparison of pose uncertainties. Dissanayake et al. [6] suggested a
map management which ensures a uniform distribution of landmarks
over the traversed area. Apart from landmark selection, other active
methods were presented such as maximizing the SLAM estimate by
intelligent path planning [4].

3 BACKGROUND

3.1 The Unscented Kalman Filter

The unscented Kalman filter (UKF) is a recursive Bayes filter to
estimate the state xt of a dynamic system [14]. This state is rep-
resented as a multivariate Gaussian distribution N(µ,Σ). The esti-
mate is updated using nonlinear controls and observations ut and zt.
The key idea of the UKF is to apply a deterministic sampling tech-
nique that is known as the unscented transform to select a small set of
so-called sigma points around the mean. Then, the sigma points are
transformed through the nonlinear state transition and measurement
probability functions, and the Gaussian distributions are recovered
from them thereafter. The UKF can better deal with non-linearities
and thus leads to more robust estimates compared to other techniques
such as the extended Kalman filter.

3.2 Vision-based Localization

In this work, we use the UKF to perform state estimation. In case
of localization, it estimates the 3D pose of the robot in a given 2D
map of the environment. Besides Monte Carlo localization, Kalman
filter-based localization is one of the standard techniques applied in
mobile robotics.

A control ut for the UKF is obtained from the robot’s motion. On
wheeled robots, an odometry motion model can be used, utilizing the
data from the robot’s wheel encoders [31]. Humanoid robots can use
the executed motion command as a rough guess, or estimate their
movement by integrating the leg joint angles while walking [11].

2

As observations zt, we extract speeded-up robust features
(SURF) [2] from the camera images. Extracted descriptors of these
features are then matched to landmarks in a map. This was con-
structed beforehand for each environment and contains the global
2D positions and SURF descriptors of the landmarks on the floor.
Whenever the robot matches a perceived feature to a landmark in
the map, it integrates the relative 2D position of the landmark as ob-
servation zt = (rt, ϕt) in the UKF in order to estimate its pose
xt = (xt, yt, θt).

3.3 Simultaneous Localization and Mapping
We also use the UKF for the setting when the environment is not
known to the robot and the positions of landmarks need to be esti-
mated as well. This problem is widely known as the landmark-based
simultaneous localization and mapping (SLAM) problem where one
seeks to simultaneously determine the map of the environment and
the pose of the robot. We apply the UKF as a probabilistic method to
estimate the joint probability distribution over the robot’s pose and
the landmark locations:

p(xt, l1, . . . , lM | u1, . . . ,ut, z1, . . . , zt) (1)

Here, xt is the pose of the robot at time t and the position of the
landmarks l1, . . . , lM given all previous motions u1, . . . ,ut and ob-
servations z1, . . . , zt. Various approaches to estimate this posterior
have been presented in the literature.

In this paper, we address the SLAM problem using the UKF by
representing the joint state (xt, l1, . . . , lM) with 〈µ,Σ〉. This is a
standard approach which has been shown to operate successfully in
the past. The mean of the jth landmark location (µ2j+2, µ2j+3) is

denoted by
(
l
[j]
x , l

[j]
y

)
. Furthermore, we interpret the state transition

function as the robot’s motion model and assume that range and bear-
ing observations (r, ϕ) are given so that we can define a correspond-
ing observation model.

3.4 Reinforcement Learning
In reinforcement learning, an agent seeks to maximize its reward by
interacting with the environment [29]. Formally, this is defined as
a Markov decision process (MDP) using the state space S, the ac-
tions A, and the rewards R. By executing an action at ∈ A in state
st ∈ S, the agent experiences a state transition st → st+1 and ob-
tains a reward rt+1 ∈ R. The overall goal of the agent is to maximize
its return Rt given by

Rt =

T∑
i=t+1

ri , (2)

where T is the time when the final state is reached. One finite se-
quence of states s0, . . . , sT is called an episode.

The decision of which action to take in a certain state is governed
by the policy

π(s, a) = p(a|s) ∀s ∈ S , (3)

which denotes the probability of taking action a in state s. The
action-value function, also called Q-function, for a policy π is de-
fined as

Qπ(s, a) = Eπ{Rt|st = s, at = a} , (4)

which denotes the expected return of taking action a in state s and
following policy π afterward. The optimal policy maximizes the ex-
pected return, which corresponds to the maximum Q-value for each
state-action pair.

Figure 2. Illustration of the single-goal navigation task (a-c) and the
round-trip task (d).

4 LEARNING NAVIGATION POLICIES

In our work, we consider three typical navigation tasks and analyze
how to solve them in the reinforcement learning setting. In the first
task, the robot has to reach a target location as fast as possible while
staying localized using its camera and a given map. To achieve this,
the robot has to adapt its travel speed to obtain good feature observa-
tions on the one hand, while it has to drive as fast as possible to reach
its goal quickly on the other hand. Note that this single goal naviga-
tion task can be easily extended to a multi-waypoint path following
task. Such a path of waypoints may be given to the robot by a higher
level task planner or a path planner such as A∗.

