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Abstract— Achieving a stable, human-like gait with a hu-
manoid robot is a challenging problem. While several rather
simple as well as more complex techniques exist to generate stable
walking patterns, only little attention has been paid towards
the resemblance to the human gait. Popular gaits, for example,
apply the strategy to bend the knees and to swing the torso
in lateral direction in order to ensure stability. As a result, the
walking patterns do not look very human-like. However, human
resemblance is an important aspect whenever robots are designed
to interact naturally with humans. In this paper, we present
techniques to optimize an initial, stable gait of a humanoid robot
with respect to human resemblance. To acquire walking data
of a human, we use a full-body motion capture system. We
propose four different optimizing algorithms that work at joint
angle basis and use the joint angle difference as measure of
similarity. Experimental results carried out with a HOAP-2 robot
in simulation demonstrate that we can adapt the robot’s initial
gait so that it is significantly more human-like.

I. I NTRODUCTION

Recently, humanoid robots have become quite popular and
are used as a research tool in many groups worldwide. One of
the motivation behind the research area of humanoid robotics
is to develop robots that are better adapted to environments
designed for humans and that these robots are capable of
natural interaction with humans.

Compared to wheeled robots, one challenge when working
with humanoid robots is to design stable walking gaits for
biped navigation. A frequently used approach to enabling
humanoid robots to walk stably is to apply heuristics and
to manually configure the walking patterns and their pa-
rameters. There exist techniques based on central pattern
generators (CPGs) to generate joint trajectories using nonlinear
oscillators [7, 1]. In these approaches, it is a challenging
problem to find appropriate parameters to achieve a stable
gait. More computational demanding methods use the concept
of the zero moment point (ZMP) [22] and rely on joint angle
trajectories which are computed considering dynamic motion
of the robot. Here, an accurate model of the robot and its
dynamics is needed.

Several approaches have been presented that aim at opti-
mizing properties such as speed [8, 18, 13] or torso stabil-
ity [14, 4] of a humanoid’s walk. The resulting, optimized
walking patterns often do not really resemble human gait.
However, the resemblance to the human ideal should be taken
into account when generating walking patterns for humanoid
robots. These robots are designed to interact naturally with
humans and therefore it is important that their motions look
human-like.

Fig. 1. The left and middle image show snapshots of the robot’s initial
gait. As can be seen, the torso of the robot moves heavily in lateral direction
and the knees are bent which is not human-like. In the right image, a human
equipped with the full-body motion capture systemMVN is walking for the
acquisition of human gait data.

The first two images of Fig. 1 shows snapshots of a typical
humanoid’s gait. First, the torso of the robot swings heavily
in lateral direction and, second, the knees are bent. These
concepts are often used in humanoid navigation to achieve
stability. However, the resulting gait does not look very natural.

In this paper, we consider the problem of achieving a
stable, human-like gait with a humanoid robot. We treat this
as an optimization problem and develop four algorithms that
work on joint angle basis. Our optimization starts from an
initial, stable gait of the robot obtained via a CPG and uses
as target gait the walk of a human recorded by a motion
capture system (see right image of Fig. 1). Similarity between
gaits is defined in terms of joint angle difference between the
human’s and the robot’s joint angle trajectories. The advantage
of working solely on the basis of joint angles is that we do
not need to incorporate expert knowledge into the learning
process, e.g., in form of a parameterized gait [14] or in form
of a segmentation into different walking phases [19].

We extensively evaluated and empirically compared the
different optimization techniques in experiments carriedout in
theWebotssimulator [5] with aHOAP-2[10] robot. The results
show that the optimization methods based on hill climbing
and on policy gradient estimation perform best. However, all
techniques are able to improve the initial gait so that it is
significantly more similar to the human gait.

The paper is organized as follow. After discussing related
work in the next section, we present the humanoid robot used
for the experiments in Sec. III and describe the collection and
preprocessing of human gait data in Sec. IV. In Sec. V, we
introduce the algorithms we developed to optimize the robot’s
walk. Finally, we discuss the experimental results in Sec. VI.



