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Abstract— Achieving a stable, human-like gait with a hu- _
manoid robot is a challenging problem. While several rather e \
simple as well as more complex techniques exist to generate stable i
walking patterns, only little attention has been paid towards
the resemblance to the human gait. Popular gaits, for example,
apply the strategy to bend the knees and to swing the torso
in lateral direction in order to ensure stability. As a result, the
walking patterns do not look very human-like. However, human el A )
resemblance is an important aspect whenever robots are designed | ¥ —g
to interact naturally with humans. In this paper, we present
techniques to optimize an initial, stable gait of a humanoid robot
with respect to human resemblance. To acquire walking data
of a human, we use a full-body motion capture system. We
propose fqur different Op“”f”z_'“g algorlth_ms that work at joint gait. As can be seen, the torso of the robot moves heavily @ndhdirection
angle basis and use the joint angle difference as measure Ofand the knees are bent which is not human-like. In the right @nacghuman

similarity. Experimental results carried out with a HOAP-2robot  gquipped with the full-body motion capture systéAvN is walking for the
in simulation demonstrate that we can adapt the robot's initial  acquisition of human gait data.

gait so that it is significantly more human-like.

Fig. 1. The left and middle image show snapshots of the roboitsli

The first two images of Fig. 1 shows snapshots of a typical
I. INTRODUCTION humanoid’s gait. First, the torso of the robot swings heavil

Recently, humanoid robots have become quite popular afidlateral direction and, second, the knees are bent. These
are used as a research tool in many groups worldwide. Onec8ficepts are often used in humanoid navigation to achieve
the motivation behind the research area of humanoid rabottability. However, the resulting gait does not look veryunal.
is to develop robots that are better adapted to environmentdn this paper, we consider the problem of achieving a
designed for humans and that these robots are capablest@ble, human-like gait with a humanoid robot. We treat this
natural interaction with humans. as an optimization problem and develop four algorithms that

Compared to wheeled robots, one challenge when workilg@rk on joint angle basis. Our optimization starts from an
with humanoid robots is to design stable walking gaits fdhitial, stable gait of the robot obtained via a CPG and uses
biped navigation. A frequently used approach to enablirtg target gait the walk of a human recorded by a motion
humanoid robots to walk stably is to apply heuristics anéppture system (see right image of Fig. 1). Similarity betwve
to manually configure the walking patterns and their p#aits is defined in terms of joint angle difference between th
rameters. There exist techniques based on central pattesman’s and the robot’s joint angle trajectories. The athga
generators (CPGs) to generate joint trajectories usintjmear  0f working solely on the basis of joint angles is that we do
oscillators [7, 1]. In these approaches, it is a challenginipt need to incorporate expert knowledge into the learning
problem to find appropriate parameters to achieve a stabl@cess, e.g., in form of a parameterized gait [14] or in form
gait. More computational demanding methods use the concép@ segmentation into different walking phases [19].
of the zero moment point (ZMP) [22] and rely on joint angle We extensively evaluated and empirically compared the
trajectories which are computed considering dynamic motiglifferent optimization technigques in experiments caroed in
of the robot. Here, an accurate model of the robot and tiseWebotssimulator [5] with aHOAP-2[10] robot. The results
dynamics is needed. show that the optimization methods based on hill climbing

