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Abstract— Mobile manipulators installed in warehouses and
factories for conveying goods between working stations need
to meet the requirements of time-critical workflows. More-
over, the systems are expected to deal with changing tasks,
cluttered environments and constraints imposed by the goods
to be delivered. In this paper, we present a novel planning
framework for generating asymptotically optimal paths for
mobile manipulators subject to task constraints. Our approach
introduces the Bidirectional Informed RRT* (BI2RRT*) that
extends the Informed RRT* [1] towards bidirectional search
and satisfaction of end-effector task constraints. In various
experiments, we demonstrate the efficiency of BI2RRT* for both
unconstrained and constrained mobile manipulation planning
problems. As the results show, our planning framework finds
better solutions than Informed RRT* and Bidirectional RRT*
in less planning.

I. INTRODUCTION

Mobile manipulators are fast, dexterous robotic service
systems with the ability of reliably and repetitively per-
forming pick and place operations in warehouses and pro-
duction facilities. Here, the time required by such systems
to transfer an object from one location to another is a
common decision criteria for their deployment. Often, the
robotic systems handle pick and place tasks by decomposing
them into a sequence of motion planning subproblems, pick-
transition-place [2]. This decomposition allows to solve a
set of independent low-dimensional planning problems, for
the manipulator and the mobile base respectively, instead
of solving a complex high-dimensional planning problem
for the entire task at once. In particular, assuming a safe
rest pose for the manipulator above the mobile base, the
transition planning phase for the mobile manipulation task
simplifies to a planar motion planning problem for a rigid
box. Several asymptotically-optimal motion planning algo-
rithms have been presented, among which rapidly-exploring
random trees (RRT*) and probabilistic roadmaps (PRM*) [3]
are the most popular. Advanced variants, such as Informed
RRT* [1] achieve an enhanced convergence rate using in-
telligent sampling techniques. Using one of these planners,
optimal solutions can, in principle, be generated for the
individual subtask. The global optimal solution, however,
does not equal the sum of the local optimal solutions found
for the subtasks. In fact, each terminal robot pose resulting
from a motion plan generated for a subtask directly affects
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Fig. 1: Configuration sequence of a solution path generated
by our BI2RRT* planning framework for the complex task of
maneuvering a cart out of a parking lot and into another. The
orange and blue line represent the corresponding trajectory
of the mobile base and end-effector.

the set of solutions available for the subsequent motion
planning problems. In the worst case, it even leaves this set
empty, hence preventing them to find a solution at all. The
results are globally suboptimal paths or a high number of
unsuccessful motion planning queries. Optimal manipulation
planning for the entire task, on the other hand, would result
in globally optimal paths and a higher success rate, but is
highly computationally demanding. Doing so, requires to
plan coordinated base-manipulator motions, which respect
the joint limits, avoid self-collisions as well as collisions
with obstacles in the environment. Furthermore, constraints
imposed by the object to be manipulated must be taken into
account (see Fig. 1).

In this paper we present a novel motion planning frame-
work for task-constrained mobile manipulation that uni-
fies asymptotically optimal sampling-based bidirectional
path planning with informed sampling and task-constraint
satisfaction. The new algorithm, Bidirectional Informed
RRT* (BI2RRT*), extends the Informed RRT* algorithm [1]
towards bidirectional search, informed sampling, and satis-
faction of geometric task constraints. Experiments with a
mobile manipulator show that our approach is capable of
generating low-cost solutions paths to complex constrained
mobile manipulation tasks. We compared the performance of
our planning framework to state-of-the-art path planning al-
gorithms on several planning problems of varying complexity
and demonstrate that our method generates low-cost solution
paths more reliable and faster than existing methods.

II. RELATED WORK

Karaman et al. introduced PRM* and RRT* [3], which
are in comparison to their probabilistically complete coun-