The second and third task address the problem of navigating in an
environment without a known map towards a given (relative) loca-
tion and to perform round-trip navigation tasks, respectively. Here,
the challenge is to select a good subset of landmarks to solving the
SLAM problem while at the same time taking into account the com-
putational constraints of the system.

Because the belief about the robot’s state is represented by a prob-
ability distribution in the UKF, the system is ideally modeled by
a partially observable MDP (POMDP) [27], which requires an ex-
plicit modeling of the probability distribution of the state. This makes
POMDPs computationally hard to solve and intractable for most real-
world tasks. We use the so-called augmented MDP [24] as approxi-
mation of the POMDP. Hereby, the belief of the state is represented
by its most-likely estimate and the task is modeled as an MDP. The
uncertainty of the underlying belief distribution is taken into account
by including the corresponding entropy in the state representation.

4.1 Navigation Tasks

4.1.1 Navigation Task with a Given Map

Let us consider the following most basic navigation task (Fig. 2(a)).
The robot is located at a starting position A and is supposed to reach
a goal position B. In this first setting, the robot is supposed to have
a map of the environment, that means it knows where the individual
landmarks it can observe are located in the environment. However,
the robot’s motion is affected by drift and the overall motion influ-
ences the visual perception of the robot because the observed scene
is affected by motion blur. The faster the robot moves, the more its
visual perception is degraded. This has a direct impact on feature ex-
traction and matching and, thus, on the localization performance. By
moving slowly or stopping from time to time, the negative impact of
motion blur can be avoided, but the robot needs more time to finish
the navigation task.

3

Rewards Since we require the robot to reach the goal as quickly
as possible, we encode this directly in the reward function. The im-
mediate reward at time t is given as

rt =

{
C if t = T

−∆t otherwise,
(5)

where C is some constant, T is the final time step, and ∆t is the time
interval between the update steps. The final state is reached when
the robot’s true pose is sufficiently close to the destination. This has
the effect that the robot is driven to reach the destination as fast as
possible in order to maximize its reward.

Note that we do not model an explicit punishment for delocal-
ization or running into a wall. We assume that the robot has some
sensors for obstacle avoidance on board, such as bumpers, infrared,
or sonar. When the robot is in danger of running into an obstacle, it is
immediately stopped by the obstacle avoidance. The time it takes to
stop, re-localize, and accelerate is the implicit punishment for getting
off the track, which is typically a few seconds.

Actions The set of available actions in this task is coupled to the
mobile robot at hand. On our wheeled robot, we have a basic naviga-
tion controller available which steers the robot to the next goal point
based on the current most-likely pose estimate xt = (xt, yt, θt) and
the desired target velocity vtarget. Depending on the angle φ to the
next goal point, the translational and rotational velocities v and ω
are set in the following way. When |ϕ| ≥ π

2
, v is set to zero and the

robot orients itself towards the goal. Otherwise, v is set to the desired
target velocity vtarget and ω is set depending on φ.

As parameter of the navigation controller which influences the
quality of the observed images, we learn the overall velocity limit
vtarget as combination of the translational and rotational velocity. That
means that the resulting actions for reinforcement learning can be
kept as simple as setting vtarget (in m/s) to the following values:

A = {0.1, 0.2, 0.3, 0.4, 1.0} . (6)

Regarding the humanoid robot, a discrete set of actions can be di-
rectly used to learn the controlling policy to reach the goal fast and re-
liably. This eliminates the need for a navigation controller that steers
the robot to the goal, because the full controller policy is learned.
Note that there is still a gait controller running on the humanoid,
which translates the walking commands into commands for the joint
angles. On our humanoid, we employ the following actions:

• Walk forward: The robot walks 10 cm in forward direc-
tion (2 steps).

• Turn left / turn right: The robot turns 23◦ on the spot in the given
direction (2 steps).

• Stand still: The robot interrupts its movement and waits for
0.7 seconds to acquire a good quality image for its localization.
This is the time required for the robot’s body to stabilize after it
has stopped.

We chose these actions since they proved to yield the most reliable
and predictable behavior.

4.1.2 Single-goal Navigation Task Without Known
Landmark Locations

In the second scenario, the landmark locations are not known to the
robot and it also has to reach a given location (specified in relative

coordinates to the start location). Thus, the robot has to solve a sim-
ilar task as before but without a map and thus has to estimate the
map online (Fig. 2(b-c)) . Here, the problem arises that estimating
the map as well leads to a significantly increased overhead in mem-
ory and computational load. Thus, the key task of the robot is to
select and integrate only landmarks that are useful for the navigation
task. We assume that N landmarks are distributed randomly over the
environment. When the robot perceives a new landmark, it has to de-
cide whether it should integrate this landmark in the UKF or not. The
UKF has a landmark capacity of M landmarks with M � N .

