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Abstract

Whenever people move through their environments
they do not move randomly. Instead, they usually
follow specific trajectories or motion patterns cor-
responding to their intentions. Knowledge about
such patterns may enable a mobile robot to robustly
keep track of persons in its environment or to im-
prove its obstacle avoidance behavior. This paper
proposes a technique for learning collections of tra-
jectories that characterize typical motion patterns
of persons. Data recorded with laser-range finders
is clustered using the expectation maximization al-
gorithm. Based on the result of the clustering pro-
cess we derive a Hidden Markov Model (HMM).
This HMM is able to estimate the current and fu-
ture positions of multiple persons given knowledge
about their intentions. Experimental results ob-
tained with a mobile robot using laser and vision
data collected in a typical office building with sev-
eral persons illustrate the reliability and robustness
of the approach. We also demonstrate that our
model provides better estimates than an HMM di-
rectly learned from the data.

1 Introduction

Whenever mobile robots are designed to operate in populated
environments, they need to be able to perceive the people in
their neighborhood and to adapt their behavior according to
the activities of the people. Knowledge about typical motion
behaviors of persons can be used in several ways to improve
the behavior of a robot since it may provide better estimates
about current positions of persons as well as allow better pre-
diction of future locations.

In this paper we present an approach for learning prob-
abilistic motion patterns of persons. We use the EM-
algorithm[10] to simultaneously cluster trajectories belong-
ing to the same motion behavior and to learn the characteris-
tic motions of this behavior. We apply our technique to data
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recorded with laser-range finders. Furthermore, we demon-
strate how the learned models can be used to predict positions
of persons.

Recently, a variety of service robots has been developed
that have been designed to operate in populated environ-
ments. These robots for example, have been deployed in hos-
pitals [6], museums[4], office buildings[1], and department
stores[5] where they perform various services e.g., deliver,
educate, entertain[14] or assist people[13, 8, 12]. A variety
of techniques has been developed that allows a robot to track
people in its vicinity[15, 7]. Additionally, several authors
have used models of people’s motions to adapt the behavior
of a mobile platform according to predicted movements[18,
17, 9]. These approaches, however, assume that a motion
model is given. They provide no means to learn the parame-
ters of the motion behavior of persons. Bui et al. proposed an
Abstract Hidden Markov Model (AHMM) to predict people’s
motion [3]. They assume that the goals and subgoals a per-
son might have (i.e. locations the person aims to approach)
are given. Our approach, in contrast, is able to learn the in-
tentions and to automatically derive the parameters of the un-
derlying HMM. The technique described in this paper is an
extension of the approach recently proposed by Bennewitz et
al. [2]. We describe how to learn the intentions of persons and
how to derive an HMM from the corresponding motion pat-
terns. This Hidden Markov Model allows the robot to main-
tain a belief about the current location of a person.

The paper is organized as follows. The next section intro-
duces our approach to learn motion patterns from observed
trajectories and describes how we generate Hidden Markov
Models to predict motions of persons. In Section 3 we
present several experiments illustrating the robustness of our
approach for estimating the positions of single and multiple
persons using laser and vision data with a mobile robot. We
also give results indicating that our models provide better es-
timates than Hidden Markov Models directly learned from
the observations.

2 Learning Motion Patterns
When people perform their everyday activities in their envi-
ronment they do not move permanently. They usually stop at
several locations and stay there for a certain period of time,
depending on what activity they are currently carrying out.
Accordingly, we assume that the input to our algorithm is a



collection of trajectoriesd = {d1, . . . , dN} between resting
places. The output is a number of different types of motion
patternsθ = {θ1, . . . , θM} a person might exhibit in its nat-
ural environment. Each trajectorydi consists of a sequence
di = {xi,1, xi,2, . . . , xi,Ti

} of positionsxi,t. Accordingly,
xi,1 is the first position of the person when it starts leaving a
resting area andxi,Ti

is the destination. The task of the algo-
rithm described in this section is to cluster these trajectories
into different motion behaviors and finally to derive an HMM
from the resulting clusters.

Throughout this paper we assume that all trajectories have
the same lengthT , whereT is chosen as the maximum length
of all trajectories. A trajectorydi of lengthTi < T is ex-
tended by linear interpolation. The learning algorithm de-
scribed below operates solely on this information and there-
fore does not take into account the velocities of the persons
during the learning phase. In our experiments, we never
found evidence that the walking speed of a person depends
on its intention. However, one way to incorporate veloci-
ties is to introduce further dimensions to the state variables.
The necessary changes to our clustering algorithm are then
straightforward.