terparts also asymptotically optimal, guaranteeing that the
cost of the returned solution approaches the optimum as
the number of samples goes to infinity. These algorithms
have the property of improving the solution in the available
computation time, however, do not guarantee a high rate
of convergence. Furthermore, Karaman et al. presented an
extension of the RRT* algorithm toward anytime motion
planning [4], interleaving planning with trajectory execution.
The idea is to instantly trigger execution as soon as an
initial feasible motion plan has been found whose remaining
portions are improved over time. A two-tree variant of RRT*
proposed by Jordan et al. [5] has shown to very rapidly pro-
vide solutions in planning problems with challenging regions
such as narrow corridors, or high-dimensional configuration
spaces with numerous obstacles. Janson et al. [6] proposed
the FMT* algorithm to increase the efficiency of optimal path
search by extending graph-search methods to sampling-based
algorithms. This approach generates resolution-optimal so-
lutions in an asymptotically manner. A further improvement
of the solution, however, requires to restart the search from
scratch at a higher resolution. Alterovitz et al. [7] introduced
the rapidly-exploring roadmap algorithm that allows the user
to explicitly control the trade-off between free-space explo-
ration and solution path refinement. The authors show that a
careful choice of this parameter enables finding optimal paths
more quickly. Similarly, Akgun et al. [8] presented a bidirec-
tional variant of RRT* with path biasing that quickly finds an
initial solution path. Afterwards the planner predominantly
spends the remaining planning time for either refinement of
the current path or exploration of other homotopy classes
depending on a user-defined parameter.

The claim for optimal solutions usually comes along with a
high computational effort. Therefore, several heuristics have
been introduced to guide the search in order to achieve
a faster convergence of the path cost towards the optimal
solution. Nasir et al. [9] developed RRT*-Smart that fol-
lows a similar principle as visibility graph techniques. To
accelerate the rate of convergence, it generates nodes as
close as possible to obstacle vertices instead of adopting
a purely random exploration. While the approach quickly
reduces the solution cost, it may also cause other homotopy
classes to remain undiscovered. The Cloud RRT* algo-
rithm, proposed by Kim et al. [10], allocates new samples
from sampling clouds, initially generated from a general-
ized Voronoi diagram. During planning, these clouds are
updated based on the set of configurations constituting better
solutions. Additionally new clouds are added to refine the
currently best solution. However, global sampling remains
active throughout the planning phase in order to explore
understudied homotopy classes. Otte et al. [11] introduced
the use of parallel computing for optimal motion planning.
Their C-FOREST algorithm grows configuration space trees
on multiple CPUs, that propagate improvements found on
the current solution among each other. By exchanging this
information, the configuration space region from which
samples are drawn is collaboratively shrunk to an area of
configurations potentially improving the current solution.

The Informed RRT* algorithm, proposed by Gammell et
al. [1], follows a similar approach of focused asymptotically-
optimal motion planning. Here, the current solution is used to
define an ellipsoidal subset of the planning domain, which
is used to draw only samples that potentially improve the
solution. The increased rate of convergence towards the
optimal solution achieved in [11] and [1], however, vanishes
for planning problems where most of the planning time needs
to be dedicated for finding a first solution.

The BIT* algorithm [12] tries to overcome these lim-
itations by combining sampling-based planning with in-
cremental graph search techniques. Instead of shrinking,
the ellipsoidal subset is incrementally enlarged and batches
of configurations are added, which are subsequently used
to update a search graph. Typically, large batch sizes are
required to quickly converge to the optimal solution which,
in the presence of task constraints, would require to compute
a constraint manifold approximation in advance.

Efficient optimal motion planning for mobile manipula-
tion, requires collision-free samples not only to be drawn
from particular regions of the configuration space, but also
to comply with task constraints imposed on the end-effector
by the object to be manipulated. Şucan et al. proposed to
pre-compute an approximation of the constraint manifold
prior planning [13]. In this way, valid samples can be
directly drawn from an approximation graph for tree expan-
sion instead of applying computationally expensive rejection
sampling or sample projection techniques. The drawback is
that multiple approximation graphs are needed in order to
perform planning for different types of constraints. Stilman et
al. presented three modifications to the RRT algorithm for
planning with task-space constraints, namely randomized
gradient descent (RGD), tangent-space sampling (TS) and
first-order retraction (FR) [14]. The results of their compar-
ison indicated that the FR method, which iteratively displaces
a sample toward the constraint manifold, is faster and more
invariant to expansion step size and error tolerance than
the RGD and TS technique. Berenson et al. [15] described
an approach for planning manipulation tasks using Task
Space Regions (TSR). These regions define upper and lower
bounds for constraint task coordinates and can be linked
together in order to obtain more complex constraints. Here,
samples are projected onto a region, as opposed to [14],
where samples are required to be projected onto a single
task space point. This leads to a faster and more successful
projection of samples, thus generating solutions in a shorter
amount of time. Alternative approaches for task constrained
mobile manipulation using graph-search techniques instead
of sampling-based motion planning are presented in [16]
and [17]. These implementations use anytime repairing A*
to generate motions for opening a door or pushing a cart.
The discretization based on general motion primitives leads
in many cases to dramatic performance improvements in
sampling-based planning algorithms. The main drawback is
that these approaches are resolution-complete and provide
only resolution-optimal paths.