Rewards The goal is to choose the landmarks in such a way that
the distance of the final position of the robot (xT , yT)>true and the
target positionB is minimized. In this scenario, we ignore the impact
of the robot’s velocity on its perception and the potential problem of
missing landmark detections due to motion blur for now. Hence, we
define the reward as

rt =

{
−
∣∣B − (xT , yT)>true

∣∣ if t = T

0 else,
(7)

which is the negative Euclidean distance of the robot’s true position
to the goal B if the training episode reaches the terminal state sT ;
intermediate rewards are set to zero. In this task, the terminal state is
reached when the robot’s estimated position is at the goal B.

Actions In this task, we utilize the existing navigation controller
described above with a constant velocity. Thus, the robot only needs
to decides whether to integrate a new landmark or not, which is a
binary decision:

A = {areject, aaccept} (8)

4.1.3 Round-trip Task Without Known Landmark Locations

In the round-trip task, the robot is supposed to reach several subgoals
(see Fig. 2 (d)). It starts atA and is supposed to drive toB, back toA
and then drive to B and A again. A new subgoal is selected as soon
as the position estimate of the robot (xt, yt)

T is close to the current
subgoal – independent of the robot’s true position (xt, yt)

T
true. In this

task, the error in the pose estimate should be minimized over the
whole trajectory. For convenience, we specify the return directly as
the negative average error over the remaining trajectory

Rt = − 1

|T − t|

T∑
t′=t

∣∣∣∣(xt′

yt′

)
true

−
(
xt′

yt′

)∣∣∣∣ , (9)

whereas t specifies the current time and T is the time when the robot
reaches its final destination. The actions are identical to the single-
goal SLAM task. To simplify things for the second task, landmark
selection is only allowed while the robot moves fromA toB the first
time. The round-trip task is more complex than the previous one.
However, it is worth considering since it focuses on the loop-closing
problem of SLAM where a robot re-visits previously seen areas in
order to correct incremental pose errors. Therefore, this task has a
higher practical relevance than the single-goal task.

4.2 State Space S
The complete state of the robot consists of the global pose estimate
xt, the current velocity, and a characterization of the environment

4

including landmarks and waypoints to reach. However, this com-
plete state representation is impractical to consider for reinforcement
learning. Learning in this complete description would take too long
and generalization would be hard to achieve.

Thus, we define a set of features based on the complete state which
characterizes the state sufficiently detailed and as general as needed
for learning a specific navigation task. Based on the current, most-
likely pose estimate xt = (xt, yt, θt)

> and the environment, we de-
fine the following features:

• The Euclidean distance to the next goal point (gx, gy)>

d =
√

(gx − xt)2 + (gy − yt)2. (10)

• The angle relative to the next goal point

φ = atan2(gy − yt, gx − xt)− θt. (11)

In combination with d, this completely characterizes the rela-
tive position of the next goal point which has to be reached. In
multiple-waypoint scenarios, the next waypoint is regarded as goal
point.

• The uncertainty of the localization, represented in terms of the
differential entropy of the pose:

h =
1

2
ln
(
(2πe)3

∣∣det
(
Σ3×3)∣∣) . (12)

This measures how well the robot is localized: A higher entropy
corresponds to a higher pose uncertainty.

In addition, the following features are relevant in the context of
landmark integration in SLAM:

• The angle ϕl to the potential new landmark l[new].
• The number of landmarks already integrated in the UKF

m = |{j ∈M : Σ2j+2 <∞∧ Σ2j+3 <∞}| , (13)

where Σ2j+2 and Σ2j+3 are the variances of the jth landmark in
the x and y direction.

• The distance of the potential new landmark to the closest landmark
already integrated

dl = min
j ∈ L with

Σ2j+2 < ∞ ∧ Σ2j+3 < ∞

∣∣∣∣∣
(

l
[j]
x

l
[j]
y

)
−

(
l
[new]
x

l
[new]
y

)∣∣∣∣∣ .
(14)

For the localization task with motion blur (see Sec. 4.1.1), we
found the features d, φ, and h to be most relevant and sufficient for
completing the task. Other combinations of them, also including the
current velocity and the landmark density in the state representation,
did not lead to a significant improvement of the robot’s performance.

In the single-goal and round trip SLAM tasks, we use a combina-
tion of all of the above features, and additionally evaluate the effec-
tiveness of including the entropy in the state space.

Since the state space of the features is usually continuous, we need
to estimate the Q-function with some function approximator. Ei-
ther k-nearest neighbor (k-NN) regression [26] or radial basis func-
tion (RBF) networks [7] yielded good results in our experiments. In
contrast to a strictly discrete representation as feature table, these
methods suffer less from the effects of discretization.

Figure 3. Pioneer 2-DX8 robot in the experimental indoor
environment (left) and an observed floor patch with SURF as visual

landmarks (right).

Figure 4. The Nao humanoid robot [1] in the experimental indoor
environment (left) and an observed floor patch with SURF as visual

landmarks (right).

5 EXPERIMENTS
5.1 Navigation Policy for a Known Map
We evaluated our approach for known environments on a wheeled Pi-
oneer robot (Fig. 3) as well as on our Nao humanoid robot (Fig. 4).
The wheeled robot was equipped with a top-mounted camera observ-
ing the floor in front of it. Additionally, it carries a laser range finder
for obstacle avoidance and to provide a ground truth pose estimate
for evaluation.

