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Abstract— In grasping tasks carried out with humanoids,
knowledge about the robot’s reachable workspace is important.
Without this knowledge, it might be necessary to repeatedly
adapt the stance location and call an inverse kinematics solver
before a valid robot configuration to reach a given grasping pose
can be found. In this paper, we present an approach to select
an optimal stance location in SE(2) for a humanoid robot’s
feet relative to a desired grasp pose. We use a precomputed
representation of the robot’s reachable workspace that stores
quality information in addition to spatial data. By inverting
this representation we obtain a so-called inverse reachability
map (IRM) containing a collection of potential stance poses
for the robot. The generated IRM can subsequently be used
to select a statically stable, collision-free stance configuration
to reach a given grasping target. We evaluated our approach
with a Nao humanoid in simulation and in experiments with
the real robot. As the experiments show, using our approach
optimal stance poses can easily be obtained. Furthermore, the
IRM leads to a substantially increased success rate of reaching
grasping poses compared to other meaningful foot placements
within the vicinity of the desired grasp.

I. INTRODUCTION

Humanoid robots are designed for mobile manipulation
tasks in human environments. A prerequisite for successful
task completion in such settings is that the robot is equipped
with sufficient knowledge about the relevant aspects of the
scene and its own capabilities. This also includes the ability
to decide where to place itself relative to an object to
be manipulated in order to achieve an admissible grasp
configurations. Besides by obstacles in the environment,
this decision is mainly influenced by the robot’s kinematic
model including the number of joints and their value range
as well as its mass distribution. Based on these parame-
ters, the robot’s manipulation capabilities can be uniformly
represented by a spatial data structure called reachability
map [1] (see Fig. 1).

Many existing techniques follow the approach of dealing
with locomotion and manipulation tasks as two distinct
problems (e.g., [2], [3]). Thus, first a motion for the lower
body is planned, i.e., for the base of a mobile platform or
the legs of a humanoid, in order to bring an object to be
manipulated within the extend of the robots upper body
workspace. Subsequently, the reaching task is performed
using only the upper body joints. Whether or not the object
can actually be reached from the current stance location
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Fig. 1: Representation of reachable right hand locations from
statically stable double support poses. Voxels are colored by
the maximum value of the manipulability index among the
configurations stored in them (green = high, red = low).

significantly depends on the number of available joints and
constraints involved. Most mobile manipulator and humanoid
robot platforms are designed to have at least one degree
of redundancy in the upper body end-effector chains. This
choice allows the robot to arrive at almost all of its reachable
end-effector poses with arbitrary orientation without the need
to reposition or reconfigure the mobile base, or lower body
respectively. That means the choice of the stance location for
a grasping task is compensated by the redundant kinematic
structure of the upper body. However, when considering
robots with an upper body equipped with only six or less
degrees of freedom (DOF), the number of achievable end-
effector orientations for the targets within the reachable
workspace of the upper body is limited. As opposed to mo-
bile manipulators that are forced to reposition their base once
the desired end-effector orientation has been determined to
be unachievable from the current stance location, humanoid
robots are capable of adjusting their lower body configuration
to extend the set of achievable end-effector orientations for
a given grasping target. The actuation of the legs of a
humanoid, however, introduces balance constraints and thus
cannot fully compensate for the limited kinematic properties
of the upper body chains. Therefore, the stance selection
relative to an object becomes a crucial factor since repeated
adaptions of the stance location and calls to an inverse
kinematics solver for the arm chain should be avoided.

In this paper, we present an approach that is based on
the concept of inverse reachability maps (IRM) proposed
by Vahrenkamp et al. [4], [5] to select an optimal stance
pose for the feet of a humanoid robot in SE(2), i.e., a 2D



position and 1D orientation, relative to the grasping pose.
As we show in experiments with a Nao humanoid, we can
easily select optimal stance poses from our IRM given a
desired grasp. By comparing our approach to random stance
pose selection within a meaningful extend around the target
grasp, we achieve a substantially increased success rate. Note
that such an IRM can also be used for humanoids with a
higher number of DOFs to choose optimal stance locations
for manipulation tasks.

