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Abstract— Due to their high number of joints, humanoid
robots typically have kinematic redundancies to achieve end-
effector poses. Examples for such redundancies are the kine-
matic chains of pitch and yaw joints that allow the robot to turn
towards a gaze target. Our humanoid communication robot
currently uses its spine, its neck, and its eye joints to direct its
cameras towards an object. In this paper, we propose a control
strategy that considers three factors, namely tracking error,
discomfort, defined at the joint level, and “effort” to control the
pitch and yaw joints. Our strategy is based on gradient descent
on a cost function. During the optimization, we use different
step sizes to reflect the different inertia of the moved parts. Our
control scheme produces human-like motions, where smaller,
light-weight parts such as the eyes of the robot move quickly
towards the target and then move back while the larger joints
turn towards the target. We present experiments to evaluate
the proposed strategy qualitatively and quantitatively.

I. INTRODUCTION

Humanoid robots have become a popular research tool

in recent years. More and more research groups worldwide

develop complex machines with a human-like body plan and

human-like senses [1]–[4].

One of the most important motivations for humanoid robot

research is that such robots are suitable for intuitive mul-

timodal communication with humans. Our communication

robot interacts with multiple persons in its vicinity using

speech, gestures, facial expressions, and body language. It

detects and tracks multiple persons using audio-visual data.

The robot uses multiple modalities to decide which person

gets its attention. While focusing on one person, the robot

still involves other people into the interaction by establishing

short eye-contact or reacting to speech [5].

Because they mimic the kinematic structure of humans,

humanoid robots are equipped with a high number of joints.

Typically, these joints create kinematic redundancy. Exam-

ples for such redundancies are the kinematic chains of pitch

and yaw joints that allow the robot to turn towards a gaze

target. Our robot currently uses its spine, its neck and its eye

joints to direct its cameras towards an object. Later, we plan

to consider also the legs for turning.

Such redundancies create room for pursuing multiple goals

in controller design. The goals that are relevant for our

application can be grouped into machine-oriented goals and

human-oriented goals. The machine-oriented goals include

the joint limits, a low tracking error of the target to be

tracked, and a low control effort. They are relatively easy

to quantify, based on the readings of robot sensors. In con-

trast to that, the human-oriented goals are more difficult to

specify. Here, aspects like the resemblance of the motion to

human motion or the perceived naturalness of the produced

movements are desired.

Fortunately, machine-oriented and human-oriented goals

are not contradictory. We show that optimizing machine-

oriented goals in humanoid robots can lead to natural,

human-like motions.

In this paper, we present an approach to control the

redundant kinematic chains of pitch and yaw joints between

the floor and the robot cameras that takes into account 1) the

tracking error regarding the person or the object that has to be

focused, 2) the inertial tensor of the moved parts, and 3) the

“discomfort” or “tension” of individual joints. Based on these

factors, we define a cost function and compute trajectories for

the individual joints so that the costs are minimized. During

the optimization, we avoid high computational demands by

applying a simplification that is justified for our application.

In the experimental section, we evaluate our approach

qualitatively and quantitatively and compare it to other

control strategies. The experiments show that our controller

produces human-like motions, where smaller, light-weight

parts move quickly towards the target and then move back

while the larger joints turn towards the target.

The remainder of this paper is organized as follows. After

the discussion of related work in the next section, we cover

the design of our humanoid communication robot and its

attentional system in Sections III and IV, respectively. In Sec-

tion V we detail the derivation of our controller. In Section VI

we present experiments illustrating the characteristics of our

control strategy. Furthermore, we compare our approach to

different other control strategies.

II. RELATED WORK

A. Interaction

Several systems exist that use data provided by different

sensors to detect and track people during an interaction.

Various strategies are then used to decide which person gets

the attention of the robot. For example, the system developed

by Spexard et al. [3] uses data provided by two cameras and

two microphones to detect and track people. The authors

consider the person that is currently speaking as the person

of interest. Okuno et al. [6] follow a similar strategy. They

apply two different modes. In the first mode, the robot always
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turns to a new speaker, and in the second mode, the robot

keeps its attention exclusively on one conversational partner.

Tasaki et al. [7] define a “friendliness space” given audio-

visual data to decide which person gets the focus of attention.

Blanco et al. [8] presented an approach to track users with a

combination of laser range and visual data. The pan and tilt

of the robot’s camera are adjusted so as to focus the closest

person.

