
Humanoid Navigation with Dynamic Footstep Plans

Johannes Garimort Armin Hornung Maren Bennewitz

Abstract— Humanoid robots possess the capability of step-
ping over or onto objects, which distinguishes them from
wheeled robots. When planning paths for humanoids, one
therefore should consider an intelligent placement of footsteps
instead of choosing detours around obstacles. In this paper, we
present an approach to optimal footstep planning for humanoid
robots. Since changes in the environment may appear and a
humanoid may deviate from its originally planned path due to
imprecise motion execution or slippage on the ground, the robot
might be forced to dynamically revise its plans. Thus, efficient
methods for planning and replanning are needed to quickly
adapt the footstep paths to new situations. We formulate the
problem of footstep planning so that it can be solved with the
incremental heuristic search method D* Lite and present our
extensions, including continuous footstep locations and efficient
collision checking for footsteps. In experiments in simulation
and with a real Nao humanoid, we demonstrate the effectiveness
of the footstep plans computed and revised by our method.
Additionally, we evaluate different footstep sets and heuristics
to identify the ones leading to the best performance in terms
of path quality and planning time. Our D* Lite algorithm for
footstep planning is available as open source implementation.

I. INTRODUCTION

Compared to wheeled robots, the greater flexibility of
humanoid robots allows for unique capabilities such as
climbing stairs and stepping over or onto objects instead
of bypassing them. However, exploiting these capabilities
during path planning is far more complex because many
degrees of freedom have to be controlled. Planning whole
body motions for navigation in the real world is computa-
tionally not feasible yet [1], [2]. A common solution is to
use predefined motions to walk on a sequence of footstep
locations, which reduces the problem to planning a sequence
of collision-free footsteps (e.g., [3], [4], [5], [6]).

In this paper, we also adopt the approach of footstep
planning to efficiently search for optimal paths in environ-
ments containing planar obstacles, uneven ground, holes,
or general locations which have to be avoided. In contrast
to previous approaches which use A* search for planning
footstep paths, we apply D* Lite [7], an incremental heuristic
search method for computing optimal paths. The advantage
of D* Lite is that it allows for efficient replanning. This
is particularly relevant for humanoid robots which regularly
have to correct deviations from an initial path because
of accumulated motion drift from foot slippage and joint
backlash. Additionally, D* Lite enables the robot to reuse
information from previous searches when it has to revise its
footstep plan according to changes in the environment.

All authors are with the Humanoid Robots Lab at the Department of
Computer Science, University of Freiburg, Germany.

This work has been supported by the German Research Foundation (DFG)
under contract number SFB/TR-8.

Fig. 1. A footstep path in an environment with planar obstacles (left) is
executed by our Nao humanoid (right), carefully stepping around the black
obstacles. To efficiently adapt to changes in the environment, we use the
D* Lite algorithm [7] and extend it to planning with continuous footsteps.

We formulate the problem of footstep planning so that
it can be solved with D* Lite and present our exten-
sions, including efficient collision checking for footsteps
and continuous footstep locations. We thoroughly evaluate
different sets of possible footsteps and heuristics guiding the
search, and discuss the effects on planning time and path
quality in various environments. In experiments carried out
in simulation and with a Nao humanoid (see Fig. 1), we
demonstrate the effectiveness of the footstep plans computed
by our D* Lite footstep planning algorithm. Our footstep
planning framework is available as C++ source code1.

II. RELATED WORK

Research in the area of navigation planning for humanoids
amongst obstacles differs in how many details are considered
during planning and how far the planning horizon is chosen.
Several techniques concentrate only on generating the next
movements of the robot. The authors focus on reactive
collision avoidance or stair climbing behaviors and do not
consider global navigation tasks. For example, Cupec et
al. [8] and Yagi and Lumelsky [9] use predefined walking
primitives to locally plan paths. Okada et al. [10] apply a
local planner that generates footsteps along a straight line.
A drawback of these local planning methods is that they are
prone to end up in local minima on the way to the goal.

Other approaches plan a global 2D path for the robot and
then locally determine footsteps to follow the trajectory [11],
[12]. Furthermore, approaches have been proposed that seri-
ously constrain the possible footstep locations of the robots
or use heuristics to simplify the planning problem. Examples
are the techniques presented by Ayaz et al. [5] and Cupec
and Schmidt [6]. As a result, the set of problems which can

1As part of the Robot Operating System (ROS) at
http://www.ros.org/wiki/footstep_planner

http://www.ros.org/wiki/footstep_planner

be solved by these methods is limited and the resulting plans
are not optimal.