Several approaches have been presented that aim at opud on policy gradient estimation perform best. Howevdr, al
mizing properties such as speed [8, 18, 13] or torso stadigchniques are able to improve the initial gait so that it is
ity [14, 4] of a humanoid’'s walk. The resulting, optimizedsignificantly more similar to the human gait.
walking patterns often do not really resemble human gait. The paper is organized as follow. After discussing related
However, the resemblance to the human ideal should be takewrk in the next section, we present the humanoid robot used
into account when generating walking patterns for humandidr the experiments in Sec. Ill and describe the collectiod a
robots. These robots are designed to interact naturallf wigreprocessing of human gait data in Sec. IV. In Sec. V, we
humans and therefore it is important that their motions loaktroduce the algorithms we developed to optimize the rebot
human-like. walk. Finally, we discuss the experimental results in Sdc. V
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Several approaches exist to optimize the walking speed of a S8tz
humanoid robot for a given, parameterized gait. For example
Faber and Behnke [8] applied an optimization based on policy
gradient reinforcement learning and particle swarm oémi
tion to increase the forward speed of their humanoid. The
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authors used eight parameters of the gait and developed two Santed ure o
feedback mechanisms which were included into the optimiza- e
tion process. Niehaust al. [18] also applied particle swarm Serwy
optimization to speed up the performance of a humanoid. They 5658
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considered 14 parameters and performed an optimization of
the parameters for different walking directions to allow fo
omnidirectional walking. Hemkest al.[13] applied sequential
surrogate optimization to searching for optimal valueshaf t
five chosen gait parameters of forward walking. Geng [atl]
al. proposed a policy gradient reinforcement learning apgroac
to optimize the parameters of a neuronal sensor-driven C(Hib'. 2. An overview over the robot’s joints. There are six XOF each leg,
troller for a planar biped. Furthermore, several resea&chie in each arm, two in the head and one in the hip. The bold liepeesent
app"ed machine |earning techniques to Optimize the ga|t wp rotation axes of the jOiI’]t. lllustration taken from [10]
quadruped robots (e.g. [17, 15]). Note that stability is not
such a serious problem with quadruped robots which makese authors identified relevant variables for the individua
optimization easier. In contrast to all techniques presegnttasks (e.g., a reaching motion, walking, or climbing). Fadte
above, our goal is not to optimize the speed of a humanaifl [9] proposed a strategy for gaze control of a humanoid
robot which often leads to rather unnatural looking walkinguring human-robot interaction. They consider differemt-f
behaviors. Instead, we aim at generating a gait that looke meors, i.e., tracking error, discomfort, and effort to catthe
human-like than the initial walking behavior of the robot. pitch and yaw joints. Bobrowvet al. [2] optimized the motion
Chalodhornet al. [4] used an imitation-based approach t@f robots performing different tasks with respect to minimu
teach a humanoid robot how to walk stably. Human datontrol effort. Svininet al. [21] considered the problem of
was recorded with an optical motion capture system and thenerating human-like reaching movements with a robotic
search for appropriate actions of the robot leading to aestalarm. The authors use an objective function which is based
gait was performed in a dimensionality-reduced space of tha the minimization of hand jerk.
joint angles. In order to achieve a stable gait of the robot, In the remainder of this paper, we present our approach to
the authors included an optimization of torso stability efi optimizing the walking motion of humanoid with respect to
by using gyroscope signals. From the presented imageshitman resemblance. Our optimization works on joint angle
seems that the human demonstrator moved in a rather basis and does not need to incorporate expert knowledge.
natural way in order to facilitate the learning of the robot.
Huanget al. [14] analyzed characteristics of human gait in I1l. THE HUMANOID ROBOT
terms of change of given walking parameters when choosingThe humanoid robot, which is used in our experiments, is
different step lengths and step cycles. They also used humasimulatedHOAP-2 from Fuijitsu [10]. The first two images
motion data captured by an optical system. Considering te Fig. 1 show the simulated robot. The robot has a weight
learned characteristics, parameters for a walking pattem® of 7 kg and is 50 cm tall. The total number of degrees of
determined which resulted in a high upper-body stability gfeedom (DOFs) is 25, but only 21 are considered as relevant
the humanoid. Serhaet al. [19] proposed to extract “critical for walking (excluding head and hand joints). Fig. 2 gives an
angles” from human locomotion that influence the speed agétailed overview over the robot’s degrees of freedom.
step length. They used a segmentation of the walking cycle inThere are some differences between the human anatomy and
eight phases and considered maximum angles for the differétie robot’s one which can lead to different behavior. Onénef t
phases. The authors present experiments in which a sirdulaigajor issues is the fact, that the robot wears a “backpack” (i
biped robot with only a small 4 DOF trunk achieved a dynamighich the processing unit is located), which shifts the tsbo
walk. To generate a human-like walking behavior that can lgenter of mass. Furthermore, certain joints are not modaled
adapted according to observations, e.g, barriers or siénsk the robot, e.g., the rotation around the body’s yaw axis.
and Schmidt [6] propose to concatenate previously learnedwe use the model of thElOAP-2shipped with theVebots
walking primitives. simulator. The walking motion, which we take as a basis for
Regarding other tasks than walking, several researchees haur experiments, was generated using a CPG. In this gait,
concentrated on generating motions for humanoids thatgre the robot shows a lateral swing and walks with strongly bent
timal with respect to specific criteria. For example, Haratla knees (see Fig. 1).
al. [12] optimized motion primitives for a humanoid robot The given simulation model provides only a single pressure
in terms of joint torque, acceleration, or angular momentursensor in each foot. We extended the simulated model so that
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it has a sensor in the front and another one in the back of5) Uniform Gait Cycles:In the last preprocessing step, we
each foot. We need this extension for our approach of stgbileliminate irregularities within the different gait cycle$ the