In this work, we combine the bidirectional RRT* [5]



with informed sampling from an ellipsoidal subset [1] and
the first-order retraction technique [14] for sample projec-
tion [15]. In this way, we make use of the advantages of
several existing techniques to achieve an increased rate of
convergence also for highly constrained planning problems.

III. MOTION PLANNING WITH BIDIRECTIONAL
INFORMED RRT*

Our system builds upon the Informed RRT* algorithm
by Gammell et al. [1], which has already demonstrated the
ability to find optimal solutions to planning problems in high-
dimensional domains. As the authors concluded, only the
addition of further samples from an ellipsoidal subset of the
planning domain can lead to an improvement of the current
solution path. Thus, directly sampling from this subset can
result in a faster rate of convergence. In the following, we
describe our bidirectional variant of Informed RRT*, which
speeds up the search for a first solution and improves the
convergence rate towards the optimal solution also for highly
complex planning problems.

A. The BI2RRT* Algorithm

Informed RRT* achieves an increased rate of convergence
once an initial solution is found. Before that, it basically
coincides with the classical RRT* planner. Obviously, the
earlier an initial solution is found the more planning time is
left for informed path refinement. Therefore, we developed a
two-tree variant of Informed RRT*, which quickly generates
a first solution, in turn triggering informed sampling at an
earlier planning stage. Furthermore, we consider two ellip-
soidal subsets, used to perform informed sampling for the
translational and rotational component of the configuration
space of a mobile manipulator platform.

Alg. 1 shows the pseudocode of our BI2RRT* algorithm.
For simplicity, we first explain the basic functionality of our
planner in the absence of end-effector task constraints as
given by tcc and B. How those constraints are considered is
afterwards described in Sec. III-B and Sec. IV. Given a start
and goal end-effector pose pe

s , pe
g , our algorithm generates a

start and goal configuration for the root nodes ns, ng of the
two trees Ta, Tb, respectively (Lines 1, 2 in Alg. 1, details in
Sec. III-B). Afterwards, the current solution path cost cSP is
initialized, and the algorithm starts growing the search trees
until either a maximum number of iterations or time elapsed
is reached (Lines 3, 4). The SAMPLE RAND CONFIG
function (Line 5, see Alg. 2) returns a configuration qrand,
randomly sampled from the entire configuration space or
the informed ellipsoidal subset (the latter is detailed in
Sec. III-C), depending on whether a solution path is already
available or not. Afterwards, FIND NEAREST NEIGHBOR
finds the nearest neighbor qnn in Ta, to the configuration
qrand (Line 6). The EXTEND function (see Alg. 3) tries
to establish a connection between the two configurations
by incrementally stepping from qnn towards qrand (Line 3
in Alg. 3) while performing collision checks for the in-
termediate configurations (Line 8 in Alg. 3). As a result,
the EXTEND operation returns a list of segments V , i.e.

Algorithm 1: BI2RRT* (pe
s , pe

g ,tcc,B, knv)
1 ns.q ← GEN IK SOLUTION(pe

s , tcc, B)
2 ng .q ← GEN IK SOLUTION(pe

g , tcc, B, ns.q)
3 Ta.init(ns); Tb.init(ng); cSP ←∞
4 for i = 1 to max time iter do
5 qrand ← SAMPLE RAND CONFIG(cSP, ns.q, ng .q)
6 qnn ← FIND NEAREST NEIGHBOR(Ta, qrand)
7 Lnv, Va, Vb ← ∅
8 ext statenn, ext statenv, ext statec ← FAILED
9 ext statenn,Va ← EXTEND(Ta, qnn, qrand, tcc, B)

10 if (cSP <∞ or ext statenn = FAILED) then
11 Lnv ← FIND NEAR NODES(Ta, qrand)
12 ext statenv,Va ← BP SEARCH(Ta, qrand, Lknv

nv )
13 if (ext statenn 6= FAILED or ext statenv 6= FAILED) then
14 INSERT SEGMENTS(Ta, Va)
15 if cSP <∞ then
16 Ta ← REWIRE TREE(Lknv

nv , Ta.last.q)
17 cSP ← RECURSIVE COST UPDATE(Ta)
18 qnn ← FIND NEAREST NEIGHBOR(Tb, Ta.last.q)
19 ext statec,Vb ← EXTEND(Tb, qnn, Ta.last.q, tcc, B)
20 if ext statec 6= FAILED then
21 INSERT SEGMENTS(Tb, Vb)
22 if ext statec = REACHED then
23 cSP,new ← GET SOLUTION COST(Ta.last.q,