Furthermore, several research groups study human-robot

interaction mainly focusing on scenarios with a single per-

son. For example, Stiefelhagen et al. [4], Bischoff and

Graefe [9], and Breazeal et al. [1] have been working on

natural interaction between humans and a robot using multi-

ple modalities such as speech and gestures. Böhme et al. [10]

proposed to adapt the robot’s behavior according to the

user’s age, gender, and mood. Sidner et al. [11] analyze

how the attention of humans can be drawn to specific

objects of interest. Aoyama and Shimomura [12] developed a

framework for real-world speech interaction with a humanoid

robot. Salichs et al. [13] presented a robotic platform that is

able to cooperatively dance with human partners.

All the above mentioned systems move the joints of the

robot in order to turn towards a person or toward an object of

interest. However, it is not specified in which way individual

joints, e.g., the upper body, the neck, and the eyes, are moved

exactly.

Matsui et al. [2] try to generate natural, human-like motion

using a motion capture system. The similarity between the

motion of a human and the movements of an android is

measured by differences of the motion at the visible surface.

B. Multiple Objectives Control

We propose to control the redundant yaw and pitch joints

in a kinematic chain by applying gradient descent using an

cost function that takes into account 1) the tracking error

regarding the person or the object that has to be focused, 2)

the mass that has to be moved, and 3) the “discomfort” or

“tension” of individual joints. Several concepts of such an

approach have been presented before.

Our approach is related to Gu and Ballard [14] that

apply the Equilibrium-point hypothesis [15] to control joint

movements. They proposed a two-phase control model. First,

gradient descent is applied to obtain joint target angles given

a Cartesian end-effector target. Second, muscles are simu-

lated using springs that drive the execution of the movements.

Gu and Ballard define an energy function that also considers

the mass and the difference between the current and target

joint configuration (which is the tracking error in our case).

The discomfort factor of the joints is implicitly modeled by

the simulated muscles. Since in our application scenario, the

configuration of the joint angles has possibly to be changed

every time step according to moving targets that have to be

tracked, we apply gradient descent at every time step and do

not apply a two-phase model.

Kathib [16] introduced an artificial potential field approach

for real-time obstacle avoidance for manipulators and mobile

robots. In his work, he also used an approach to satisfy the

Fig. 1. Our robot Robotinho was initially used as soccer player in the
RoboCup Humanoid League. Recently, the robot was equipped with a 2DOF
neck and a 15DOF communication head.

manipulator internal joint constraints. The joint positions are

kept within the joint limits by creating barriers of potential

at each of the limits. He proposed a partial linearization of

the potential function, to avoid a drift towards the middle

of the interval. As Kathibs approach works in configuration

space it is, compared to our approach, computationally very

demanding.

Marchand et al. [17] introduced a task function that com-

bines the execution of vision-based tasks while minimizing a

secondary cost function. In the cost function, joint positions

close to limits yield higher costs. The partially linearized

cost function is minimized by following the gradient in the

negative direction.

Nakamura et al. [18] utilize the redundancy in kinematic

chains to perform lower priority tasks, such as collision

avoidance, while performing high priority tasks, such as

tracing a given trajectory with an endefector. The integration

of prioritized tasks for redundant manipulators has recently

gained new interest for humanoid robots like for example in

Mansard et al. [19] or Sugiura et al. [20]. Our approach also

considers different tasks but does not require any prioritiza-

tion between them.

Optimizing multiple goals simultaneously is generally

common in biological systems. Todorow compiled a review

of optimal control in sensorimotor systems [21].

Finally, it should be noted that various studies have been

carried out to investigate discomfort in human movement

without incorporating them in an optimization-based per-

formance measure [22]–[24]. Marler [25] modeled human

discomfort and included it in a multi-objective optimization

for posture prediction for virtual humans.

III. DESIGN OF OUR ROBOT

Our humanoid robot Robotinho, shown in Fig. 1, has

been originally designed for playing soccer in the RoboCup

Humanoid League [26]. Robotinho is 110cm tall and has

a total weight of about 6kg. Its body has 25 degrees of

freedom (DOF): six per leg, four per arm, three in the trunk,

and two in the neck. The mechanical design for the body

focused on simplicity, robustness, and weight reduction. The

body is driven by 37 DX-117 actuators.