II. RELATED WORK

Several approaches exist to optimize the walking speed of a
humanoid robot for a given, parameterized gait. For example,
Faber and Behnke [8] applied an optimization based on policy
gradient reinforcement learning and particle swarm optimiza-
tion to increase the forward speed of their humanoid. The
authors used eight parameters of the gait and developed two
feedback mechanisms which were included into the optimiza-
tion process. Niehauset al. [18] also applied particle swarm
optimization to speed up the performance of a humanoid. They
considered 14 parameters and performed an optimization of
the parameters for different walking directions to allow for
omnidirectional walking. Hemkeret al. [13] applied sequential
surrogate optimization to searching for optimal values of the
five chosen gait parameters of forward walking. Geng [11]et
al. proposed a policy gradient reinforcement learning approach
to optimize the parameters of a neuronal sensor-driven con-
troller for a planar biped. Furthermore, several researches
applied machine learning techniques to optimize the gait of
quadruped robots (e.g. [17, 15]). Note that stability is not
such a serious problem with quadruped robots which makes
optimization easier. In contrast to all techniques presented
above, our goal is not to optimize the speed of a humanoid
robot which often leads to rather unnatural looking walking
behaviors. Instead, we aim at generating a gait that looks more
human-like than the initial walking behavior of the robot.

Chalodhornet al. [4] used an imitation-based approach to
teach a humanoid robot how to walk stably. Human data
was recorded with an optical motion capture system and the
search for appropriate actions of the robot leading to a stable
gait was performed in a dimensionality-reduced space of the
joint angles. In order to achieve a stable gait of the robot,
the authors included an optimization of torso stability defined
by using gyroscope signals. From the presented images, it
seems that the human demonstrator moved in a rather un-
natural way in order to facilitate the learning of the robot.
Huang et al. [14] analyzed characteristics of human gait in
terms of change of given walking parameters when choosing
different step lengths and step cycles. They also used human
motion data captured by an optical system. Considering the
learned characteristics, parameters for a walking patternwere
determined which resulted in a high upper-body stability of
the humanoid. Serhanet al. [19] proposed to extract “critical
angles” from human locomotion that influence the speed and
step length. They used a segmentation of the walking cycle in
eight phases and considered maximum angles for the different
phases. The authors present experiments in which a simulated
biped robot with only a small 4 DOF trunk achieved a dynamic
walk. To generate a human-like walking behavior that can be
adapted according to observations, e.g, barriers or stairs, Denk
and Schmidt [6] propose to concatenate previously learned
walking primitives.

Regarding other tasks than walking, several researchers have
concentrated on generating motions for humanoids that are op-
timal with respect to specific criteria. For example, Haradaet
al. [12] optimized motion primitives for a humanoid robot
in terms of joint torque, acceleration, or angular momentum.

Fig. 2. An overview over the robot’s joints. There are six DOFs in each leg,
five in each arm, two in the head and one in the hip. The bold linesrepresent
the rotation axes of the joint. Illustration taken from [10].

The authors identified relevant variables for the individual
tasks (e.g., a reaching motion, walking, or climbing). Faber et
al. [9] proposed a strategy for gaze control of a humanoid
during human-robot interaction. They consider different fac-
tors, i.e., tracking error, discomfort, and effort to control the
pitch and yaw joints. Bobrowet al. [2] optimized the motion
of robots performing different tasks with respect to minimum
control effort. Svininet al. [21] considered the problem of
generating human-like reaching movements with a robotic
arm. The authors use an objective function which is based
on the minimization of hand jerk.

In the remainder of this paper, we present our approach to
optimizing the walking motion of humanoid with respect to
human resemblance. Our optimization works on joint angle
basis and does not need to incorporate expert knowledge.

III. T HE HUMANOID ROBOT

The humanoid robot, which is used in our experiments, is
a simulatedHOAP-2 from Fujitsu [10]. The first two images
of Fig. 1 show the simulated robot. The robot has a weight
of 7 kg and is 50 cm tall. The total number of degrees of
freedom (DOFs) is 25, but only 21 are considered as relevant
for walking (excluding head and hand joints). Fig. 2 gives an
detailed overview over the robot’s degrees of freedom.