Gutmann et al. [13] as well as Candido et al. [14]
presented planning methods for humanoids that are based
on different motion primitives. These approaches do not take
into account that humanoid robots can also avoid obstacles
by adapting their footsteps.

Chestnutt et al. [3] proposed to plan the whole path
entirely on footstep basis using A*. To constrain the search,
the authors defined a set of seven reference actions. Later,
the authors extended their technique so that, depending on
the terrain below the foot location, different footsteps close
to the reference action can be chosen in case there is no
valid position in the original footstep set [4]. In contrast to
these approaches which use A* with a special inadmissible
heuristic to avoid starting from scratch when replanning,
we apply D* Lite [7] to dynamically replan the path when
necessary.

Some authors developed techniques to generate whole
body motions which also contain non-upright gaits. For
example, Kanehiro et al. [15] proposed to locally plan whole
body motions using a ZMP-based pattern generator that can
change the waist height. Hauser et al. [16] presented a
probabilistic planner that first samples contacts of predes-
ignated parts of the robot’s body and points of the terrain.
Afterwards, a probabilistic roadmap method is applied to
connect feasible robot configurations. In a later work, the
authors make use of motion primitives to guide the search
and generate high-quality motions [1]. While the results are
impressive, so far only simulation experiments have been
presented and it remains unclear how the correct motion
primitive is selected. Kanoun et al. [2] combine footstep
planning with inverse kinematic to reach kinematic goals.
The whole body is controlled so that complex tasks, such as
picking up an object from the ground, can be carried out.
The general problem of planning whole body motions is
that these approaches require long planning times and are
only applicable to short paths due to their computational
complexity.

The incremental search methods D* and D* Lite have
been widely used for robot navigation. For example, variants
were employed by the winning team of the DARPA Grand
Challenge [17] and on the surface of Mars [18]. In this paper,
we present the first extension of D* Lite to planning global
footstep paths for humanoids.

III. HUMANOID ROBOT PLATFORM

We use the Nao humanoid robot by Aldebaran Robotics
for our practical experiments (see Fig 1). Nao is 58 cm tall,
weighs 4.8 kg, and has 25 degrees of freedom. For proprio-
ception, Nao is equipped with Hall effect sensors to measure
the angle of each joint and an inertial measurement unit to
yield an estimate about the its attitude. In addition to other
sensors such as ultrasound and two cameras, our humanoid
is equipped with a Hokuyo URG-04LX laser range finder
mounted in a modified head. By interpreting the data of the
laser range finder and the robot’s proprioception, we can

Parameter Value / Range
dsep 9.5 cm
w 9.0 cm
h 16.0 cm

∆x [−4.0, 4.0] cm
∆y [−1.0, 4.0] cm
∆θ [−2.9, 20.0]◦

Fig. 2. Footstep model and parameterization of the Nao.

account for motion drift and accurately determine the robot’s
pose in a 3D world model [19].

Nao’s walking engine uses a linear inverted pendulum
model to generate stable gaits [20]. The walking engine
can be controlled with omnidirectional velocities. While the
corresponding motions can be immediately executed, e.g.,
to follow a two-dimensional path, this requires larger safety
margins to obstacles because there is no direct control over
the exact movement of the robot and thus the placement of
its feet. However, the walking engine also allows to walk
on a given sequence of foot placements or footsteps (API
version: 1.6). These are defined by a displacement vector
(∆x,∆y,∆θ), as illustrated in Fig. 2. The neutral position
(0, 0, 0) results in the walking foot being placed next to
the supporting foot in parallel, with their origins (projected
ankle joints) the distance dsep apart. The parameterization in
Fig. 2 ensures that there are no self-collisions while walking.
We will use this footstep model throughout this work. Note
that any given 2D foot displacement with orientation can be
transformed into this representation.

IV. D* LITE

In our work, we build upon the incremental heuristic
search algorithm D* Lite [7]. This search algorithm extends
the heuristic search of the well-known A* algorithm by
reusing information from previous searches to allow for an
efficient replanning.