Robotinho’s skeleton is constructed from aluminum extru-

sions with rectangular tube cross section. In order to reduce
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weight, we removed all material not necessary for stability.

The feet and the forearms are made from sheets of carbon

composite material. The robot is protected by a layer of foam

and an outer shell of thin carbon composite material.

For the use as communication robot, we equipped Robot-

inho with an expressive 15DOF head, shown in the right part

of Fig. 1. All joints are driven by small digital servos. The

eyes are movable USB cameras. Four servos move the eyes

in two axis. While the lower eye lid moves together with

the eyeballs, the upper eye lid can be moved independently

in pitch direction. Six servo motors animate jaw and mouth.

One pair of servos moves the jaw in pitch direction. Each

mouth corner is moved by two servos. Four servos animate

the two eyebrows.

Robotinho is equipped with a CardS12 and two ChipS12

microcontroller boards, which manage the communication

with the actuators. Every 12ms, target positions and compli-

ances for the actuators are sent from the main computer to the

microcontroller board, which distribute them to the actuators.

Sensor readings are sent back to the main computer.

We use a tiny Sony Vaio UX PC as main computer.

The weight of the UX is only 0.5kg. It is attached to the

lower back of Robotinho. A mini-USB hub connects the

two cameras (Videology 21K155) to the main computer. The

cameras are small (22×26 mm) high-resolution (765×582

pixels) color cameras with high-speed USB 2.0 interface.

One camera has a narrow field-of-view of 21.4◦ while the

other camera is equipped with a wide-angle lens, yielding

a horizontal field-of-view of 64◦. Additionally, the robot is

equipped with a stereo microphone.

Robotinho is fully autonomous. The robot is powered by

high-current Lithium-polymer rechargeable batteries, which

are located in its hip.

IV. ATTENTIONAL SYSTEM

Our robot is able to detect and track multiple persons using

audio-visual data. In order to keep track of people even when

they are temporarily outside the robot’s field of view, the

robot maintains a probabilistic belief about the people in its

surroundings.

It is not human-like to fixate a single conversational

partner all the time when there are other people around.

Therefore, our robot uses multiple modalities to decide

which person currently gets its attention. The robot shows

interest in different persons in its vicinity and shifts the

attention between them so that they feel involved into the

conversation [5].

Our robot uses arm and head movements to generate

gestures that support the speech synthesis as well as gestures

with its animated face. For example, to draw the attention of

communication partners towards objects of interest, our robot

performs pointing gestures. When the robot wants to draw the

attention to an object, it simultaneously turns itself towards

the object and points in its direction with the respective arm

while uttering the object name.

Fig. 2. Four redundant joints that form a kinematic chain can be used to
turn the robot cameras towards a target in yaw direction.

V. GAZE AND MOVEMENT CONTROL

During interaction, our robot has to track objects, such

as faces, that it localizes in the camera images. We define

the angular tracking errors θtargetp
and θtargety

as the

angles between the center of the camera images and the

object of interest for the pitch and yaw direction. Tracked

objects outside the current field of view are kept in a global

coordinate system.

For turning the robot towards a target, we use four pitch

and four yaw joints that form kinematic chains for the pitch

and yaw direction: The pitch and yaw eye joints to turn the

cameras, the pitch and yaw neck joints to turn the head, the

pitch and yaw spine joints to turn its upper body, and finally

the legs, for turning the whole body. As our current appli-

cation scenario (i.e., explaining exhibits which are placed in

front of the robot) is stationary, the legs are currently not

used to turn the robot. Turning towards a gaze target during

omnidirectional walking has been used for soccer and will

be used again soon when we extend the application scenario

to a mobile museum guide. Fig. 2 illustrates the redundant

kinematic chain for the yaw direction.

Each of these joints of one direction (pitch or yaw) can be

used to minimize the corresponding θtarget by simply turning

in the direction of it. Due to the kinematic redundancy,

however, it is not clear which joint or combination of joints

should be used. One could use only one joint to turn the

whole way or multiple joints and divide the tracking error

between them.

Besides the tracking error θtarget, which has to be mini-

mized, we have to consider the physical limits of each joint.