There are some differences between the human anatomy and
the robot’s one which can lead to different behavior. One of the
major issues is the fact, that the robot wears a “backpack” (in
which the processing unit is located), which shifts the robot’s
center of mass. Furthermore, certain joints are not modeledin
the robot, e.g., the rotation around the body’s yaw axis.

We use the model of theHOAP-2shipped with theWebots
simulator. The walking motion, which we take as a basis for
our experiments, was generated using a CPG. In this gait,
the robot shows a lateral swing and walks with strongly bent
knees (see Fig. 1).

The given simulation model provides only a single pressure
sensor in each foot. We extended the simulated model so that



it has a sensor in the front and another one in the back of
each foot. We need this extension for our approach of stability
estimation as we explain later.

IV. DATA ACQUISITION

In this section, we describe how we acquire the joint angle
trajectory data which is used as input to our optimization
framework.

A. Recording Human Gait Data

For recording full-body motions of a human, we used the
Xsens MVN[3] system. It uses sixteen sensors, which include
accelerometers, gyroscopes, and magnetometers. The right
picture in Fig. 1 shows the human demonstrator wearing the
MVN body suit. The output of the system includes information
about the position and rotation of the body segments. Since
we use a joint angle based representation, we transform the
rotation information into joint angles.

B. Data Preprocessing

After recording the data, we perform some data preprocess-
ing steps in order to get the data which serves as input to our
optimization framework.

1) Segmentation:We first extract a sequence of double-
steps of the robot’s and of the human’s gait. We use the
trajectories of both knees to find the exact start and end of
segments containing five double-steps, which were sufficient
for the analysis.

2) Uniform Trajectory Lengths: Extracted motion se-
quences containing five double-steps can have different
lengths, e.g., a different number of data points. Therefore, we
perform a linear interpolation to estimate data points and to
achieve a uniform trajectory length (which corresponds to the
length of the robot’s trajectory).

3) Removing Temporal Distortion:Obviously, the captured
human data contains some noise and temporal distortion. To
reduce the influence of these effects, we compute the average
over several human gait sequences. In particular, we use
Dynamic Time Warping(DTW) [16]. The main idea of DTW
is to match two sequences by warping the temporal position of
data points in a way that the lowest overall distance between
both is found. The distance of two joint angle trajectoriesM

andN is defined as

dist (M ,N) =
∑

joint j

∑

time t

(Mj,t − Nj,t)
2
. (1)

The DTW algorithm finds the optimal matching between data
points and minimizes the overall distance of the sequences.
We then compute the average joint angle trajectories given
the resulting time indices. For our experiments, we used eight
sequences of five double-steps on which we perform DTW in
a tree-like manner.

4) Symmetry: The trajectories of corresponding lateral
joints (e.g., the left and the right knee) of the human appeared
to slightly differ. Such small asymmetries can result in instable
behavior of the robot. We therefore compute the joint angle
trajectories as the average over the corresponding data points
of the left and the right joints.

5) Uniform Gait Cycles:In the last preprocessing step, we
eliminate irregularities within the different gait cyclesof the
given human’s trajectories. We apply a Fourier transform to
first get an amplitude representation. We call a frequencyf

symmetricif and only if

f mod #double-steps= 0. (2)

Otherwise, it is calledasymmetric. We then set the amplitudes
of the asymmetric frequencies to zero since they correspond
to irregularities in the different steps. Finally, we perform an
inverse Fourier transform from the amplitude spectrum based
representation into the data points representation one.

V. GAIT OPTIMIZATION

The input to the optimization process are the robot’s and
the human’s joint angle trajectories which are computed as
described in the previous section. The goal of the optimization
is to adapt the joint angle trajectories of the robot towards
the one of the human. In an iterative fashion, we adapt
the individual joint angle trajectories over the entire walking
sequence towards the trajectories of the human walk.