2.1 Motion Patterns
We begin with the description of our model of motion pat-
terns, which is subsequently estimated from data using EM.
Within this paper we assume that a person engages inM dif-
ferent types of motion patterns. A motion pattern denoted as
θm where1 ≤ m ≤ M is represented byK probability dis-
tributionsp(x | θm,k). For eachθm,k the probability distri-
butionp(x | θm,k) is computed based onβ = dT/Ke subse-
quent positions on the trajectories. Accordingly,p(x | θm,k)
specifies the probability that the person is at locationx after
[(k− 1) · β + 1; k · β] steps given that it is engaged in motion
patternm. Thus, we calculate the likelihood of a trajectorydi

under them-th motion patternθm as

p(di | θm) =
T∏

t=1

p(xi,t | θm,dt/βe). (1)

2.2 Expectation Maximization
In essence, our approach seeks to identify a modelθ that max-
imizes the likelihood of the data. To define the likelihood of
the data under the modelθ, it will be useful to introduce a
set of correspondence variables denoted ascim. Herei is the
index of the trajectorydi, andm is the index of the motion
patternθm. Each correspondencecim is a binary variable. It
is 1 if and only if thei-th trajectory corresponds to them-th
motion pattern. If we think of a motion pattern as a specific
motion activity a person might be engaged in, thencim is 1 if
person was engaged in motion activitym in trajectoryi.

In the sequel, we will denote the set of all correspon-
dence variables for thei-th data item byci, that is, ci =
{ci1, . . . , ciM}. For any data itemi the fact that exactly one
of its correspondence variable is1 leads to

∑M
m=1 cim = 1.

Throughout this paper we assume that each motion pat-
tern is represented byK Gaussian distributions with a fixed
standard deviationσ. The goal is to find the set of motion

patterns which has the highest data likelihood. EM is an al-
gorithm that iteratively maximizes expected data likelihood
by optimizing a sequence of lower bounds. In particular it
generates a sequence of models denoted asθ[1], θ[2], . . . of
increasing data likelihood. The standard method is to use a
so-calledQ-function which depends on two models,θ andθ′.
In accordance with[2] thisQ-function is factored as follows:

Q(θ′ | θ) =
N∑

i=1

(
T · M · ln 1√

2πσ

− 1
2σ2

·
T∑

t=1

M∑
m=1

E[cim | θ, d]‖xi,t − µ′
m,dt/βe‖

2

)
. (2)

The sequence of models is then given by calculating

θ[j+1] = argmax
θ′

Q(θ′ | θ[j]) (3)

starting with some initial modelθ[0]. Whenever theQ-
function is continuous as in our case, the EM algorithm con-
verges at least to a local maximum.

In particular, the optimization involves two steps: calculat-
ing the expectationsE[cim | θ[j], d] given the current model
θ[j], and finding the new modelθ[j+1] that has the maximum
expected data log likelihood under these expectations. The
first of these two steps is typically referred to as the E-step
(short for: expectation step), and the latter as the M-step
(short for: maximization step).

To calculate the expectationsE[cim | θ[j], d] we apply
Bayes’ rule, obeying independence assumptions between dif-
ferent data trajectories:

E[cim | θ[j], d] = p(cim | θ[j], d) = p(cim | θ[j], di)

= ηp(di | cim, θ[j])p(cim | θ[j])

= η′p(di | θ[j]
m ), (4)

where the normalization constantsη andη′ ensure that the
expectations sum up to 1 over allm. If we combine (1) and
(4) utilizing the fact that the distributions are represented by
Gaussians we obtain:

E[cim | θ[j], di] = η′
T∏

t=1

e
− 1

2σ2 ‖xi,t−µ
[j]
m,dt/βe‖

2

. (5)

Finally, the M-step calculates a new modelθ[j+1] by max-
imizing the expected likelihood. Technically, this is done by
computing for every motion patternm and for each probabil-
ity distributionp(x | θm,k) a new meanµ[j+1]

m,k . We thereby

consider the expectationsE[cim | θ[j], d] computed in the E-
step:

µ
[j+1]
m,k =

1
β
·

k·β∑
t=(k−1)·β+1

∑N
i=1 E[cim | θ[j], d]xi,t∑N

i=1 E[cim | θ[j], d]
. (6)