II. RELATED WORK

Several techniques for generating robot configurations to
achieve grasping poses with the end-effector already ex-
ist. For example, Stulp et al. [6] introduced the concept
of Action-Related Place (ARPlace). ARPlace represents a
probability mapping that specifies the expected probability
that the target object will be successfully grasped, given
the positions of the target object and the robot. The authors
present results for a wheeled mobile base equipped with two
6-DOF manipulators.

Jamone et al. [7] proposed a method to allow a humanoid
robot to learn a representation of its own reachable space,
referred to as the reachable space map, from motor experi-
ence. To do so, the authors first learn an arm-gaze model,
mapping end-effector poses to a specific gaze configuration
for the head and eyes of the robot. Using the inverse of
that model an estimate of the reachable space map, i.e.,
a set of visually detected 3D points, for the robot’s hand
is obtained by solving a large number of IK queries. The
authors differentiate between a basic and an enhanced map.
While the former only specifies whether a fixated point in the
gaze frame is reachable with the hand, the later additionally
provides a quality measure about the degree of reachability.

Müller et al. precompute a reachability map for the arm
chain where the origin of the reachability map is located in
the shoulder [8]. While this approach is rather efficient, the
manipulation range is restricted since whole-body motions
are not considered but only arm motions, which are planned
using A* search in workspace using configuration lookup
tables and specialized heuristics considering the difference of
the planned arm configuration and the target configuration.
Zacharias et al. [1] proposed the so-called capability map
which is a representation of kinematic reachability in the
workspace for a robotic arm. The authors use a manipulabil-
ity measure to evaluate poses in the workspace with regard
to distance to singularities [9]. Using the capability map, one
can determine relative object positions that allow for good
manipulation by the robot. Vahrenkamp et al. [4] presented
an approach to compute base positions for a wheeled mobile
manipulation robot in order to reach object grasps. The
authors precompute a so-called inverse reachability distri-
bution (IRD) for the robot’s base, which is centered at the
hand pose. For a desired grasp, the IRD center is placed at
the corresponding workspace pose and its volume is cut with
the floor plane to find valid base positions and orientations.
The possible base positions are evaluated based on factors
such as the distance to singular configurations, joint limits

under redundancy, and the distance between the robot’s body
parts and the approach has also been extended to bi-manual
manipulation tasks [10]. Recently, Kaiser et al. [11] proposed
to learn whole-body affordances associated with parts in the
environment and use manipulability and stability maps to
determine reachable locations.

Berenson et al. introduced the constrained bidirectional
RRT (rapidly exploring random tree) planner that considers
constraints as task space regions (TSRs). The authors used
TSRs initially for goal specification [3] and showed later that
more complex constraints can be described by chaining the
TSRs together. However, in this approach it is assumed that
the robot is already in a good stance position relative to the
object to be manipulated.

In this paper, we extend the concept of inverse reachability
maps from [4] to biped humanoids to automatically select
an optimal stance location for a given grasping target and
a specified manipulability criterion. We hereby have to take
into account additional constraints such as kinematic loop
closure and stability constraints.

III. WORKSPACE REPRESENTATION

Inspired by the work of Vahrenkamp et al. [4], we describe
the robot’s reaching and manipulation capabilities by a dis-
cretized representation of its workspace. The resulting spatial
data structure, referred to as the reachability map (RM),
is composed of voxels of constant size and is computed
offline. Each voxel of the grid represents all possible robot
configurations for which the end-effector pose lies within the
extend of the voxel.

A. Constructing a Reachability Map (RM)

To build a reachability map for a kinematic chain, we
sample configurations from the joint space. By computing the
forward kinematics for each sample, the spatial pose of the
end-effector and the voxel containing it can be determined.
Following this method, we store for each voxel a number of
configurations that can subsequently be evaluated based to
certain criteria.

B. Manipulability Measure

In this work, we adopt the manipulability measure intro-
duced in [9] in order to assign a quality index to every
reachable voxel. This measure evaluates the configurations
stored in each voxel in terms of maneuverability of the end-
effector in workspace and is computed as

w =
√

det J(q)JT (q), (1)

where J(q) is the Jacobian matrix of the respective kinematic
chain in configuration q. Using the singular values decom-
position, the expression can be rewritten as follows

w = σ1σ2 · · · σm, (2)

where σi is the i-th singular value of the Jacobian matrix
and m the dimension of the workspace.