Tb.last.q)
24 if cSP,new < cSP then
25 cSP ← cSP,new
26 SWAP(Ta, Tb)
27 if cSP <∞ then
28 return PATH(Ta, Tb)
29 else
30 return FAILURE

Algorithm 2: SAMPLE RAND CONFIG (cSP, qs, qg)
1 conf valid ← FALSE
2 while conf valid = FALSE do
3 if cSP <∞ then
4 qrand, p ← SAMPLE FROM ELLIPSE(cSP,p, qs,p, qg,p)
5 qrand, r ← SAMPLE FROM ELLIPSE(cSP,r, qs,r, qg,r)
6 qrand ← [qrand, p,qrand, r]
7 else
8 qrand ← GET RAND CONFIG()
9 conf valid ← IS CONFIG VALID(qrand)

10 return qrand

pairs of nodes and edges, together with information about
the expansion status, ext state (Line 9 in Alg. 1). The value
of ext state corresponds to either FAILED, PROGRESS, or
REACHED, indicating that tree Ta has not been extended
at all, made some progress towards qrand, or has reached
qrand, respectively. As opposed to the classical Informed
RRT*, our planner performs a best parent search, defined
by BP SEARCH, not only when a solution is available,
but also when the tree expansion from qnn failed to make
some progress (Line 10-12 in Alg. 1). Here, the function
FIND NEAR NODES provides a set Lknv

nv of knv near nodes,
stored in the order of ascending cost-to-reach. If either the
expansion from qnn or from one of the near nodes, stored
in Lknv

nv , has made at least some progress towards qrand, the
segments Va returned by EXTEND are added to the tree
Ta (Line 14 in Alg. 1). Lines 15-17 in Alg. 1 correspond
to the standard rewire operation of RRT*, considering the
last node added to the tree Ta.last.q and the knv near
nodes of Lknv

nv with the highest cost-to-reach. Note, that the



Algorithm 3: EXTEND (T , qnn, qrand, tcc, B)
1 ext state← FAILED ; V ← ∅ ; conf valid ← TRUE
2 while conf valid = TRUE do
3 qext, eext ← STEP TOWARDS SAMPLE(T , qnn, qrand)
4 if tcc = 0 or qext = qrand then
5 qnew, enew ← qext, eext
6 else
7 qnew, enew ← FR NEW CONFIG(qext, tcc, B)
8 conf valid ← IS CONFIG VALID(qnew)
9 if conf valid = TRUE then

10 qnn ← qnew
11 ext state← PROGRESS
12 V ← ADD SEGMENT(qnew, enew)
13 if qnew = qrand then
14 ext state← REACHED
15 break
16 return ext state,V

reduction of the cost-to-reach for a single node needs to
be propagated through the tree to the leaf nodes. By doing
so, an improvement of the current solution path cSP may be
elicited (Line 17 in Alg. 1). The last part of the planner,
described in Lines 18-20 of Alg. 1, basically corresponds
to the classical connect step of bidirectional search. First,
the nearest configuration qnn in tree Tb, to the last node
added to Ta is determined (Line 18 in Alg. 1). Afterwards,
EXTEND tries to find a new solution path by connecting qnn

to Ta.last.q. If EXTEND returns REACHED, a new solution
path is found. Its cost cSP,new, however, does not necessarily
constitute a better solution. Therefore, we finally compare
cSP,new to the cost of the current best solution cSP. If cSP,new

is found to be lower than cSP, cSP is updated, the trees Ta
and Tb are swapped and the algorithm proceeds with the next
iteration. After reaching the stopping criteria, Alg. 1 returns
either the final solution path or FAILURE.

B. Tree Initialization

We assume the initial and desired end-effector poses pe
s

and pe
g , as needed for an object manipulation task, to be

given. Our algorithm allows for specifying a vector tcc

of constrained task coordinates and a matrix B of task
coordinate bounds (see Sec. IV-A), e.g., to describe task
constraints corresponding to carrying objects in an upright
pose. The vector tcc is simply constituted by binary val-
ues indicating whether a task coordinate is constrained.
For those coordinates being constrained, the matrix B
defines a lower and upper admissible displacement from
pe

s and pe
g , respectively. Considering these constraints, the

GEN IK SOLUTION function (Line 1 in Alg. 1) finally runs
a damped least-squares controller [18] using random config-
uration space seeds to generate a valid inverse kinematics
solution for the mobile manipulator end-effector pose pe

s .
For the generation of an inverse kinematics solution for pe

g ,
we use seeds that are generated by Gaussian sampling around
the start configuration ns.q (Line 2 in Alg. 1). This approach
yields two advantages. First, it is easier for the planner to
find a solution path when the terminal configurations are
similar. Second, we avoid initializations of the planner in
mobile manipulation tasks with terminal configurations that
lie in disjoint regions of the constraint manifold, thus making

it impossible to find a valid solution.