The change of a joint angle trajectory at a certain time step
is proportional to the difference between the robot’s and the
human’s trajectory. For each time stept, the new angle of an
individual joint i is computed proportional to the difference
between the robot’s original joint angleθrob

i,t and the human’s
joint angleθhum

i,t . Using the adaption factor0 ≤ αi ≤ 1, the
new angleθ̂rob

i for joint i is computed at all time steps as

θ̂rob

i,t ← θrob

i,t + αi(θ
hum

i,t − θrob

i,t ). (3)

Our optimization methods presented in the following aim at
adaptingαi for each jointi so that a stable walk is achieved
which is as similar as possible to the human’s gait. We use
a similarity measure which is based on the distance (see
Eq. 1) to compute the similarity between the robot’s current
gait M̂rob and the human’s gaitMhum given the robot’s
initial gait Mrob:

similarity(M̂rob,Mhum) =
dist(Mrob,M̂rob)

dist(Mrob,Mhum)
(4)

The stopping criterion for the optimization is that the gainin
the similarity is below a certain threshold.

According to the DOFs of theHOAP-2, the search space
is 11-dimensional since symmetric joints are treated alikeand
the hand as well as the two head joints are not considered.

A. Single Component Sampling

First, we considered the simple approach of sampling one
joint i in each iteration whose adaption factorαi is increased
according to the change rate∆αi > 0:

αi ← αi + ∆αi (5)

When the gait resulting from the change of the adaption factor
leads to a stable gait, we keep the increased adaption factor. If
not, we refuse the change. If a certain number of attempts (i.e.,
in different iterations) to increase the adaption factor ofjoint i

fail to generate a stable gait, we decrease the change rate∆αi.



Algorithm 1 Sampling with correlation-based Optimization.
correlationBasedOptimization(M rob ,Mhum ,∆α)

Input: Joint angle trajectories of the robot’s gaitM
rob and of

the human’s gaitMhum , change rate of the adaption factors
for the N individual joint angles∆α = 〈∆α1, · · · ,∆αN 〉.

Output: Joint angle trajectoriesM rob

opt of the most human-
like, stable gait found.

M
rob

opt ← M
rob ; α ← 0;

Cor
hum ← computeCorrelation(Mhum )

Cor
rob ← computeCorrelation(M rob)

while not convergeddo
r ← random(1, . . . , N )
for all i ← 1 . . . N do

c ← (1 − αi) · |Cor rob

r,i | + αi · |Corhum

r,i |
α̂i ← αi + ∆αi · c

end for
M̂

rob

← generateJointAngleTrj(M rob , M
hum , α̂)

if evaluate(M̂
rob

) = stablethen
M

rob

opt ← M̂
rob

; α ← α̂

end if
end while
return M

rob

opt .

B. Sampling with Correlation-based Optimization

The next approach considers the correlation between the
trajectories of the individual joints and allows for changes
of all joints simultaneously. The idea is to take into account
that the movements of certain joints are related to each other.
During the optimization process, we therefore change the tra-
jectory of each joint according to the correlation to the sampled
joint. The correlation between joints of the robotCor

rob and
of the humanCor

hum are learned from the initial gait and
the recorded trajectories, respectively. The pseudocode of the
correlation-based optimization can be found in Alg. 1. Since
the correlation of the robot’s and the human’s joints can be
different, we perform a linear interpolation between thesetwo
values according to the current adaption factor. As before,we
start with the same change rate∆αi for all joints, but decrease
this value when there is no success in several attempts in which
the same joint was sampled (this is omitted in the code to
ensure readability).

C. Hill Climbing Considering all Joints Simultaneously

Next, we approach the optimization problem using a hill
climbing algorithm which tries in each iterationD different
adaption vectorsα and takes then the one yielding the best
result as starting point for the next iteration. In contrastto the
previous methods, here we allow for three different change
rates. For each jointi, αi is changed randomly by either+∆α,
0, or −∆α. This way, there is a higher flexibility in finding
configurations (i.e., changes in the opposite direction of the
human are possible now) and we hope to find good solutions
since still dependencies between joints are considered. The
similarity between the trajectories can be computed beforethe
evaluation of the resulting gait in terms of stability. Therefore,
we sort the resulting gaits according to their similarity and take

Algorithm 2 Hill climbing, all joints change simultaneously.
hillClimbing(M rob ,Mhum ,∆α,D)

Input: Joint angle trajectories of the robot’s gaitM
rob and

of the human’s gaitMhum , change rate∆α, D number of
candidates evaluated in each iteration.