estimation as we explain later. given human’s trajectories. We apply a Fourier transform to
first get an amplitude representation. We call a frequeficy
IV. DATA ACQUISITION symmetricif and only if
In this section, we describe how we acquire the joint angle
trajectory data which is used as input to our optimization f mod ##double-steps= 0. 2)
framework. Otherwise, it is calledassymmetricWe then set the amplitudes
of the asymmetric frequencies to zero since they correspond
A. Recording Human Gait Data to irregularities in the different steps. Finally, we penfoan

For recording full-body motions of a human, we used thigverse Fourier transform from the amplitude spectrum thase
Xsens MVN3] system. It uses sixteen sensors, which includ€presentation into the data points representation one.
accelerometers, gyroscopes, and magnetometers. The right
picture in Fig. 1 shows the human demonstrator wearing the V. GAIT OPTIMIZATION
MVN body suit. The output of the system includes information The input to the optimization process are the robot’s and
about the position and rotation of the body segments. Sing® human’s joint angle trajectories which are computed as
we use a joint angle based representation, we transform thscribed in the previous section. The goal of the optirtnat

rotation information into joint angles. is to adapt the joint angle trajectories of the robot towards
the one of the human. In an iterative fashion, we adapt
B. Data Preprocessing the individual joint angle trajectories over the entire ki

After recording the data, we perform some data preprocesgquence towards the trajectories of the human walk.
ing steps in order to get the data which serves as input to ourThe change of a joint angle trajectory at a certain time step
optimization framework. is proportional to the difference between the robot’s arel th
1) Segmentation:We first extract a sequence of doublehuman’s trajectory. For each time stgpthe new angle of an
steps of the robot’'s and of the human’s gait. We use tlidividual joint i is computed proportional to the difference
trajectories of both knees to find the exact start and end lftween the robot's original joint angt#3* and the human's
segments containing five double-steps, which were sufficigaint angle ]y Using the adaption factar < «; < 1, the
for the analysis. new angleé;“)b for joint ¢ is computed at all time steps as
2) Uniform Trajectory Lengths: Extracted motion se- ~rob rob I rob
guences containing five double-steps can have different O — 0y + 0™ = 0i%). ®)
lengths, e.g., a different number of data points. Therefe®e Our optimization methods presented in the following aim at
perform a linear interpolation to estimate data points and fdaptinga; for each jointi so that a stable walk is achieved
achieve a uniform trajectory length (which corresponds$h® twhich is as similar as possible to the human’s gait. We use
length of the robot’s trajectory). a similarity measure which is based on the distance (see
3) Removing Temporal DistortiorObviously, the captured gq. 1) to compute the similarity between the robot's current

human data contains some noise and temporal distortion. ggit n7,.., and the human's gaiMp.. given the robot's
reduce the influence of these effects, we compute the avergggal gait M,..p:

over several human gait sequences. In particular, we use ) N

Dynamic Time WarpingDTW) [16]. The main idea of DTW i\ ilarity(Nyon, Mium) — o'hst(Mmb, M;.0p) @)
is to match two sequences by warping the temporal position of dist(Myob, Mhum)

data points in a way that the lowest overall distance betwegRe stopping criterion for the optimization is that the gain
both is found. The distance of two joint angle trajecto®S the similarity is below a certain threshold.
and IV is defined as According to the DOFs of th&élOAP-2 the search space
dist (M, N) = Z Z (M — Nj2)2. (1) is 11-dimensional since symmetric joints are treated aike
the hand as well as the two head joints are not considered.

joint j time ¢
The DTW algorithm finds the optimal matching between data )
points and minimizes the overall distance of the sequencés. Single Component Sampling
We then compute the average joint angle trajectories givenFirst, we considered the simple approach of sampling one
the resulting time indices. For our experiments, we usebteigoint 7 in each iteration whose adaption factey is increased
sequences of five double-steps on which we perform DTW a&gcording to the change ratkea; > 0:
a tree-like manner.

4) Symmetry: The trajectories of corresponding lateral
joints (e.g., the left and the right knee) of the human apgtarWhen the gait resulting from the change of the adaption factor
to slightly differ. Such small asymmetries can result intafde leads to a stable gait, we keep the increased adaption .féctor
behavior of the robot. We therefore compute the joint angtet, we refuse the change. If a certain number of attemgts (i.
trajectories as the average over the corresponding datdispoin different iterations) to increase the adaption factojoaft ¢
of the left and the right joints. fail to generate a stable gait, we decrease the changérate

a; — a; + Aoy %)



Algorithm 1 Sampling with correlation-based OptimizationAlgorithm 2 Hill climbing, all joints change simultaneously.
correlationBasedOptimization(Mmb, M Aa) hillClimbing(Mmb, M"™™ Aq, D)

Input: Joint angle trajectories of the robot's gaif ™*® and of Input: Joint angle trajectories of the robot's gaif °® and
the human’s gaif\/"*™, change rate of the adaption factors of the human's gaifM/"“™, change rate\a, D number of

for the NV individual joint anglesAa = (Aay, -+, Aay). candidates evaluated in each iteration.
Output: Joint angle trajectorieMgf,f of the most human- Output: Joint angle trajectorieMg;f of the most human-
like, stable gait found. like, stable gait found.
Myp? — M™; a —0; MR — M™; a — 0; P« ; prev.sim « 0
Cor"™™ — computeCorrelatiogV1 ™) while not convergedio
Cor™® — computeCorrelatioh %) forall j«—1...D do
while not convergedio insertWithPriority P, createCandidat@x, A«))
r « randon(l,..., N) end for
forall i —1...N do while P # () do
¢ (1—a;)-|Corl?| + - | Corlu™ & «— dequeugP)
Qi — i+ Aa; - ¢ M’ — generateJointAngleTiM ™, M"™™, &)
end for if similarity(W1™", M fumy 5 prev.simthen

M generateJointAngle TEM ™%, M"™™ | &)

. ~ rob if evaluatéVI mbg = stablethen
if evaluat¢ M ) = stablethen

rob ~ rob Mg;fHMm,aFd,PH@
M’ M X A . .. . ~ rob
erd it - oo prev.sim « similarity(M ', M "™
end while elsee”d U
Tob
return Mg, . Py
end if
B. Sampling with Correlation-based Optimization end while

The next approach considers the correlation between theend while
trajectories of the individual joints and allows for chagge return Mg,;fg
of all joints simultaneously. The idea is to take into acdoun

thatl the movements _of certain joints are related to eachr.oth@e first gait evaluated as stable as starting point for the ne
During the optimization process, we therefore change e tieration. A precondition is of course, that this gait hasghbr
jectory of each joint according to the correlation to th%pm similarity than the starting gait of this iteration, othése we

joint. The correlatngn between joints of the rol@br™” and  g5mple new change rates for the individual joints. If a derta

of the humanCor™" are learned from the initial gait andn,mber of attempts is not successful, we decrease the change
the recorded trajectories, respectively. The pseudocodeeo 416 Alg. 2 depicts pseudocode of the hill climbing method.
correlation-based optimization can be found in Alg. 1. 8inGyere we use the same absolute value of the changeate

the correlation of the robot's and the human’s joints can Qg g joints, which is decreased as described above (ghis i
different, we perform a linear interpolation between th&g@ ymitted in the code).