C. Informed Heuristic for Mobile Manipulators

Gammell et al. [1] proposed to directly sample from an
ellipsoidal subset, once a solution is found. Here, the uni-
formly distributed samples in a hyper-ellipsoid are calculated
from

xf̂ = RLxball + xcentre , (1)

where xball are uniformly distributed samples from the
unit n-ball and xcentre is the centre of the hyper-ellipsoid,
following from two focal points xg , xs. The matrices R and
L are given by

R = U diag{1, . . . , 1,det(U) det(V)}VT , (2)

where UΣVT follows from the singular value decomposi-
tion of a matrix M, given by the outer product a1I

T
1 . Here,

I1 represents the first column of the identity matrix and a1

is given by

a1 = (xg − xs)/‖xg − xs‖2, (3)

and

L = diag

{
cSP
2
,

√
c2SP − c2HS

2
, . . . ,

√
c2SP − c2HS

2

}
, (4)

with cSP and cHS describing the current and hypothetical
solution path cost, respectively. Here, we defined cHS as the
cost of the linear interpolation between the start and goal
configuration, neglecting obstacles and task constraints.

So far, informed sampling has been performed in configu-
ration spaces solely composed of either revolute or prismatic
components [1], [12]. In this work, we split the configuration
space of the mobile manipulator into these components in
order to perform informed sampling for each of them. The
result are two components qrand,p and qrand,r generated from
distinct hyper-ellipsoids (Lines 4, 5 in Alg. 2), which are
stacked after sampling (Line 6 in Alg. 2) in order to obtain
an informed configuration space sample for the entire robot.

IV. EFFICIENT SAMPLE PROJECTION ACCORDING TO
TASK CONSTRAINTS

Considering end-effector task constraints in mobile ma-
nipulation planning, requires an advanced sample projection
method within the EXTEND function (Line 7 in Alg. 3).
We therefore apply the first-order retraction method [14],
which has already shown to be faster and more invariant to
expansion step size (used in STEP TOWARDS SAMPLE,
Line 3 in Alg. 3) and error tolerance than other projection
methods. Additionally, we adopt the idea of constraining
task coordinates to remain in bounded intervals instead of
considering fixed values [15]. In the following, we briefly
recapitulate the definition of task constraints before explain-
ing in more detail how task constraints are satisfied within
our planning framework.
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Fig. 2: Task frame for pulling a cart (left) and transporting
liquids (right) used for the specification of end-effector task
constraints in the first-order retraction sample projection
method.

A. Definition of Task Constraints

For the definition of end-effector task constraints, we
introduce the notions task frame F t , coordinate constraint
vector tcc, and task coordinate bounds B. The task frame
represents a reference coordinate system, in which tcc and
B are expressed (see Fig. 2). The binary elements of tcc are
used to compose a diagonal constraint selection matrix of
allowed translational and rotational displacement from F t

C = diag(tcc,1, . . . , tcc,n), (5)

with tcc,i ∈ [0, 1] and n = 6. The matrix B additionally
defines lower and upper bounds for the displacement for
those task coordinates constrained by C,

B =


∆xneg ∆xpos
∆yneg ∆ypos
∆zneg ∆zpos
∆αneg ∆αpos

∆βneg ∆βpos
∆γneg ∆γpos

 , (6)

where the first and second column refers to the admissible
negative and positive deviation of the coordinates from F t .
Here, α, β and γ are used to denote the roll, pitch, and yaw
angles. Note that we initialize the task frame F t globally
with the desired start pose of the end-effector frame pe

s .
For manipulation of articulated objects, a parametrized task
frame would be required, instead.