The humanoid robot is equipped with two small cameras of web-
cam quality. One of them points to the ground in front of the robot,
which we use for localization. In addition, Nao has two ultrasound
sensors which can be used for obstacle avoidance. Since the hu-
manoid has no knowledge about its true pose, we use a special marker
to allow the robot to identify when it has reached the goal location.
This artificial landmark can be reliably detected even while the robot
is walking.

5.1.1 Learning the Navigation Policy in Simulation

The policy was learned in simulations. This allowed us to evaluate
different parameter settings for the learning algorithms and to run
a large number of learning and testing episodes without putting too
much strain on the real robots. Each simulated robot and its environ-
ment are modeled as close to reality as possible. This includes the
motion noise of the robots with a systematic drift to the left or right.
We use a map of artificial landmarks whose positions are randomly
distributed. To avoid an adaption of a robot’s behavior to a specific
environment, landmark positions and the direction of the systematic
motion error were randomized in each new learning and evaluation
episode.

5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

p

v [m/s]

Experimental results
Fitted sigmoid function

Figure 5. Experimentally determined observation model p(z|v) for a given
velocity v of a wheeled robot in our indoor environment. The measured data

(blue crosses) are approximated by a sigmoid function (red line).

dest.

start

1m

Figure 6. Evolution of the trajectory followed by the humanoid throughout
the 1500 learning episodes (each 10th episode is drawn). At the beginning,

random exploratory actions are chosen and the robot does not reach the goal
within a maximum of 700 seconds (light gray trajectories). Towards the end,

the robot navigates successfully and efficiently towards the
destination (black trajectories). Note that there is a high noise in the

executed motion commands.

In order to obtain a policy which takes motion blur into account,
we modeled motion blur in the simulation environment as an effect
on the probability of an observation z given the current velocity v,
i.e., we determined the probability that a feature which is in the
robot’s field of view is detected given v. This dependency p(z|v)
was experimentally estimated using real data and is approximated by
a sigmoid function (Fig. 5). On the humanoid, the amount of motion
blur depends on the executed motion command and the current phase
of the walking cycle. As we are not able to accurately synchronize
the image acquisition with the walking cycle, we use the average ob-
servation probability for each walking motion instead.

Note that we model motion blur as effect on the observation prob-
ability only in the simulation environment, it is not part of the learn-
ing state space or the robot’s state estimate. Instead, the robot learns
about this effect while interacting with the environment.

Figure 6 shows the evolution of the humanoid’s behavior through-
out the learning process. As can be seen, in the beginning the robot
chose random exploratory actions. It did not reach the goal so that
the episodes were aborted after a maximum of 700 seconds (the re-
sulting trajectories are colored light gray). After a certain number of
learning trials, however, the robot successfully navigated towards the
destination (dark gray / black trajectories). The trajectories were get-
ting more and more efficient towards the end of the learning process.
Note that the robot had a systematic error in the executed motion
command in each of the episodes.

dest.start

1m
true pose
localization

Figure 7. A typical example of the executed trajectory of a learned policy.
The corresponding state space is displayed in Fig. 8.

0

1

2

0 1 2 3 4 5 6 7 8
ve
l.
 [
m
/s
]

time [s]

action vtarget v
-8

-6

-4

-2

di
ff
.
en
tr
o
py

0

2

4

6

8

d
 [
m
]

Figure 8. A typical example of the learned policy for a wheeled robot with
the dimensions distance and entropy of the state space. The corresponding
trajectory is displayed in Fig. 7. The robot maximizes its velocity until its

uncertainty gets too high, indicated by a high value of the differential
entropy. To re-localize, it then slows down. As soon as the uncertainty
decreases as an effect of localization, it accelerates again. As the robot

approaches the goal location, it slows down more frequently.

5.1.2 Evaluation of the Learned Policy

A typical trajectory and the corresponding state space over time of
the learned policy for a wheeled robot are displayed in Fig. 7 and 8.
The robot optimizes its time to reach the destination by driving at
maximum speed as long as it is confidently localized. When there
is risk of getting lost, indicated by a high entropy, it slows down
in order to observe landmarks. Note that for different values of the
distance d, different levels of the entropy are learned to be important.
As the robot gets closer to the goal, it frequently slows down so that
the target is reliably reached. Overall, the robot stays close to the
direct connection between start and destination.

Comparison to Constant Velocity A standard approach for a
wheeled robot is to set a constant target velocity vtarget. Figure 9(a)
displays an evaluation of following a constant velocity from vtarget =
0.2 m/s to 1 m/s, compared to our learned policy. Up to 0.4 m/s, an in-
creased velocity directly improves the time to destination. For higher
velocities, the robot is no longer able to perform observations, regu-
larly gets lost on its path, and has to stop in order to avoid collisions
and to re-localize. Despite this, there is still a small improvement in
the average time to destination. This means the robot accepts the risk
of nearly colliding and getting lost in favor of a faster speed.