2.3 Estimating the Number of Model Components
Since in general the correct number of motion patterns is not
known in advance, we need to determine this quantity during
the learning phase. If the number of motion patterns is wrong,
we can distinguish two different situations. First, if there are
too few motion patterns there must be trajectories, that are
not explained well by any of the current motion patterns. On
the other hand, if there are too many motion patterns then
there must be trajectories that are explained well by different
model components. Thus, whenever the EM algorithm has
converged, we check whether the overall data likelihood can
be improved by increasing or decreasing the number of model
components. To limit the model complexity, during the eval-
uation we use a penalty term that depends on the number of
model components (see[2]). This avoids that our algorithm
learns a model that overfits the data, which in the worst case is
a model with one motion pattern for every single trajectory. If
the maximum number of iterations is reached or if the overall
evaluation cannot be improved after increasing and decreas-
ing the model complexity our algorithms stops and returns
the model with the best value found so far. In most of the
experiments carried out with different data sets our approach
correctly clustered the trajectories into the corresponding cat-
egories.

2.4 Laser-based Data Acquisition
The EM-based learning procedure has been implemented for
data acquired with laser-range finders. To acquire the data
we used several laser-range scanners which were installed in
the environment so that the relevant parts of the environment
were covered. First, to identify persons in the laser data our
system extracts features which are local minima in the range
scans that come from the legs of persons. Additionally, it
considers changes in consecutive scans to more reliably iden-
tify the moving people. To keep track of a person, we use a
Kalman filter. The statexr of a person at time stepr is repre-
sented by a vector[x, y, δx, δy]′. Whereasx andy represent
the position of the person, the termsδx andδy represent the
velocity of the person inx- andy-direction. Accordingly, the
prediction is carried out by the equation:

x−
r+1 =

∣∣∣∣∣∣∣
1 0 tr 0
0 1 0 tr
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣xr (7)

wheretr is the time elapsed between the measurementzr+1

andzr. Usually, sensors only give the position of an object.
Since the laser range sensor does not provide the velocities
δx andδy, which are also part of our state space, the mea-
surement matrix projects onto the first two components of the
state space. Accordingly, the predicted measurement at step
r + 1 is:

z−r+1 =
∣∣∣∣ 1 0 0 0

0 1 0 0

∣∣∣∣x−
r+1. (8)

In a second step we identify the resting places and perform
a segmentation of the data into different slices in which the
person moves. Finally, we compute the trajectories, i.e. the

sequence of positions covered by the person during that mo-
tion. When computing these trajectories, we ignore positions
which lie closer than 15cm to each other.

2.5 Deriving Hidden Markov Models from
Learned Intentions

Once the intentions of the persons have been learned, we can
easily derive Hidden Markov Models to estimate their posi-
tions. To achieve this, we distinguish two types of nodes. The
first class are the initial and final nodes that correspond to the
resting places. To connect these nodes we introduce so-called
intermediate nodes which lie on the learned motion patterns.
In our current system we use a sequence ofLm intermediate
nodesν1

m, . . . , νLm
m for each intentionθm. The intermediate

nodes are distributed overθm such that the distance between
two consecutive nodes is∆ν = 50cm . Given this equidis-
tant distribution of the sub-nodes and assuming a constant
speedv with standard deviationσv of the person, the transi-
tion probabilities of this HMM depend on the length∆t of
the time interval between consecutive updates of the HMM
as well as onv andσv. In our current system, this value is set
to ∆t = 0.5secs. Accordingly, we compute the probability
that the person will be in nodeν′

m given it is currently inνm

and given that the time∆t has elapsed as:

p(ν′
m | νm,∆t) =

∫ ν′
m+∆ν

2

ν′
m−∆ν

2

N (νm + v · ∆t, σv, x) dx. (9)

Here N (νm + v · ∆t, σv, x) is the value of the Gaussian
with meanνm + v · ∆t and standard deviationσv at posi-
tion x. The transition probabilities for the resting places are
computed based on a statistics about the average time period
which elapses before the person starts this particular motion
behavior after staying in the corresponding resting area.

Please note that the resulting model can be regarded as a
two-level Abstract Hidden Markov Model[3]. Whereas the
higher-level goals of this AHMM correspond to the resting
places of the person, the lower-level goals are the nodes along
the paths to the high-level goals.

2.6 An Application Example
To see how our EM-based learning procedure works in prac-
tice please consider Figure 1. In this example, a model
for nine trajectories with three different intentions has to be
learned. The leftmost image shows the initial model (the
means of the three model components are indicated by cir-
cles). In the next two images one can see the evolution of
the model components. The fourth image shows the model
components after convergence of the EM algorithm. As can
be seen, the trajectories are approximated quite well by the
corresponding motion patterns. Finally, the rightmost picture
shows the HMM derived from these motion patterns. The dif-
ferent resting places are indicated by rectangles and numbers.