B. Satisfaction of Task Constraints

After having sampled a random configuration qrand, the
EXTEND function iteratively perform steps towards qrand

from the nearest neighbour qnn until the random sample is
reached or an invalid configuration is encountered (Line 3, 8
in Alg. 3). A premise for the extension of a tree considering
end-effector task constraints is a successful projection of
each intermediate configuration qext onto the constraint man-
ifold (Line 7 in Alg. 3). To do so, FR NEW CONFIG first
computes the end-effector frame Fe by forward kinematics
for qext. The result is given by the transformation T0

e(qext).
Afterwards, the displacement of Fe with respect to the task
frame F t is found by

Tt
e(qext) = Tt

0T
0
e(qext) = (T0

t )−1T0
e(qext), (7)

where T0
t is assumed to be a fixed transformation between

the task frame F t and world frame F0 . Next, we need to
represent the transform for end-effector displacement with
respect to the task frame in task coordinates using the
roll, pitch, yaw representation for describing the relative
orientation

∆x ≡ Tt
e(qext). (8)

Given the matrix C from Eq. 5, we now select the relevant
error components from ∆x as follows

∆xc
err = [ec1, . . . , e

c
n] = C∆x, (9)

eci =

{
0, ci = 0

∆xi, ci = 1
(10)

where ci is the i-th element along the diagonal of matrix C.
Finally, we consider the admissible negative and possible
deflection intervals for the task coordinates in order to obtain
the task error components subsequently used in the sample
projection method,

∆xb
err = [eb1, . . . , e

b
n], (11)

ebi =

{
0, bi1 ≤ ∆xc

err,i ≤ bi2
∆xc

err,i, ∆xc
err,i < bi1 or bi2 < ∆xc

err,i

(12)

where bi1 and bi2 are the values in the first and second
column of the i-th row in the task coordinate bound ma-
trix B (see Eq. 6).

Once the task error is identified, we need to find a mapping
that generates joint motions, iteratively reducing the error
until all its components are within the bounded intervals
defined by B. This is done by a Jacobian-based method.
The classical Jacobian J0 is a matrix of partial derivatives
relating joint space velocities to end-effector linear and
angular velocities expressed in the world frame F0 . As
the task space error is defined w.r.t. the frame F t in our
case, we need to respesent the Jacobian in this frame. The
corresponding task frame Jacobian Jt is obtained using the
inverse rotation matrix R0

t as follows

Jt =

[
Rt

0 0
0 Rt

0

]
J0. (13)

The lower three rows of Jt represent the mapping to angular
velocities of the end-effector. However, the end-effector
angular velocity with respect to the task frame is not given by
the rotational velocity of a set of orientation angles. Though,
it is possible to find a relationship between the angular
velocity and rotational velocities for a given set of orientation
angles. For RPY angles, this relationship is defined by a
matrix Erpy [14] yielding

J = Erpy(qext)J
t(qext). (14)

Finally, we use the pseudo-inverse of the task Jacobian J†

to map the task error ∆xb
error expressed in frame F t to the

least-norm velocities in joint space required to correct it:

q̇ = J†∆xb
error. (15)



Note, that in IS CONFIG VALID (Line 8 in Alg. 3) a
configuration qnew is found invalid not only if it is in
collision, but also when it is equal to qnn (backprojection)
or has not made progress towards qrand (divergence).

V. IMPLEMENTATION DETAILS

Our planner is implemented in the MoveIt! framework in
ROS [19] and uses FCL [20] for collision checks and and
will be available open source at https://github.com/
burgetf/mobile_manipulation_planning. When
the planner checks a configuration for validity, the collision
mesh model of each robot link is tested for self-collisions
and collisions with the environment, considering also objects
potentially attached to the end-effector. Computation of the
forward kinematics for single configurations is done using
the KDL library [21]. For computing the pseudo-inverse of
the task frame Jacobian in the first-order retraction method
we use the singular value decomposition implemented in the
Eigen library [22].

VI. EXPERIMENTS

For the experimental evaluation of our approach, we use
the omniRob omnidirectional mobile manipulator platform
by Kuka Robotics, which is composed of 10 degrees of
freedom. Its configuration is given by

q = (qbase ,qmanip)T , (16)

where

qbase = (x, y, θ), (17)
qmanip = (q1, q2, q3, q4, q5, q6, q7), (18)

denote the configuration of the base platform and manipu-
lator chain, respectively. For planning mobile manipulation
tasks, we modeled the planar motion of the base by two
prismatic joints representing the translation of the robot
in the x, y direction w.r.t. the world frame. For planning,
we considered all DOFs of the robot, resulting in a 10-
dimensional configuration space. The solution path cost cSP

is defined by the sum of the rotational and prismatic path
length. Note that we adopted in our comparative experiments
anytime variants of the standard RRT, Informed RRT and
RRT-CONNECT planning algorithms in order to allow them
to exploit the available planning time for finding alternative
solution paths of lower cost. We derived these algorithms by
selecting different combinations of the features bidirectional
search, informed sampling, tree optimization (continuing
the search after a first solution is found) in our planning
framework. For the following experiments, planning was
performed off-board on a single core of a standard desktop
CPU (Intel Core i7, 3.4 GHz).