But even when choosing the best policy of constant velocity, our
learned approach is significantly better. While the average time to
destination at 1 m/s is 13.56 s ± 0.61 s (95% confidence interval),

6

 0

 5

 10

 15

 20

 25

 30

 35

 40

learned
policy

 0.2 0.4 0.6 0.8 1

ti
m

e
to

 d
es

ti
n
at

io
n
 [

s]

vtarget [m/s]

constant velocity
learned policy

(a) Constant velocity in the simulated sce-
nario (100 runs).

(b) Dual-mode control policies at various thresh-
olds for the entropy in the simulated sce-
nario (100 runs).

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.1 0.2 0.3 0.4 0.5 0.6 0.8 learned
policy

ti
m

e
to

 d
es

ti
n

at
io

n
 [

s]

vtarget [m/s]

constant velocity
learned policy

(c) Constant velocity in the real indoor sce-
nario (10 runs).

Figure 9. Comparison of constant velocity policies and the dual-mode controller to our learned policy in known environments. Each policy is displayed with
mean and 95% confidence interval. The learned policy is significantly better than each other policy.

the robot is able to finish the task with our learned policy in 10.04 s±
0.18 s, which corresponds to a reduction of 26%.

Comparison to Dual-Mode Controllers A more advanced ap-
proach is to employ a dual-mode controller as introduced by Cas-
sandra et al. [5]. Similar to our learned policy, the entropy is used
to decide on which action to take. When the entropy is above a
threshold hthres, an action to reduce the uncertainty is selected, oth-
erwise a greedy action is chosen. These actions are vtarget = 0.1 and
vtarget = 1.0 in our scenario, respectively. Figure 9(b) displays the
resulting times for various values of hthres compared to the learned
policy on the wheeled robot.

Using the dual-mode controller, we achieve best results for
hthres = −2, resulting in a time to reach the destination of 12.39 s±
0.31 s. The learned policy still yields a significant reduction of 17%.

Additionally, we evaluate the performance of a policy learned us-
ing our approach for the humanoid robot in comparison to a dual-
mode control policy. This dual-mode policy controls the robot to
walk forward while the estimated orientation towards the goal is
smaller than some threshold ϕ̂. Whenever the estimated angular dis-
tance to the goal is larger than ϕ̂, the robot stops its forward motion
and turns towards to goal. We chose the threshold of ϕ̂ = 35◦ since
smaller values lead to an oscillating behavior of the robot near the
destination, whereas larger values lead to frequent collisions with
the walls bounding the corridor. Whenever the uncertainty about its
pose exceeds a threshold, the robot stops in order to obtain a good
quality image. This threshold was empirically determined to mini-
mize the time to reach the destination while still achieving a success
rate of 100%. Thus, we optimized the parameters of this dual-mode
controller so as to perform best in our test environment.

It took the humanoid robot 117.18 s± 8.41 s to reach the destina-
tion with the hand-optimized controller, and only 106.66 s± 10.05 s
using our learned policy. A t-test with 95% confidence reveals that
the learned policy performs significantly better.

5.1.3 Verification on Real Robotic Systems

We now transfer the results from simulations into the real world by
applying the policy learned in simulation on real robots.

Wheeled Robot We first employ the Pioneer robot (Fig. 3) in an
indoor environment. Each policy is evaluated in 10 test runs, each

true pose
localization

start dest.

1m

true pose
localization

start dest.

1m relocalization

true pose
localization

start dest.

1m relocalization

Figure 10. Comparison of real robot trajectories at constant velocity
(top: 0.2 m/s, middle: 0.8 m/s) and variable velocity, i.e., following the

learned policy (bottom).

consisting of navigating from the start location to the destination.
The resulting navigation times are shown in Fig. 9(c).

Similar to the results from simulations, the learned policy out-
performs any policy of constant velocity by more than 25% and is
significantly better. When looking at the trajectories generated by
the policies qualitatively, the results are also similar to the simulated
ones (Fig. 10). At a slow constant velocity, the robot stays close to
the optimal path of the straight-line connection between start and
destination. When driving faster at 0.8 m/s, the robot is not able to
observe landmarks and quickly gets lost with the result of a near-
collision with the wall. Note that there is a systematic drift to the
right in the robot’s motion. Contrary to that, the robot does not need
to be stopped by the obstacle avoidance while following the learned
policy. When it in danger of getting lost, it immediately slows down
to re-localize. As a result, the robot reaches its destination reliably
and quickly.

Humanoid Robot Finally, we performed experiments with our
real humanoid (Fig. 4) navigating in our hallway environment. We

7

start 1 m
destination

Figure 11. Estimated trajectory of the humanoid while executing the
learned navigation policy in our hallway. The robot walks forward with an

error resulting from a drift to the left. Whenever it seems appropriate
according to its belief, the robot executes a turning action to re-align with the

goal. The robot stops as soon as it recognizes the goal landmark.