Output: Joint angle trajectoriesM rob

opt of the most human-
like, stable gait found.

M
rob

opt ← M
rob ; α ← 0; P ← ∅; prev sim← 0

while not convergeddo
for all j ← 1 . . . D do

insertWithPriority(P , createCandidate(α, ∆α))
end for
while P 6= ∅ do

α̂ ← dequeue(P )
M̂

rob

← generateJointAngleTrj(M rob , M
hum , α̂)

if similarity(M̂
rob

,Mhum) > prev sim then
if evaluate(M̂

rob

) = stablethen
M

rob

opt ← M̂
rob

; α ← α̂; P ← ∅

prev sim← similarity(M̂
rob

,Mhum )
end if

else
P ← ∅

end if
end while

end while
return M

rob

opt .

the first gait evaluated as stable as starting point for the next
iteration. A precondition is of course, that this gait has a higher
similarity than the starting gait of this iteration, otherwise we
sample new change rates for the individual joints. If a certain
number of attempts is not successful, we decrease the change
rate. Alg. 2 depicts pseudocode of the hill climbing method.
Here, we use the same absolute value of the change rate∆α

for all joints, which is decreased as described above (this is
omitted in the code).

D. Policy Gradient Optimization

Finally, we developed a method based on policy gradient
estimation, which is a modification of standard policy gradient
reinforcement learning [20]. The idea is to evaluate a number
of adaption vectorsα in order to approximate the gradient
of the similarity for each dimension of the search space and
explore in the direction of the optimum. Since stability is a
precondition, it also has to be taken into account during the
computation of the gradient.

As in our hill climbing approach,D different adaption
vectorsα are sampled in each iteration to generate test gaits
around the currently best gait. Again, for each jointi, the
change rate∆αi is set randomly to+∆α, 0, or −∆α. In
each iteration, allD resulting gaits are executed and the result
is for each dimensioni added to one of the categoriesS+

i , S0
i ,

and S−

i depending on the value of the sampled change rate
for this joint. To be more specific, for jointi, the progress
in similarity – i.e., the difference in distance – is added to
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Fig. 3. Relative number of misclassifications according to a given thresholdg.
The red (solid) line shows the amount of unstable motions whichare classified
as stable according tog. The black (dashed) line shows the amount of stable
runs, which are classified as unstable. We chose a value of 0.5for g.

S+

i if ∆αi is positive, otherwise it is added toS−

i or S0
i ,

respectively. If the resulting gait is unstable, 0 is added to the
respective category. After evaluating each of the test gaits, the
average scoresAvg+

i , Avg0
i , and Avg−

i of S+

i , S0
i , and S−

i

are computed. The corresponding values give an estimate of
the gain in changing the joint angleθi in this specific direction
and indicate howθi should be changed to improve the result.
For each jointi, an adjustment factorδi is in each iteration
computed as follows:

δi ←







0 if Avg0
i > Avg+

i and
Avg0

i > Avg−

i

Avg+

i − Avg−

i otherwise
(6)

Afterwards,δi is normalized and multiplied by a scalarη. The
final adaption factorαi for joint i is then determined as:

αi ← αi + η ·
δi

|δ|
(7)

Thus, each joint is “drawn” towards the direction yielding
the highest improvement withη determining the amount of
change (the step size). Also in this optimization approach,the
change rate∆α is decreased in case of no success.

VI. EXPERIMENTS

We performed extensive experiments to evaluate the differ-
ent optimization methods. We carried out ten experiments for
each of the learning methods in order to perform a significance
analysis. In the beginning of each run, the robot started with
the same stable motions which were smoothly transformed
to the desired movements resulting from the optimization
process. Then, the robot executed five gait cycles with identical
joint angle trajectories. At the end of each run, the trajectories
were smoothly adapted to stand still stably.