A. Overview
A* is a search algorithm for finite graphs, commonly used

for path planning in known 2D grid maps. The algorithm
employs a best-first search from a starting state sstart to the
goal sgoal, which is guided by the heuristic h. For each pair
of states s, s′ ∈ S, h(s, s′) yields an estimate of the costs
of traversing the graph from s to s′. The more informed the
heuristic is of the actual costs in the environment, the more
efficient A* can search since the number of expanded states
is reduced.

D* Lite extends A* so that it can be used for effi-
cient incremental searches. Hereby, the algorithm continually
searches for shortest paths in the environment while the
current starting state progresses along the path and the edge
costs may change arbitrarily. This can be due to revised
estimates of the robot’s position in the environment (e.g.,
from a localization algorithm), changed positions of non-
static obstacles, or detections of new obstacles. The incre-
mental search of D* Lite is hereby orders of magnitude more
efficient than repeatedly planning a new path from scratch
with A* [7].

B. Efficient Replanning

For efficient replanning from changing starting states,
D* Lite searches in the reverse order from the goal state sgoal
to the current state sstart. The initial search corresponds to a
complete A* search, as there is no incremental information
available for replanning. Afterwards, D* Lite maintains the
costs g(s) for all visited states as an estimation of the actual
costs g∗(s) of the optimal path from state s to sgoal. If all
g(s) are consistent with g∗(s), i.e., g(s) = g∗(s), the optimal
path can be extracted by recursively selecting

s′ = min
s′∈Succ(s)

(g(s) + c(s, s′)) (1)

from sstart on. Here, c(s, s′) denotes the costs of traversing
from state s to s′ and Succ(s) ⊆ S contains all states
reachable from s. Whenever cost values in the environment
change, the estimates g(s) need to be made consistent with
g∗(s) again. Instead of adjusting all g(s) on every change,
D* Lite changes only relevant states. For this purpose,
D* Lite maintains a priority queue which only contains those
states whose costs are not consistent. While processing the
queue and expanding states, D* Lite updates the estimated
costs of the optimal path through those states connecting sstart
and sgoal. Heuristics h are used which estimate the costs from
each state to sstart. Similarly, the costs of the optimal path
are updated after edge costs changed.

Just as in A*, the heuristic function h(s, s′) plays an
important role in D* Lite as it guides the search from sgoal
towards states in the direction of sstart. In D* Lite, it is
required that for all s, s′, s′′ ∈ S:

h(s, s′) ≥ 0 (2)
h(s, s′′) ≤ h(s, s′) + h(s′, s′′) (3)
h(s, s′) ≤ c∗(s, s′) , (4)

where c∗(s, s′) denotes the true costs from s to s′ of the
optimal transition. These requirements are stricter than for
A* and allow for efficient cost updates of states in the priority
queue as explained in the following.

D* Lite maintains lower bounds of the optimal path costs
through a state to the goal in the priority queue. When
replanning has to be invoked and, thus, the starting state
has to be set to the robot’s current pose, the algorithm does
not need to change the costs of each state in the priority
queue. Instead, it temporarily stores the cost change resulting
from the different starting state s′start of the planning problem.
This cost change h(s′start, sstart) is identical for all states in
the priority queue with respect to maintaining the lower
bounds. Thus, adding h(s′start, sstart) to states which are later
on inserted into the queue results in efficient replanning.

V. FOOTSTEP PLANNING WITH D* LITE

We chose D* Lite for its flexibility and efficiency and
adapted it to footstep planning for humanoid robots. Its
replanning capabilities can be exploited when the humanoid
seriously deviates from the computed path during execution,
when non-static obstacles change their locations, or when
bad terrain locations are observed along the way.

In the following, we will formulate the problem of footstep
planning for humanoid robots so that it can be solved with
the incremental heuristic search of D* Lite. For a given finite
set of possible footsteps, the planner will output the optimal
sequence of footsteps, if there exists a solution. The start
and goal states are hereby given as global 2D poses with
orientations.

A. Environment Model

We use a 2D grid map consisting of equally-sized grid
cells that are marked as either free or occupied, but do not
require the robot to use this grid discretization for its footstep
locations. From this 2D map, we then compute a distance
map containing the Euclidean distance to the closest obstacle
for each cell. We use this distance map to compute step costs
and to check for collisions.