-5

0

5

0 20 40 60 80 100
time [sec]

walk
turn right

turn left
stand

0 20 40 60 80 100
time [sec]

entropy

est. distance to target [m]
est. angular distance to target [rad]

Figure 12. The state features over time during typical runs with a
hand-optimized controller (left) and the learned navigation policy (right) in

simulation. The hand-optimized controller stops the robot in regular
intervals to decrease the uncertainty, whereas the learned policy adapts the

observation frequency according to the current state.

conducted test runs both with the hand-optimized controller and with
the policy learned in simulation. The robot needs 93.16 s ± 10.14 s
using the hand-optimized controller compared to 86.53 s ± 8.60 s
using the learned policy, so the learned policy outperforms the hand-
optimized controller by 7.1%. Again, a t-test with 95% confidence
shows that the learned policy performs significantly better.

Figure 11 depicts a typical trajectory of the Nao robot while ex-
ecuting the learned navigation strategy (the drawn poses were esti-
mated by the localization system). As can be seen, the robot rotates
from time to time to compensate for its motion drift and to re-align
with the goal. This learned policy is not adapted to the specific drift
direction.

Note that in these experiments, we used slow walking patterns as
the Nao’s stability was highly reduced when walking faster in the
current implementation. Accordingly, the acquired images are only
moderately blurred. The robot can still match an average of 3.25
features per frame while moving, and actions to reduce the uncer-
tainty are rarely executed. Thus, the efficiency gain of the learned
controller compared to the hand-optimized controller results mainly
from choosing the navigation actions more foresightedly, which
leads to shorter paths.

In future implementations, we will optimize the humanoid’s gait,
so faster walking patterns will be used. While this will enable the
humanoid to potentially reach its goal faster, it also increases the
amount of motion blur, thus seriously reducing the average number
of successfully matched features while moving. To evaluate the im-
pact of motion blur, we learned policies for a different set of esti-
mated observation probabilities in the simulator, i.e., we decreased
the probability of a successful feature match by 80% during walking
and turning.

Again, we compared the learned policy to a hand-optimized dual-
mode controller that stops the humanoid whenever the entropy ex-
ceeds a fixed threshold. For each of the different observation prob-
abilities, we selected the hand-optimized controller leading to the
smallest average time to destination while still achieving a success
rate of 100 %. The results show that the learned policy is signifi-
cantly faster (9% gain) than the hand-optimized policy.

Figure 12 shows the state space of two typical runs with the hand-
optimized controller (left image) and the learned policy (right im-
age). The hand-optimized controller stops the robot in regular inter-
vals to obtain good observations. In contrast to that, the learned pol-
icy accepts higher uncertainties as long as the distance to the desti-
nation is high, whereas it increases the robot’s stand frequency when
approaching the destination.

5.2 Landmark Selection Policy for Navigation in
Unknown Environments

We evaluate the performance of our learned landmark selection
policies in the single-goal and round trip SLAM scenarios on our
wheeled Pioneer platform (Fig. 3), first in simulations and then on
the real robot.

5 6 7 8 9 10 11 12

without entropy
with entropy

equidis tant heuris tic
M-firs t heuris tic

error [m]

po
lic

ie
s

/ h
eu

ri
st

ic
s

Figure 13. Average performance of the learned policies and heuristics
w.r.t. 1,000 test episodes in the single-goal SLAM task. For the learned
policies, the mean over ten training runs as well as the corresponding

95%-confidence interval is shown.

5.2.1 Single-goal Task in Simulation

For the single-goal task in simulation, we choose an environment
whereN landmarks are randomly distributed in a 30 m by 60 m area.
The distance between the start position A and the goal B is set to 44
m. We train our policy for 1,000 episodes. In each episode, landmarks
are randomly re-distributed. We compare the trained policies with
two heuristics. The first one is the M -first heuristic which simply
integrates the M first landmarks that are observed. An apparently
better policy is the equidistant heuristic. With this heuristic, the robot
only integrates a new landmark after it has driven a certain distance
so that the landmarks are approximately uniformly distributed over
the whole trajectory (similar to [6]).

At first, we consider an UKF with a landmark capacity of M =
10 and an environment with N = 50 landmarks. For each learning
approach, ten training runs are performed. Each trained policy and
heuristic is evaluated in 1,000 different environments (see Fig. 13).
The one-sample t-test at 95% confidence shows that all three learning
approaches are significantly better than the equidistant heuristic.

A notable fact is that in this setting, we were not able to show that
there is any benefit from including the feature of the entropy h of
the robot’s pose in the state space. Even at 75% confidence, the t-
test did not reveal a difference between the learning approach using
the entropy compared to the setting where it is ignored. One reason
why the current entropy of the robot’s pose is not a good indicator of

8

whether to integrate a landmark or not in the SLAM task is that land-
marks are integrated with an uncertainty over the robot’s pose. That
means that the robot is not able to reduce its uncertainty immediately
after integrating a landmark. The relative position of the landmark,
for example, is a better indicator on how the robot will perform in
reaching the goal.