Running against these physical limits must be avoided at

all times in order not to damage the joint. Joint positions

close to physical limits are also not favorable. In these

positions, the joint is not able to turn further and tracking

error compensation relies completely on other, possibly

energy inefficient joints. Furthermore, the robot’s posture

might look unnatural in such an extreme position. In order

to describe unfavorable joint positions, we introduce the

notion of discomfort. The discomfort function U of a joint

position αk yields a high value if αk is close to a physical

limit. When the joint position is far away from the limits, the

415



Fig. 3. Discomfort function U(α) for a = 10 and b = 1. See Equation 1.

discomfort of a joint is small. The least discomfortable joint

position is reached when αk = 0, where U(0) = 0. We define

U as the summation of two hyperbolic functions (Fig. 3).

U is characterized by the shaping factor a and the poles,

corresponding to the physical joint limits, at ±b

U(αk) =
a

αk + b
+

a

−αk + b
−

2a

b
. (1)

For technical reasons, we linearize U at and beyond the

poles. Our goal is to minimize the discomfort U (αk) for

each joint k.

To determine how far and in which direction the joints

have to move at the next time step, we formulate a cost

function E that is based on the two goals, minimizing the

tracking error θtarget and the discomfort U :

E(αt+1
1 , . . . , αt+1

K ) =

K∑
k=1

1

2
U

(
αt+1

k

)2
+

1

2

[
θtarget −

K∑
k=1

(
αt+1

k − αt
k

)]2

, (2)

where αt+1
k − αt

k is the amount of change in joint position

of joint αk between timestep t and t + 1.

We then calculate the gradient of the cost function at the

current joint position for each joint. In order to do so, we

compute the partial derivative for each joint position αt+1
k

∂E

∂αt+1
k

(αt
k) =

[
∂U

∂α
(αt

k) · U(αt
k)− θtarget

]
(3)

and get the gradient

∇E(αt+1

1
,...,α

t+1

K
) =

[
∂E

∂αt+1
1

(αt
1), . . . ,

∂E

∂αt+1
K

(αt
K)

]
. (4)

We apply the gradient descent method for reaching a

minimum of E. We use a step size η and follow in the

opposite direction of the gradient with each joint.

The further down the kth joint is located in the kinematic

chain, the greater is the moment of inertia of the masses that

are moved by it. For example, while the eye joint only has to

turn the small weight of the cameras, the spine joint already

has to turn the whole upper body. Certainly, greater efforts

by a joint are implied at greater moments of inertia. Since

the aim should be to save resources, our goal is to limit the
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Fig. 4. Response of the robot to an instantaneous position change of the
tracking target.

effort of all joints when turning. As a result, we scale the

size of the steps with the inverse moment of inertia Ik of

each joint. This can also be motivated by a linear quadratic

regulator (LQR) [27], which balances tracking error and

control effort. The LQR also uses a lower feedback gain

when the control effort for a position change is higher. In

effect, the tracking error is reduced at different time scales

for the different joints.

Finally, we take into account that the joints have a max-

imum angular velocity vmax that cannot be exceeded. This

leaves us with the update rule

αt+1
k = αt

k + sat

(
vmax,−

∂E

∂αt+1
k

(αt
k) ·

η

Ik

)
, (5)

where sat(vmax, x) saturates x at ±vmax.

VI. EXPERIMENTAL EVALUATION

A. Qualitative Evaluation of Our Control Strategy

We tested our control strategy on the robot in different

settings. In all experiments, the shaping factor a of the

discomfort function U was set to 0.1. As a result, the

discomfort function is almost linear in the center of the

interval. This follows the idea that human joint positions

close to the center of the interval do not cause relevant

discomfort. The physical joint limits b are ±0.5 rad for the

eyes, ±0.56 rad for the neck and ±1.11 rad for the spine,

respectively. The step size η was set to 0.05. The experiments

were conducted in the yaw-plane, using yaw joints only as

the absolute angular range which can be covered is largest

in this plane.

As a gaze target, we placed a virtual object at different

angles relative to the static feet in front of the robot. In a

first trial (Fig. 4), the robot was looking at a target at -1.0 rad.

The robot had been looking at this target for quite some time

and thus all joints had reached a steady state. At time step 37

the target instantaneously changed its position and was then

located at an angle of 1.0 rad. As a consequence, the eye

joint rapidly turned until the position get too uncomfortable

in time step 43. The neck joint, which has to move a greater

mass, followed slightly slower and allowed the eyes to turn

back from their current uncomfortable position. The spine

joint has to move by far the largest mass and thus showed

the slowest response. This corresponds to our observation of
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Fig. 5. Tracking a target that oscillates in front of the robot. In (a) the
frequency of the oscillation is increased over time while in (b) the frequency
stays constant but the amplitude is increased.

human motion. For a human, the eyes are also the part of the

body that can move fastest and with increasing discomfort

accelerate neck and spine movement. When humans track

a static target, they also turn towards the target with more

body parts after fixating it for some time.