values according to the current adaption factor. As befwee,
start with the same change raley; for all joints, but decrease
this value when there is no success in several attempts ithwhD. Policy Gradient Optimization
the same joint was sampled (this is omitted in the code tOFinaIIy
ensure readability). '

we developed a method based on policy gradient
estimation, which is a modification of standard policy gesdi
reinforcement learning [20]. The idea is to evaluate a numbe
C. Hill Climbing Considering all Joints Simultaneously  of adaption vectorsx in order to approximate the gradient
Next, we approach the optimization problem using a hitif the similarity for each dimension of the search space and
climbing algorithm which tries in each iteratioP different explore in the direction of the optimum. Since stability is a
adaption vectorsx and takes then the one yielding the begirecondition, it also has to be taken into account during the
result as starting point for the next iteration. In conttasthe computation of the gradient.
previous methods, here we allow for three different changeAs in our hill climbing approach,D different adaption
rates. For each joint «; is changed randomly by eitherA«, vectorsa are sampled in each iteration to generate test gaits
0, or —Ac«. This way, there is a higher flexibility in finding around the currently best gait. Again, for each jointthe
configurations (i.e., changes in the opposite directionhef tchange rateAq; is set randomly to+Acq, 0, or —Aa. In
human are possible now) and we hope to find good solutioeach iteration, alD resulting gaits are executed and the result
since still dependencies between joints are considered. Tt for each dimensionadded to one of the categorigg, S?,
similarity between the trajectories can be computed befwge and.S;” depending on the value of the sampled change rate
evaluation of the resulting gait in terms of stability. Tefere, for this joint. To be more specific, for joint, the progress
we sort the resulting gaits according to their similaritgdaake in similarity — i.e., the difference in distance — is added to
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The red (solid) line shows the amount of unstable motions waiettlassified and policy gradient estimation (PG) perform significantljtéethan the single

as stable according tg. The black (dashed) line shows the amount of stableomponent (SC) and correlation-based (Cor) methods. All ndstlaoe able

runs, which are classified as unstable. We chose a value db04 to greatly improve the similarity to the human gait. Shown aeertiean and
the 95% confidence interval.

S if Aq; is positive, otherwise it is added t§; or S?,
respectively. If the resulting gait is unstable, 0 is addethe
respective category. After evaluating each of the tessgtie
average scoreglvg, Avg?, and Avg; of S, S?, and S;”

To further analyze the gaits which were not classified as
instable so far, we use a second criterion. This is baseden th
assumption, that a stable motion should be regular. To measu

are computed. The corresponding values give an estimatel3t degree of regularity, we use the pressure sensors ieée f

the gain in changing the joint angle in this specific direction of the robot and processed it in the fqllowing way. Firs'F, we
and indicate how); should be changed to improve the resu“t_ransform the sensor data to the amplitude spectrum useng th

For each jointi, an adjustment factof; is in each iteration ~ourier transform. In this representation, we compute étie r
computed as follows: of the sums over the amplitudes of the symmetric (as defined

in Eq. 2) versus those of the asymmetric frequencies. Sirce w

0 if Avg) > Avg; and use two sensors in each foot, we get a total of four ratios. We
§; — Avg? > Avg; (6) use the worst, i.e., the smallest value to classify the eyl
Avgf — Avg;  otherwise of the run. If the value drops below a given threshgldwe

consider the run as irregular and thus as instable. Obwiousl
using this criterion, stable motions can possibly be cfeski
as instable. However, it also decreases the number of lestab
a; — o 1 9 7 ©°r irregular results which are falsely classified as stdbilg. 3
|0 shows the classification result depending griwhile a low
Thus, each joint is “drawn” towards the direction yieldinghreshold filters out less unstable motions, it misclassifiely
the highest improvement with determining the amount of few stable gaits. For our experiments, we chose a valuesof
change (the step size). Also in this optimization approgtud, for ¢ which we found out to yield good results.
change rate\« is decreased in case of no success.