In order to evaluate how good the trained policies generalize, we
trained and tested a policy in environments with N = 50 as well
as N = 100 landmarks. In addition, we use UKFs with a capacity
M of five, ten, and 15 landmarks. Fig. 14 (a) illustrates the high
degree of generalization of our learning approach. For instance, if
we perform a training in a setting with N = 50 and M = 5, we
see that the trained policy leads to significantly better results than
the equidistant heuristic in all six test scenarios. This indicates that
our approach generalized over different landmark densities which is
similar to environments of different scale and sensor range.

5.2.2 Single-goal Task Performed in a Real World
Experiment

Furthermore, we evaluated our landmark selection learning approach
in the real experimental environment. Similarly to Sec. 5.1, we use
a pioneer robot equipped with a camera and laser range finder in a
hallway environment. Learning the policy in this real-world environ-
ment would be impractical because this would not only require us
to perform hundreds of training episodes but also to install different
landmark distributions for each training episode. Thus, we trained
the policy in simulation and tested it in the real-world setting. We
also compared the trained policy to the equidistant heuristic. Both
the trained policy as well as the equidistant heuristic were tested ten
times. The trained policy results in an error of 0.50±0.08 m whereas
the equidistant heuristic leads to an error of 0.66 ± 0.07 m. Hence,
the trained policy is significantly better than the equidistant heuristic
(w.r.t. a t-test at 95% confidence).

5.2.3 Round-trip Task

The performance of our learning procedure for the round-trip task is
evaluated in a simulated environment with a wheeled robot, similar
to the single-goal task. The error evaluation, however, differs since
the average localization error over the whole trajectory was consid-
ered here to provide a better performance when approaching also the
intermediate goal. Again, we compare our learning with the equidis-
tant heuristic. Fig. 14 (b) shows that the learned policy is significantly
better than the heuristic. Furthermore, it is shown that we were able
to generalize over the UKF capacity M as well as the number of
landmarks N .

6 CONCLUSION
In this paper, we presented a novel approach to learning efficient nav-
igation policies for mobile robots that are constrained in their sensing
capabilities as well as in their computational resources. We consid-
ered navigations tasks in known as well as unknown environments.
By considering these navigation problems as reinforcement learning
tasks, the robot can learn policies for choosing appropriate actions.

In case of navigating in known environments, the robot is able to
select the optimal velocity so that it reaches its target location as fast
as possible and with minimum error.

For navigation in unknown environments, the map has to be esti-
mated as well to navigate efficiently. This task, however, requires sig-
nificant computational resources. We presented an approach to learn

p
o
li

ci
es

 t
es

te
d
 i

n
 s

ce
n
ar

io

 9

 12

 15

5
/1

0
0

learned policy
equidistant heuristic

 9

 12

 15

5
/5

0

 6

 9

1
0
/1

0
0

 6

 9

1
0
/5

0

 3

 6

1
5
/1

0
0

 3

 6

5/100 5/50 10/100 10/50 15/100 15/50
1
5
/5

0
policies trained in scenario

(a) Single-goal task

p
o
li

ci
es

 t
es

te
d
 i

n
 s

ce
n
ar

io

 3

 4

 5

5
/1

0
0

learned policy

 3

 4

 5

5
/5

0

equidistant heuristic

 1

 2

1
0
/1

0
0

 1

 2

1
0
/5

0

 1

 2

1
5
/1

0
0

 1

 2

5/100 5/50 10/100 10/50 15/100 15/50

1
5
/5

0

policies trained in scenario

(b) Round-trip task

Figure 14. High degree of generalization in the single-goal task (a) and the
round trip task (b) in unknown environments. The mean error over ten
training runs and the corresponding standard derivation is shown. All

policies below the dashed horizontal line are significantly better than the
equidistant heuristic (α = 0.05).

9

an efficient landmark selection policy. The ability of a mobile robot
to decide which landmark to incorporate into its belief given the nav-
igation task at hand allows for navigation under computational con-
straints. The presented method is able to determine which landmark
is valuable for the robot to efficiently solve its current navigation
task.

In a series of real-world and simulated experiments with wheeled
robots and a humanoid, we demonstrated that our learned naviga-
tion policies significantly outperform strategies using advanced and
manually optimized heuristics.

ACKNOWLEDGEMENTS

This work has been supported by the German Research Foundation
(DFG) under contract number SFB/TR-8 and within the Research
Training Group 1103.

REFERENCES
[1] Aldebaran Robotics. The Nao humanoid robot. http://www.aldebaran-

robotics.com/en/. Retrieved June 2010.
[2] H. Bay, T. Tuytelaars, and L. V. Gool, ‘SURF: Speeded-up robust fea-

tures’, Proc. of the ninth European Conf. on Computer Vision, (2006).
[3] M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke, ‘Metric lo-

calization with scale-invariant visual features using a single perspective
camera’, in European Robotics Symposium 2006, ed., H. Christiensen,
volume 22 of STAR Springer tracts in advanced robotics, (2006).

[4] M. Bryson and S. Sukkarieh, ‘Active airborne localisation and explo-
ration in unknown environments using inertial SLAM’, in Proc. of the
IEEE Aerospace Conference, (2006).