In a second experiment, we let an object oscillate with

increasing frequency in front of the robot (Fig. 5(a)). One

can clearly see how the fractions of the tracking error com-

pensation changed as the frequency rises. In the beginning,

especially the neck had a great fraction on the compensation

of the tracking error. This fraction decreases with increasing

frequency. The spine showed a similar behavior. Note that

for tracking fast, oscillating objects, humans also mainly use

the eyes while for slow moving objects other body parts are

utilized, too.

Furthermore, we performed a third experiments in which

again an object oscillated in front of the robot, but this time

with increasing amplitude (Fig. 5(b)). Here it is very obvious,

that when the eye joint reaches uncomfortable positions close

to the joint limits, the neck joint is forced to move and also

the spine joint. In human motion, the discomfort caused by

eye positions also leads to neck and spine movements.

B. Comparison with Different Control Strategies

In further experiments, we compared strategies for turning

towards a target using all or some of the available joints.

At the beginning of each experiment, we let the robot look

to a neutral, comfortable position straight forward. We then

placed two objects at a certain angle on each side of the

robot. The robot’s task was now to look alternatingly every

four seconds from one object to the other. The trial finishes

after the robot had changed targets five times. We repeat the

trial for different object angles. With this experimental setup,

we explore how the different strategies perform on executing

fast saccades as well as on tracking a static object.

During these experiments, the total amount of discomfort

present in the system, the amount of work needed, and the

integrated tracking error was recorded. The resulting values

of different strategies were then compared. Joint limits,

masses and maximum joint speeds were fixed. When cal-

culating the performed work, we are not so much interested

in the exact amount of work performed, but rather in the

different proportions of the bodyparts to each other. Thus,

we approximated the inertia of the body parts according to

their mass and radius proportions. We treated the eyes and

the head as a sphere and the trunk as a cylinder.

Apart from testing our control strategy with all available

joints, we also test it with a disabled spine joint and after

that with disabled spine and neck joints. We then compare

our strategy to one that does not take discomfort and mass

distributions into account. In this simple strategy, each joint

tries to minimize the tracking error by itself simultaneously.

Results of the trials are depicted in Figure 6.

The experiments show that using additional joints leads

to less overall discomfort and a smaller tracking error.

Furthermore, it can be seen that a strategy that does not take

into account discomfort and masses is less energy efficient

and causes large discomfort in the joints.

VII. CONCLUSION

In this paper, we suggested a control strategy for the re-

dundant kinematic chains of pitch and yaw joints between the

floor and the cameras of our humanoid communication robot.

This strategy balances tracking error, joint-limit avoidance,

and control effort. It is implemented by a state-feedback

control law at different levels of the kinematic chain. The

approach is a simplification of previous works in the field of

multi-objective optimization for motion control, applied to a

real robotic system.

The experiments show that the proposed strategy produces

trajectories that qualitatively resemble human motion. In

particular, we observed in saccades that the cameras are

moved quickly towards the target, but that the discomfort

caused by eye positions close to the joint limit leads to neck

and spine movements, which allows the eye joint to come

back to a more comfortable position.

In the steady state, tracking error is balanced against

discomfort. For targets close to the center of the floor

coordinate system, discomfort is minimal and the target is

reached almost perfectly. In contrast to that, for targets far

away from the center, the discomfort is reduced by accepting

a larger tracking error in the steady state.

The experiments demonstrated that quick oscillatory

movements are tracked predominantly with the eyes, while
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Fig. 6. The (a) integrated discomfort, (b) performed work, and (c)
integrated tracking error at an object angle of 0.2, 0.5, 1.0 and 1.5 rad
for the compared strategies. See text for details.

for following slower target motions, the lower joints in the

chain contribute more. When observing our humanoid robot,

the generated motions appear natural and human-like. Due

to the combined range-of-motion of the pitch and yaw joints,

the robot is able to look at objects far-away from the center

of the floor coordinate system.

Future work will include the quantitative comparison of

our control strategy with human data.
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