3 Experimental Results
The technique described above has been implemented and
evaluated using data acquired in an unmodified office envi-
ronment. The experiments described in this section are de-



Figure 1: Trajectories of three different intentions and evolution of the motion patterns during the EM algorithm (images 1-4)
and resulting HMM (rightmost image).

Figure 2: Hidden Markov Model derived from learned inten-
tions.

signed to illustrate that the approach can learn complex mo-
tion behaviors in a typical office environment. We further-
more demonstrate that the resulting models can be used to
robustly estimate the positions of persons. Additionally, we
compare the performance of the models learned by our al-
gorithm to that of a standard HMM. Finally, we present an
extension which allows the system to deal with multiple per-
sons.

3.1 Learning Intentions in an Office Environment

To evaluate our approach, we applied it to data recorded over
two hours in our office environment. During the acquisition
phase the average speed of the person wasv=107 cm/sec with
a standard deviationσv=25 cm/sec. From the resulting data
our system extracted 129 trajectories which were successfully
clustered into 49 different intentions. The resulting Hidden
Markov Model is shown in Figure 2.

3.2 Tracking a Single Person

To analyze the applicability of the learned HMM for the pre-
diction of the locations of a person, we used our mobile robot
Albert, which is a B21r platform equipped with a laser range
scanner. While the robot was moving along the corridor of
our department with speed up to 40cm/sec, its task was to
maintain a belief about the position of the person.

To incorporate observations into the HMM we apply the
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Figure 3: Evolution of the probability for a person of being in
different resting areas over the time.

recursive Bayesian update scheme:

p(ν | z1, . . . , zR) = α · p(zR | ν) · p(ν | z1, . . . , zR−1) (10)

Thereby the likelihoodp(zr | ν) of an observationzr given
the stateν is computed using a Gaussian distribution which
depends on both, the variance in the current estimate of the
tracking system and the varianceσ used during the learning
of the intentions.

Figure 3 plots for different resting areas the probability that
the person stays in this particular place. Whereas the x-axis
represents the individual time steps, the y-axis indicates the
probability. The graph also includes the ground truth, which
is indicated by the corresponding horizontal line-pattern at
the .9 level. As can be seen from the figure, the system can
reliably determine the current position of the person. During
this experiment it predicted the correct place of the person in
93% of the time.

3.3 A Comparison to Standard HMMs
The second experiment is designed to demonstrate that an
HMM that takes into account the people’s intentions allows
a better prediction than a standard HMM that is directly gen-
erated from the observed trajectories of the persons and that
does not take into a account the clustered trajectories. To
evaluate the performance of the two different approaches we
chose two motion patterns from those depicted in Figure 2.
The first pattern is the one leading from resting place 7 via



the office containing resting place 6 to the staying area 2.
The second one is the motion pattern between the places 6
and 5. We defined a standard HMM over the possible states
of the person in the〈x, y, dx, dy〉 space wherex andy were
discretized in 15cm patches;dx anddy encode 9 possible in-
cremental moves per cell. The transition probabilities were
learned from the trajectories corresponding to both motion
patterns by counting. We randomly chose a position along
the trajectories of both patterns as the observed position of the
person. The states of the HMM were initialized according to
the observation model (see Section 3.2). After convergence
of the HMM we measured the likelihood of the final destina-
tion. We compared this value to those obtained by the HMM
generated by our algorithm for the trajectories correspond-
ing to these two intentions. We repeated this experiment for
different locations along the trajectories of both patterns and
determined the average probability of the true goal location.
Whereas we obtained an average of .74 with our model, the
corresponding value of the standard HMM is .56. This il-
lustrates that our model leads to better results and that the
standard independence assumption of HMMs is generally not
justified in this application domain. Please note that similar
observations have been reported by Murphy[11]. In contrast
to a standard HMM our model automatically chooses the tran-
sitions that correspond to the actual intention of the person.

3.4 Estimating the Locations of Multiple Persons
The final experiment described in this section is designed to
illustrate that our models can also be used to maintain beliefs
about multiple persons. The major difference to the situation
with a single person is that we have to be able to represent
the beliefs for the individual persons and to detect multiple
persons in the observations. In our current system we learn
an individual HMM for every person.