[5] A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien, ‘Acting under un-
certainty: Discrete bayesian models for mobile-robot navigation’, in
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), (1996).

[6] G. Dissanayake, H. Durrant-Whyte, and T. Bailey, ‘A computation-
ally efficient solution to the simultaneous localisation and map build-
ing (SLAM) problem’, in Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA’00), pp. 1009–1014, (2000).

[7] K. Doya, ‘Reinforcement learning in continuous time and space’, Neu-
ral Computation, 12(1), 219–245, (2000).

[8] R. He, S. Prentice, and N. Roy, ‘Planning in information space for a
quadrotor helicopter in a GPS-denied environments’, in Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA), (2008).

[9] A. Hornung, M. Bennewitz, and H. Strasdat, ‘Efficient vision-based
navigation – Learning about the influence of motion blur’, Journal of
Autonomous Robots, 29, 137–149, (August 2010).

[10] A. Hornung, H. Strasdat, M. Bennewitz, and W. Burgard, ‘Learning
efficient policies for vision-based navigation’, in Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), (2009).

[11] A. Hornung, K. M. Wurm, and M. Bennewitz, ‘Humanoid robot lo-
calization in complex indoor environments’, in Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), (2010). Accepted
for publication.

[12] V. A. Huynh and N. Roy, ‘icLQG: Combining local and global opti-
mization for control in information space’, in Proc. of the IEEE Inter-
national Conference on Robotics and Automation (ICRA), (2009).

[13] J. Ido, Y. Shimizu, Y. Matsumoto, and T. Ogasawara, ‘Indoor Naviga-
tion for a Humanoid Robot Using a View Sequence’, The International
Journal of Robotics Research, 28(2), 315–325, (2009).

[14] S. J. Julier and J. K. Uhlmann, ‘A new extension of the Kalman filter to
nonlinear systems’, in International Symposium on Aerospace/Defense
Sensing, Simulation and Controls, pp. 182–193, (1997).

[15] T. Kollar and N. Roy, ‘Using reinforcement learning to improve ex-
ploration trajectories for error minimization’, in Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), (2006).

[16] C. Kwok and D. Fox, ‘Reinforcement learning for sensing strategies’,
in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), (2004).

[17] R. Lerner, E. Rivlin, and I. Shimshoni, ‘Landmark selection for task-
oriented navigation’, IEEE Transaction on Robotics, 23(3), (2007).

[18] J. Michels, A. Saxena, and A. Y. Ng, ‘High speed obstacle avoidance
using monocular vision and reinforcement learning’, in ICML ’05: Pro-
ceedings of the 22nd international conference on Machine learning, pp.
593–600, New York, NY, USA, (2005). ACM.

[19] J. Miura, Y. Negishi, and Y. Shirai, ‘Adaptive robot speed control by
considering map and motion uncertainty’, Journal of Robotics & Au-
tonomous Systems, 54(2), 110–117, (2006).

[20] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, ‘FastSLAM:
A factored solution to the simulaneous localization and mapping prob-
lem’, in Proc. of the National Conf. on Artificial Intelligence (AAAI’02),
pp. 593 – 598, (2002).

[21] S. Oßwald, A. Hornung, and M. Bennewitz, ‘Learning reliable and ef-
ficient navigation with a humanoid’, in Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), (2010).

[22] A. Pretto, E. Menegatti, M. Bennewitz, W. Burgard, and E. Pagello, ‘A
visual odometry framework robust to motion blur’, in Proc. of the IEEE
International Conference on Robotics & Automation (ICRA), (2009).

[23] N. Roy, W. Burgard, D. Fox, and S. Thrun, ‘Coastal navigation–mobile
robot navigation with uncertainty in dynamic environments’, in Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA), (1999).

[24] N. Roy and S. Thrun, ‘Coastal navigation with mobile robots’, in Ad-
vances in Neural Processing Systems 12 (NIPS), volume 12, (1999).

[25] P. Sala, R. Sim, A. Shokoufandeh, and S. Dickinson, ‘Landmark selec-
tion for vision-based navigation’, IEEE Transaction on Robotics, 22(2),
(2006).

[26] G. Shakhnarovich, T. Darrell, and P. Indyk, Nearest-Neighbor Methods
in Learning and Vision: Theory and Practice, MIT Press, Cambridge,
MA, USA, 2006.

[27] E. J. Sondik, The optimal control of partially observable Markov deci-
sion processes, Ph.D. dissertation, Stanford University, Stanford, USA,
1971.

[28] H. Strasdat, C. Stachniss, and W. Burgard, ‘Which landmark is useful?
Learning selection policies for navigation in unknown environments’,
in Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
(2009).

[29] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
Adaptive Computation and Machine Learning, The MIT Press, March
1998.

[30] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-
Whyte, ‘Simultaneous localization and mapping with sparse extended
information filters’, Int. Journal of Robotics Research, 23, (2004).

[31] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, The MIT
Press, September 2005.

[32] S. Zhang, L. Xie, and M. Adams, ‘Entropy based feature selection
scheme for real time simultaneous localization and map building’, in
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS’05), (2005).

10