A. Planning Collision-Free Motions

In a first experiment, we conducted a quantitative com-
parison between our planning framework and other variants
of RRT-based planning algorithms regarding the perfor-
mance in planning collision-free motions for a complex
scenario (Fig. 3, first column). Here, the robot needed to
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Fig. 4: Average deviation of the constrained task coordinates
from the task frame along the end-effector solution path for
100 runs of the transportation of liquids (top) and cart pulling
(bottom) planning scenario.

travel from an initial configuration to a final configuration
while avoiding self-collisions and collisions with objects in
the environment. Each planner performed 100 runs, each
given a maximum planning time of 2 minutes. According
to the averaged results, the bidirectional variants generally
find better solutions than the unidirectional variants in less
time and more often. Moreover, our planning framework
finds a first solution faster compared to the Informed RRT*
due to the earlier activation of informed sampling (Fig. 3,
first column, fourth row), thus having more time left for the
optimization of the current solution.

B. Transportation of Liquids

In the next planning scenario, we evaluated the per-
formance of our planner w.r.t. other RRT-based planning
algorithms in the presence of serious end-effector orientation
constraints. Here, the robot needed to transport a container of
liquid from one location to another (Fig. 3, second column).
To do so, it needed to maneuver the container out of a
narrow space, then underneath a ceiling joist, and finally
through a narrow gate, while respecting the task constraints.
Again, each planner performed 100 runs, this time each given
a maximum planning time of 3 minutes. The coordinate
constraint vector for this task is defined w.r.t. the task frame,
depicted on the right side in Fig. 2, as follows

tcc =
[
0 0 0 1 0 1

]T
. (19)

Accordingly, we set the admissible negative and positive
deflection from the task frame for the roll angle ∆αneg ,
∆αpos and yaw angle ∆γneg , ∆γpos in matrix B to −10◦

and 10◦, respectively. Note that we discarded the results of
RRT and Informed RRT in the figures for this scenario due to
their low performance. Regarding the time required to find a



Planning collision-free motions Transportation of liquids Pulling a cart

pe
g

pe
s

pe
g

pe
s

pe
g

pe
s

Desired Solution Cost cSP

152025303540

S
u
cc
es
s
R
at
e
[%

]

0

20

40

60

80

100

Desired Solution Cost vs. Success Rate

Desired Solution Cost cSP

202530354045

S
u
cc
es
s
ra
te

[%
]

0

20

40

60

80

100

Desired Final Solution Cost vs. Success Rate

Desired Solution Cost cSP

010203040506070

S
u
cc
es
s
ra
te

[%
]

0

20

40

60

80

100

Desired Final Solution Cost vs. Success Rate

Desired Solution Cost cSP

152025303540

A
v
g.

S
ol
u
ti
on

T
im

e
[s
]

0

20

40

60

80

100

N/A

Desired Solution Cost vs. Avg. Solution Time

Desired Solution Cost cSP

202530354045

A
v
g.

S
ol
u
ti
on

T
im

e
[s
]

60

80

100

120

140

160

N/A

Desired Final Solution Cost vs. Avg. Solution Time

Desired Solution Cost cSP

202530354045

A
v
g.

S
ol
u
ti
on

T
im

e
[s
]

100

120

140

160

N/A

Desired Final Solution Cost vs. Avg. Solution Time

Planning Runtime [s]
0 20 40 60 80 100 120

S
ol
u
ti
on

A
va
il
ab

le
[%

]

0

20

40

60

80

100

Planning Runtime vs. Solution Available

Planning Runtime [s]
0 20 40 60 80 100 120 140 160 180

S
ol
u
ti
on

A
va
il
ab

le
[%

]

0

20

40

60

80

100

Planning Runtime vs. Solution Available

Planning Runtime [s]
0 20 40 60 80 100 120 140 160 180

S
ol
u
ti
on

A
va
il
ab

le
[%

]

0

20

40

60

80

100

Planning Runtime vs. Solution Available

RRT Informed RRT RRT* Informed RRT*
RRT-Connect Bidirectional Informed RRT Bidirectional RRT* Bidirectional Informed RRT* (ours)