To track multiple persons in the range scans, we apply in-
dependent Kalman filters, one for each feature. To solve the
data association problem, we apply a nearest neighbor ap-
proach, i.e. we update a filter using the observationzr+1 that
is closest toz−r+1. New filters are introduced for observations
from which all predictions are too far away. Furthermore, fil-
ters are removed if no corresponding feature can be found for
one second.

We also need to be able to identify a person in order to ap-
propriately update the belief about the location of that person.
To achieve this we additionally employ the vision system of
our robot. To identify a person, we proceed as follows: Ev-
ery time the laser-based people tracker detects a person in the
field of view of the camera, an image is collected and follow-
ing three steps are applied:

1. Segmentation:The size of a rectangular area of the im-
age containing the person is determined.

2. Feature extraction:We compute a color histogram for
the area selected in the previous step.

3. Database matching:To determine the likelihood of a
particular person, we compare the histogram computed
in step 2 to all prototypes existing in the database.

To determine the area in the image corresponding to a feature
detected by the laser tracking system, we rely on an accu-

Figure 4: Typical scene with two persons walking along the
corridor (left image) and corresponding estimate of the laser-
based people tracking system (right image).

rate calibration between the camera and the laser and we use
a perspective projection to map the 3D position of the per-
son in world coordinates to 2D image coordinates. Whereas
color histograms are robust with respect to translation, ro-
tation, scale and to any kind of geometric distortions they
are sensitive to varying lighting conditions. To handle this
problem we consider the HSV (Hue-Saturation-Value) color
space. In this color model the intensity factor can be sepa-
rated so that its influence is reduced. In our current system
we simply ignore this factor. Throughout all our experiments
we could not find any evidence that this factor negatively af-
fected the performance of the system. The image database
is created beforehand. For each person it contains one his-
togram which is built from 20 images.

To compare a given query histogramI with a prototype
M in the database we use normalized intersection norm
H(I,M) [16]. This quantity can be computed as:

H(I,M) =

∑n
j=1 min(Ij ,Mj)∑n

j=1 Mj
, (11)

whereI andM are color histograms both havingn bins. One
advantage of this norm is that it also allows to compare partial
views, i.e. when the person is close to the camera and only a
part of it is visible.

Figure 5: Segmentation of the two persons from the image
grabbed with the camera of the robot (left image) and sim-
ilarity of these segments to the data base prototypes (right
image).

To incorporate the similarity measure provided by the vi-
sion system into the HMM of the personπ, we simply multi-
ply the likelihoods provided by the laser tracking system with
the similarity measureH(Is,Mπ) of the query histogramIs

for the segments and the data base prototypeMπ for person



Wolfram

Greg

Figure 6: Resulting posterior after incorporating the two seg-
ments shown in Figure 5 into the belief over Wolfram’s posi-
tion.

π. If the current estimate of the laser tracker is not in the field
of view of the camera we simply update the HMM for all per-
sons as we do in the case in which we track a single person
only.

As an application example consider the situation depicted
in the left image of Figure 4. In this particular situation two
persons (Wolfram and Greg) are walking along the corridor
within the perceptual field of the robot. The right image of
Figure 4 shows the estimate of the laser-based people tracking
system at the same point in time. The corresponding image
obtained with the robot’s camera is shown in the left image of
Figure 5. Also shown there are the two segments of the im-
age that correspond to the two persons detected with the laser.
The right image of this figure plots the similarities of the two
segments to the individual prototypes stored in the data base.
Finally, Figure 6 depicts the HMM for Wolfram (who is the
left person in Figure 5). As can be seen, the probabilities in-
dicated by the size of the rectangles are slightly higher for the
states that correspond to Wolfram’s true location. Through-
out this experiment the robot was able to predict the correct
location of the persons in 79% of all cases.

4 Conclusions

In this paper we have presented a method for learning and
utilizing motion behaviors of persons. Our approach applies
the EM-algorithm to cluster trajectories recorded with laser
range sensors into a collection of motion patterns, each cor-
responding to a possible intention of a person. From these
motion patterns we automatically derive an HMM that can be
used to predict the positions of persons in their environment.

Our approach has been implemented and applied success-
fully to trajectories recorded in a typical office environment.
Practical experiments demonstrate that our method is able to
learn typical motion behaviors of persons and to reliably use
them for state estimation. The experiments have been carried
out using a mobile robot equipped with a laser-range sensor
and a vision system. We have furthermore presented exper-
iments indicating that standard HMMs directly learned from
the same input data are less predictive than our models.
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