B. State and Transition Model

A single footstep is parameterized by the selection of
a leg to move (left or right) and the displacement of the
foot relative to the supporting foot, as described in Sec. III.
Under the constraint that the robot needs to move the left
and the right leg alternating and that the footsteps for both
feet are symmetric, a footstep action a can be completely
parameterized by

a = (∆x,∆y,∆θ) , (5)

relative to the position of the current supporting foot.
Usually, a planner has a fixed set of footstep actions

F = {a1, . . . , an} available. When expanding a state s, all
successive states s′ are determined by applying the transi-
tions t of all actions a ∈ F : s′ = t(s, a) and discarding
invalid states which would lead to collisions with obstacles.

The robot’s state in the context of footstep planning can
be described by the global position and orientation of its
supporting foot

s = (x, y, θ) , (6)

alternating between the right and left foot. The costs of a
state transition s′ = t(s, a) are given by the transition costs
c(s, s′), which we model as

c(s, s′) = ‖(x, y), (x′, y′)‖+ k + d(s′) (7)

for s = (x, y, θ) and s′ = (x′, y′, θ′). k are constant costs
associated to executing one step, thereby penalizing paths
with a higher number of steps. d(s′) denotes the costs of the
state s′ based on the obstacle distance map: Footsteps closer
to obstacles have higher costs assigned. We here assume that
the effort of changing the orientation of a footstep can be
neglected compared to the Euclidean distance the step covers.

C. Collision Checking

In order to validate a possible footstep, the planner needs
to check if the footstep collides with an obstacle in the
environment. Because this validation needs to be performed
for all successors of an expanded state, it should be as
efficient as possible. Simply assessing the distance to the
nearest obstacle would not allow footstep configurations

close to obstacles since the shape of the robot’s footprint
is rectangular. Therefore, we apply an efficient collision
check in the distance map similar to the method suggested
by Sprunk et al. for collision checking of a rectangular
wheeled robot [21]. Hereby, the rectangular footstep shape is
recursively subdivided based on its circumcircle and incircle.

D. Heuristic Functions

As explained in Sec. IV, the heuristic function h(s) guides
the search for a plan, effectively speeding up the process.
For footstep planning with humanoid robots, we propose the
following three heuristics which we extensively compare in
various environments in Sec. VI-A. Note that because of
the backwards search of D* Lite, h(s) estimates the costs
from a state s = (x, y, θ) to sstart = (xstart, ystart, θstart). In the
following equations, ω1 and ω2 are scaling factors for the
Euclidean and angular distances.

1) Euclidean distance and number of steps:

h1(s) = ω1 ‖(x, y), (xstart, ystart)‖+ k S1(s, sstart) (8)

S1 estimates the number of expected footsteps based
on the straight-line distance, which is then multiplied
with the constant costs per step k (cf. Eq. (7)).

2) Euclidean and angular distance with number of steps:

h2(s) = ω1 ‖(x, y), (xstart, ystart)‖+ k S1(s, sstart)

+ ω2 |θ − θstart|
(9)

In addition to the Euclidean distance, h2 is informed
of the change in orientation. This helps to focus on
states which minimize orientational changes.

3) Length of the 2D path and number of steps:

h3(s) = ω1D(s, sstart) + k S2(s, sstart) (10)

D corresponds to the length of a 2D path, which is
planned with a conventional grid-based path planner
on the 2D map with enlarged obstacles according to
the incircle of the robot’s foot (similar to [3]). S2
then estimates the number of expected footsteps along
this 2D path. Compared to h1 and h2, h3 is better
informed of the environment since local minima during
the search are more likely to be avoided.

h2 and h3 are potentially inadmissible, violating Eq. (4),
because there are no orientational costs in c as in h2, and
because the 2D path of h3 does not take into account the
capability of stepping over obstacles. This may potentially
affect the length of the resulting path when a sub-optimal
path is found first. In our experiments, however, all heuristics
lead to optimal paths.

E. Planning with Continuous Footstep Locations

While D* Lite works only for a finite set of states, the
state space S of all global footstep positions is continuous.
During the search, we have to continuously compare states
for equality to identify new states which have not been visited
before. Here, we apply an approximative comparison of two
global footstep locations for equality. Thus, we can use finite

F4 F6 F12 F15

Fig. 3. Footstep sets with 4, 6, 12, and 15 different footsteps for the Nao
humanoid, shown here relative to the right supporting foot (black).