Fig. 3: Comparison of the performances in planning collision-free motions (2min planning time, first column), transportation
of liquids (3min planning time, second column) and cart pulling (3min planning time, third column), averaged over 100
runs. Example solution paths are represented by their corresponding base (orange line) and end-effector (blue line) trajectory.
First Row: Planning scenarios. Second Row: Percentage of successful runs w.r.t. different desired solution path costs. Third
Row: Average time required to generate solutions of specific costs. Fourth Row: Percentage of runs providing a solution as
a function of the planning runtime.

first solution (Fig. 3, second column, fourth row), our results
show that about 70% of the runs of bidirectional planners
provide a solution after 50% of the total planning time of
three minutes. Furthermore, the combination of the greedy
connect heuristic with informed sampling in our planning
framework has shown to find better solution more often and
in less time. The Informed RRT*, on the other hand, needed
to dedicate most of the planning time for the discovery of an
initial solution, thus having almost no time left for further
path improvements (Fig. 3, second column, second and third
row). The mean and standard deviation for the displacement

of the constrained orientation angles from the task frame
along the solution paths is depicted in Fig. 4. As can be
seen, both angles stay within the bounds, defined in B.

C. Pulling a Cart

In a final experiment, we quantitatively evaluated the per-
formance of different planning algorithms considering end-
effector position and orientation constraints. Here, the robot
needed to maneuver a cart equipped with omnidirectional
wheels out of a parking lot and into another, while respecting
the aforementioned constraints (Fig. 3, third column). To
compare the results of our planning framework we resorted



to the same set of planning algorithms considered in Sec. VI-
B. The coordinate constraint vector for this task is defined
w.r.t. the task frame, depicted on the left side in Fig. 2 as
follows

tcc =
[
1 0 0 0 1 1

]T
. (20)

Here, we set the admissible negative and positive deflection
from the task frame for the x-direction ∆xneg , ∆xpos
and yaw angle ∆γneg , ∆γpos in B to ±3 cm and ±5◦,
respectively. The pitch angle, on the other hand, is allowed to
rotate the end-effector around the cart handle by ∆βneg =-
30◦ and ∆βpos =30◦. As our results show, the unidirectional
variants RRT* and Informed RRT* fail to find a solution in
most of the planning runs. In contrast, bidirectional planning
algorithms are able to generate a solution in about 70% of
the runs (Fig. 3, third column, fourth row). Moreover, the few
solutions generated by the unidirectional planning algorithms
are found shortly before the available planning time runs
out, whereas their bidirectional counterparts offer solutions
of the same cost in a much earlier planning stage (Fig. 3,
third column, third row). Regarding the success rate for
different desired solution path costs and the corresponding
average time required to generate them, the Bidirectional
RRT* algorithm shows a similar performance as our planner.
Here, Bidirectional RRT* has a slightly higher success rate
for solution paths of cost cSP > 42, whereas our planner
is superior in generating lower cost solution paths due to
the integration of informed sampling (Fig. 3, third column,
second and third row). Furthermore, we evaluated the average
deviations of the constrained coordinates from the task frame.
Here, we obtain ∆x̄ =-1.32 cm±1.19cm SD for the x-
coordinate, ∆β̄ =-2.16◦±11.73◦ SD for the pitch angle and
∆γ̄ =-0.61◦±2.39◦ SD for the yaw angle (see Fig. 4). Note
that the compliance of the robot’s kinematic structure and
the object to be manipulated needs to be taken into account
when defining the task coordinate bounds in B.

VII. CONCLUSIONS

In this paper, we presented a novel framework for mobile
manipulation planning under arbitrary geometric end-effector
task constraints. Our BI2RRT* planning algorithm uses the
greedy connect heuristic to quickly find a first solution.
To enable informed sampling for the full configuration
space of a mobile manipulator, we propose to use two
hyper-ellipsoids, representing subsets for the rotational and
prismatic components of the configuration space. In this
way, the solution can be improved if time allows. For
constraint satisfaction, we adopted the first-order retraction
method [14], which has shown to be a fast technique for
projecting samples onto the constraint manifold. The experi-
ments reveal that our planner generates solutions to complex
mobile manipulation problems that satisfy all the desired
constraints, e.g., to deliver a glass of water or a tool trolley.
Moreover, we demonstrated in the evaluation on different
planning scenarios that our approach is capable of providing
low-cost solution paths more reliably and faster than existing
state-of-the-art RRT-based algorithms.
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