Afterwards,d; is normalized and multiplied by a scalar The
final adaption factory; for joint i is then determined as:

B. Comparison of the Optimization Methods
VI. EXPERIMENTS The parameters used for the presented experiments are the

We performed extensive experiments to evaluate the diffd?/lowing: The single component method uséd = 0.05, the
ent optimization methods. We carried out ten experiments fgorrelation based methafia = 0.1, the hill climbing method
each of the learning methods in order to perform a signifieane® = 0-1 and D = 10, and the policy gradient approach
analysis. In the beginning of each run, the robot starteth witt® = 0-1, D = 25, andy = 0.2. _ _ _
the same stable motions which were smoothly transformed':'g: 4 ShOWS, the results obtained with the different opti-
to the desired movements resulting from the optimizatijization techniques. As can be seen, all methods are able

process. Then, the robot executed five gait cycles with iceint (©© IMProve the initial robot's gait (note that a similarity @
joint angle trajectories. At the end of each run, the trajges corresponds to the robot’s initial gait). Hill climbing apdlicy

were smoothly adapted to stand still stably. gradient optimization_ significa_ntly outperform the two_ eth
methods. In comparison to single component sampling, the

N ) advantage of these methods is that several joints are abapte

A. Stability Evaluation simultaneously. In policy gradient optimization, the gear

Since the execution of the trajectories is noisy, it canrmot lzan only be approximated inaccurately and, therefore, ésdo
guaranteed that a gait is stable if the robot does not fall inn@t perform better than hill climbing.
run. To assess whether executed joint angle trajectorssgtre Fig. 5 depicts the evolution of the adaption factor for
in stable motions of the robot, we therefore use two criteridifferent joints over time. The results are shown for the mos
First, we carry out five repetitions of executions of the sameiman-like, stable gait found with hill climbing. As can be
motions. We consider a gait as instable, as soon as the rofetn, especially the knee joint can be highly adapted. With
falls in a run. hill climbing, the lateral swing can be reduced uplt23%.
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Fig. 5. Evolution of the adaption factor of selected joint®otime for the
best gait found with hill climbing. [3]
(4]
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(7]
(8]
(9]
Fig. 6. Comparison of the lateral swing of the initial (leftjdathe optimized
gait (center). The robot learned to lean forward such as handanwhen [10]
carrying heavy loads (right).
[11]
In Fig. 6, snapshots of the initial (left image) and the ojtial
gait (center image) are depicted. [12]

Interestingly, in several experiments with the hill climbi
and the policy gradient estimation, it came out that the robp3]
is leaned forward (see right image of Fig. 6). This is simitar
the behavior of humans when carrying heavy loads. Thus,
robot learned how to walk stably and human-like despite the
fact that it does not explicitly know about the different et

distribution. [15]

VIl. CONCLUSIONS (16]
In this paper, we presented an approach to generate walking
patterns for humanoid robots that are more human-like. \i#&g]
investigated four optimization techniques which work omfgo
angle basis and do not need any further knowledge. The;
optimization starts with a gait for the humanoid obtainedaby
central pattern generator and tries to optimize it with eesp
to human resemblance in terms of joint angle difference. Wg,
recorded human data using a full-body motion capture system
We demonstrated in simulation experiments witH@AP-2
robot that all of the presented optimization techniques are
able to generate joint angle trajectories that are sigmifiza
more human-like than the original gait. The best perforreang”
was achieved by methods based on hill climbing and policy
gradient estimation. We achieved these results despfaretit [22]
anatomy and weight distribution of the robot and the human.
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