Fig. 4. 2D obstacle maps of the evaluated scenarios. Each map covers an
area of 1.5 m × 1.5 m at 0.01 m resolution. Planar obstacles are marked in
black.

sets of footstep actions to plan in a continuous state space
instead of discretizing it.

Since D* Lite plans in the reverse order from the goal with
a finite set of footsteps, the desired state sstart may not be
exactly reached. However, it is sufficient to reach any state
within the motion range of the robot, the robot only has to
adjust the first stepping motion then.

When replanning is invoked due to a map update, the
affected states in terms of footstep locations already inserted
in the priority queue have to be determined. By establishing
a mapping between 2D map grid cells and visited states,
i.e., footsteps locations which lie on them, we can efficiently
update states in affected map regions.

VI. EXPERIMENTS

Both the heuristics and the set of available footsteps F
influence the planning behavior and results. The more in-
formed the heuristic is of the actual costs, the more efficient
the search can be guided. With a too coarse discretization of
the robot’s motion range into footsteps, the planner might fail
in certain scenarios or compute longer plans, while too many
actions might lead to a larger search space and inefficient
planning.

Throughout the statistic evaluation, we compare given
footstep sets (Fig. 3) and the previously introduced heuristics
in three different environments. The environments in Fig. 4
all cover an area of 1.5 m × 1.5 m at 1 cm resolution and
pose different challenges for a footstep planner. In this work,
we assume that a 2D grid of the environment is given
and updated when obstacle positions change. For evaluation,
we randomly sample 20 collision-free start and goal poses
with a straight-line distance of approximately 0.7 m. We
only evaluate experiments, which can be solved within a
reasonable time in all setups currently under evaluation.
In this way, we discard almost impossible configurations
resulting from the sampling process.

As evaluation criteria we use the total path costs (sum of
Eq. (7) over all successive states in the plan) and the planning
costs. As planning time varies depending on the machine,

0

5

10

15

20

·103

Map 1 Map 2 Map 3

N
um

be
ro

fE
xp

an
de

d
St

at
es

Heuristics Planning Costs

h1 h2 h3

0

10

20

30

·103

Map 1 Map 2 Map 3

Footsteps Planning Costs

F4 F6 F12 F15

Fig. 5. Left: Average planning costs (in terms of number of expanded states)
for heuristics in different environments. Right: Average planning costs for
footstep sets in different environments. See text for details and statistical
analysis.

we use the number of expanded states as an indicator of the
planning costs. To evaluate statistical significance in the cost
distributions, we apply a paired sample t-test (α = 0.05) for
pairs of evaluated heuristics and footstep sets with identical
start and goal poses.

A. Evaluation of Different Heuristic Functions

We first compare the performance of the three heuristics
introduced in Sec. V-D. The efficiency of the heuristics with
respect to each other is independent of the actual choice
of a footstep set, as the heuristics are not informed of the
actual footstep actions. Hence, we exclusively use F12 for
this comparison.

All three heuristics result in virtually identical path costs,
which demonstrates that the potential inadmissibility of h2
and h3 is not a concern and all lead to optimal paths.
Figure 5 (left) shows the planning costs averaged over the
sampled start and goal poses. h3 leads to the least number of
expanded states, guiding the planner most efficiently to the
goal in all environments. The paired sample t-test confirms
that the difference to h3 is statistically significant, and that
h2 is not significantly different from h1. In summary, the
heuristic h3 results significantly fewer expanded states with
no decrease in the plan quality.

B. Evaluation of Different Footstep Sets

The heuristic is set to the most informed h3 now, and we
compare the four footstep sets F4, F6, F12, and F15 (Fig. 3).
Note that for all j < i : Fj ⊂ Fi.

With regard to the resulting path costs, the greater flex-
ibility of F12 and F15 yields significantly better footstep
paths over the other footstep sets. However, no statistically
significant difference could be detected between F12 and F15.

According to the average number of expanded
states (Fig. 5, right), F15 leads to a significant increase in
planning costs compared to the other sets, while there is
no significant difference between the others. Thus, we can
conclude that the flexibility of the footstep set F12 yields
efficient plans in terms of path costs, with no additional
planning costs. A larger footstep set only increases the
planning dimensionality without a significant benefit for the
path quality.