A. Stability Evaluation

Since the execution of the trajectories is noisy, it cannot be
guaranteed that a gait is stable if the robot does not fall in a
run. To assess whether executed joint angle trajectories result
in stable motions of the robot, we therefore use two criteria.
First, we carry out five repetitions of executions of the same
motions. We consider a gait as instable, as soon as the robot
falls in a run.
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Fig. 4. Comparison of the different optimization methods. Hillclimbing (HC)
and policy gradient estimation (PG) perform significantly better than the single
component (SC) and correlation-based (Cor) methods. All methods are able
to greatly improve the similarity to the human gait. Shown are the mean and
the 95% confidence interval.

To further analyze the gaits which were not classified as
instable so far, we use a second criterion. This is based on the
assumption, that a stable motion should be regular. To measure
the degree of regularity, we use the pressure sensors in the feet
of the robot and processed it in the following way: First, we
transform the sensor data to the amplitude spectrum using the
Fourier transform. In this representation, we compute the ratio
of the sums over the amplitudes of the symmetric (as defined
in Eq. 2) versus those of the asymmetric frequencies. Since we
use two sensors in each foot, we get a total of four ratios. We
use the worst, i.e., the smallest value to classify the regularity
of the run. If the value drops below a given thresholdg, we
consider the run as irregular and thus as instable. Obviously,
using this criterion, stable motions can possibly be classified
as instable. However, it also decreases the number of instable
or irregular results which are falsely classified as stable.Fig. 3
shows the classification result depending ong. While a low
threshold filters out less unstable motions, it misclassifies only
few stable gaits. For our experiments, we chose a value of0.5
for g which we found out to yield good results.

B. Comparison of the Optimization Methods

The parameters used for the presented experiments are the
following: The single component method used∆α = 0.05, the
correlation based method∆α = 0.1, the hill climbing method
∆α = 0.1 and D = 10, and the policy gradient approach
∆α = 0.1, D = 25, andη = 0.2.

Fig. 4 shows the results obtained with the different opti-
mization techniques. As can be seen, all methods are able
to improve the initial robot’s gait (note that a similarity of 0
corresponds to the robot’s initial gait). Hill climbing andpolicy
gradient optimization significantly outperform the two other
methods. In comparison to single component sampling, the
advantage of these methods is that several joints are adapted
simultaneously. In policy gradient optimization, the gradient
can only be approximated inaccurately and, therefore, it does
not perform better than hill climbing.

Fig. 5 depicts the evolution of the adaption factor for
different joints over time. The results are shown for the most
human-like, stable gait found with hill climbing. As can be
seen, especially the knee joint can be highly adapted. With
hill climbing, the lateral swing can be reduced up to12.23%.
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Fig. 5. Evolution of the adaption factor of selected joints over time for the
best gait found with hill climbing.

Fig. 6. Comparison of the lateral swing of the initial (left) and the optimized
gait (center). The robot learned to lean forward such as humans do when
carrying heavy loads (right).

In Fig. 6, snapshots of the initial (left image) and the optimized
gait (center image) are depicted.

Interestingly, in several experiments with the hill climbing
and the policy gradient estimation, it came out that the robot
is leaned forward (see right image of Fig. 6). This is similarto
the behavior of humans when carrying heavy loads. Thus, the
robot learned how to walk stably and human-like despite the
fact that it does not explicitly know about the different weight
distribution.

VII. C ONCLUSIONS

In this paper, we presented an approach to generate walking
patterns for humanoid robots that are more human-like. We
investigated four optimization techniques which work on joint
angle basis and do not need any further knowledge. The
optimization starts with a gait for the humanoid obtained bya
central pattern generator and tries to optimize it with respect
to human resemblance in terms of joint angle difference. We
recorded human data using a full-body motion capture system.

We demonstrated in simulation experiments with aHOAP-2
robot that all of the presented optimization techniques are
able to generate joint angle trajectories that are significantly
more human-like than the original gait. The best performance
was achieved by methods based on hill climbing and policy
gradient estimation. We achieved these results despite different
anatomy and weight distribution of the robot and the human.
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