In order to generalize over hardware different from our
Nao humanoid, we also investigated a larger humanoid robot
with a wider motion range in our planning framework. A

Fig. 6. A footstep set for a larger humanoid such as HRP-2 or Honda’s
ASIMO (left) allows the robot to step over obstacles (right).

Fig. 7. Comparison of footstep path and expanded states (blue dots)
between Nao’s footstep set (left) and one of a larger robot (right). The
wider motion range of the latter results in fewer expanded states and faster
planning results (see text for details).

typical footstep set of such a robot and a resulting footstep
plan is displayed in Fig. 6. The longer legs allow wider
steps and a greater flexibility, e.g., to step over obstacles.
This usually also results in fewer expanded states and fewer
footsteps to be taken. It took 3.02 s to expand the 13 054
states for Nao’s footstep plan (Fig. 7, left), while it took
only 0.12 s to expand the 744 states for the other robot’s
path (Fig. 7, right). Evaluation was performed on a standard
2.66 GHz Desktop PC.

C. Replanning

While the humanoid follows its path to the goal, locations
of obstacles can change, new obstacles can appear, or the
estimated pose can deviate from the planned path. In these
cases the incremental update of D* Lite allows for a fast
reaction without planning the complete path anew. We eval-
uate the effectiveness of replanning in the scenario depicted
in Fig. 8. After executing a few steps of the plan, a change
in the environment is detected and the planner incrementally
replans a large part of the path around the moved obstacle,
reusing information from the previous plan. The initial
search expanded 2966 states in 1.05 s. Replanning in the
new environment expanded 956 states in 0.53 s (including

Fig. 8. While the robot traverses its initial path (left), the location of an
obstacle changes after a few steps. Reusing previous information, a new
footstep path is planned (right). A video of this sequence is available at
http://hrl.informatik.uni-freiburg.de.

http://hrl.informatik.uni-freiburg.de

Fig. 9. Our Nao humanoid executes the footstep plan shown in Fig. 1, carefully avoiding obstacles. In this scenario, a conventional 2D path using the
robot’s circumcircle would lead to suboptimal results or even collisions because there is no direct control of the footstep locations. A video of this sequence
is available at http://hrl.informatik.uni-freiburg.de.

a traversal of all states affected by the environment change).
For comparison, a completely new planning cycle would
have expanded 3457 states in 1.59 s in that situation.

D. Navigating with Footstep Plans

Finally, we present an experiment in which our real
Nao humanoid executes a planned sequence of footsteps.
Motion drift usually prevents the robot from executing
a sequence of footsteps open-loop, thus requiring regular
corrections based on a pose estimate from our localization
system [19]. By executing the plan as a sequence of global
states {s1, . . . , sn} ⊆ S instead of incremental actions ai,
the robot can correct small deviations from the original
footsteps, as long as the corrected footstep is within the
stepping motion range. For larger deviations, replanning with
D* Lite is carried out.

Figure 9 shows our humanoid navigating in a known
2D map, executing the footstep path shown in Fig. 1 (left).
As can be seen, Nao reliably navigates around obstacles to
the goal location.

VII. CONCLUSIONS

Footstep planning provides an efficient way to plan mo-
tions for humanoid robots while exploiting their unique
capabilities of stepping over obstacles. In this work, we
presented our approach to dynamic footstep planning for
humanoid navigation, building upon the incremental heuristic
search of D* Lite. In experiments in simulation and on a Nao
humanoid, we demonstrated the effectiveness of our methods
and identified cost-efficient heuristics and footstep sets. In
case of deviations from the initial plan or dynamic changes
in the environment, the robot’s path can be efficiently re-
planned by our method, thereby reusing information from
previous searches. Our framework for footstep planning is re-
leased as open source at http://www.ros.org/wiki/
footstep_planner. In the future, we plan to extend our
planning method to three-dimensional environments, which
enables a humanoid to step onto objects and climb stairs.

REFERENCES

[1] K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, and B. Wilcox, “Motion
planning for legged robots on varied terrain,” Int. Journal of Robotics
Research (IJRR), 2007.

[2] O. Kanoun, J.-P. Laumond, and E. Yoshida, “Planning foot placements
for a humanoid robot: A problem of inverse kinematics,” Int. Journal
of Robotics Research (IJRR), 2010.

[3] J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K. Hodgins, and
T. Kanade, “Footstep planning for the Honda ASIMO humanoid,” in
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2005.

[4] J. Chestnutt, K. Nishiwaki, J. Kuffner, and S. Kagami, “An adaptive
action model for legged navigation planning,” in Proc. of the IEEE-
RAS Int. Conf. on Humanoid Robots (Humanoids), 2007.

[5] Y. Ayaz, K. Munawar, M. Malik, A. Konno, and M. Uchiyama,
“Human-like approach to footstep planning among obstacles for
humanoid robots,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2006.

[6] R. Cupec and G. Schmidt, “An approach to environment modelling
for biped walking robots,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2005.

[7] S. Koenig and M. Likhachev, “D* Lite,” in Proc. of the National
Conf. on Artificial Intelligence (AAAI), 2002.

[8] R. Cupec, G. Schmidt, and O. Lorch, “Experiments in vision-guided
robot walking in a structured scenario,” in Proc. of the IEEE Int. Symp.
on Industrial Electronics, 2005.

[9] M. Yagi and V. Lumelsky, “Local on-line planning in biped robot
locomotion amongst unknown obstacles,” Robotica, vol. 18, no. 4, pp.
389–402, 2000.

[10] K. Okada, T. Ogura, A. Haneda, and M. Inaba, “Autonomous 3D
walking system for a humanoid robot based on visual step recognition
and 3D foot step planner,” in Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 2005.

[11] T.-Y. Li, P.-F. Chen, and P.-Z. Huang, “Motion planning for humanoid
walking in a layered environment,” in Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2003.

[12] M. Elmogy, C. Habel, and J. Zhang, “Time efficient hybrid motion
planning algorithm for HOAP-2 humanoid robot,” in Int. Symp. on
Robotics and German Conf. on Robotics (ISR/ROBOTIK), 2010.

[13] J.-S. Gutmann, M. Fukuchi, and M. Fujita, “A modular architecture for
humanoid robot navigation,” in Proc. of the IEEE-RAS Int. Conf. on
Humanoid Robots (Humanoids), 2005.

[14] S. Candido, Y.-T. Kim, and S. Hutchinson, “An improved hierarchical
motion planner for humanoid robots,” in Proc. of the IEEE-RAS
Int. Conf. on Humanoid Robots (Humanoids), 2008.

[15] F. Kanehiro, T. Yoshimi, S. Kajita, M. Morisawa, K. Fujiwara,
K. Harada, K. K. H. Hirukawa, and F. Tomita, “Whole body loco-
motion planning of humanoid robots based on a 3D grid map,” in
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2005.

[16] K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited humanoid loco-
motion planning,” in Proc. of the IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoids), 2005.

[17] D. Ferguson, T. Howard, and M. Likhachev, “Motion planning in
urban environments: Part ii,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2008.

[18] J. Carsten, A. Rankin, D. Ferguson, and A. Stentz, “Global planning on
the mars exploration rovers: Software integration and surface testing,”
J. Field Robotics, vol. 26, no. 4, pp. 337–357, 2009.

[19] A. Hornung, K. M. Wurm, and M. Bennewitz, “Humanoid robot lo-
calization in complex indoor environments,” in Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2010.

[20] D. Gouaillier, C. Collette, and C. Kilner, “Omni-directional closed-
loop walk for NAO,” in Proc. of the IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoids), 2010.

[21] C. Sprunk, B. Lau, P. Pfaff, and W. Burgard, “Online kinodynamic
trajectory planning for non-circular omnidirectional robots,” in Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA), 2011.

http://hrl.informatik.uni-freiburg.de
http://www.ros.org/wiki/footstep_planner
http://www.ros.org/wiki/footstep_planner

	Introduction
	Related Work
	Humanoid Robot Platform
	D* Lite
	Overview
	Efficient Replanning

	Footstep Planning with D* Lite
	Environment Model
	State and Transition Model
	Collision Checking
	Heuristic Functions
	Planning with Continuous Footstep Locations

	Experiments
	Evaluation of Different Heuristic Functions
	Evaluation of Different Footstep Sets
	Replanning
	Navigating with Footstep Plans

	Conclusions
	References