Note that, in general, further aspects such as joint lim-
its under redundancy and the distance between the robots



Algorithm 1: Construct Reachability Map (lroot, ltip,
∆q, pSUF

SWF )
1 chain← GET CHAIN(lroot, ltip)
2 while qc ← SAMPLE CHAIN CONFIG(chain, ∆q) do
3 qSUL ← GET SUPPORT LEG CONF(qc)
4 phip ← COMPUTE HIP POSE(qSUL)
5 pSWF ← DESIRED SWING FOOT POSE(phip, pSUF

SWF )
6 qSWL ← SOLVE SWING LEG IK(pSWF )
7 if CHECK CONF VALIDITY(qc , qSWL) then
8 w ← COMPUTE MANIPULABILITY(qc)
9 ptcp ← COMPUTE FK(qc)

10 idx← FIND EE VOXEL(ptcp)
11 RM ← ADD CONF TO VOXEL(idx, qc , qSWL, w)
12 end
13 end

body parts could be included into the computation of the
index [10].

IV. REACHABILITY MAPS FOR WHOLE-BODY
HUMANOIDS

Constructing a reachability map for a humanoid robot
equipped with multiple end-effectors is a challenging prob-
lem due to the high number of degrees of freedom and
the number of constraints involved. As opposed to a fixed
base and most mobile manipulators for which samples of the
joint space are valid as long as they are self-collision free,
additional stability issues arise when also lower body joints
of a humanoid are considered. Although our framework
allows to represent reachability information for arbitrary
chains of a humanoid robot, e.g., reachable location of the
torso when actuating the leg chains, we are in this work
particularly interested in reaching and manipulations tasks
and hence in the workspace volume covered by the gripper
from statically stable double support configurations. The
individual steps for the construction of a reachability map
are shown as pseudo code in Alg. 1 and will be explained
in detail in the following.

A. Building Whole-Body Reachability Maps

The algorithm takes as input a root and tip link lroot,
ltip for the chain for which sampling is performed. Here,
∆q specifies the step width for sampling. Furthermore, a
fixed desired pose pSUF

SWF of the swing foot parallel and
expressed w.r.t. the support foot, which corresponds also to
the root of the sampled chain, is defined. After sampling
a configuration of the chain (Line 2 of Alg. 1) the part
of the configuration vector qSUL storing the support leg
configuration is extracted (Line 3 of Alg. 1) and the forward
kinematics is solved to obtain the pose of the hip phip
w.r.t. the support foot (Line 4 of Alg. 1). For a better
understanding, Fig. 2 shows the joints and frames of the
Nao humanoid robot. Given the hip and the desired swing
foot pose expressed in the support foot frame we can easily
determine the pose for the swing foot relative to the hip frame
pSWF required to achieve a double support configuration
with the feet being placed parallel to each other (Line 5
of Alg. 1). Afterwards, the algorithm tries to solve the
inverse kinematics problem for the swing leg chain (Line 6
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Fig. 2: Kinematic chains and frames of the NAO robot
involved in building the RM .

of Alg. 1). If an IK solution is found it is stored in qSWL

and the whole-body configuration of the robot is checked
for validity, i.e., we determine whether the whole-body pose
is statically stable and collision-free (Line 7 of Alg. 1). If
no IK solution exists or the pose is found to be invalid, the
algorithm proceeds by sampling a new configuration for the
kinematic chain and repeats the previous steps. Otherwise,
if the configuration is valid the algorithm continues by
computing the manipulability measure (see Sec. III-B) for
the sampled configuration (Line 8 of Alg. 1). As described in
Sec. III-A, the forward kinematics is subsequently computed
to obtain the end-effector pose ptcp for configuration qc of
the chain and the index idx of the voxel containing ptcp is
determined (Line 9, 10 of Alg. 1). In a final step the sampled
configuration, its manipulability measure, as well as the IK
solution for the swing leg chain is stored in the voxel with
index idx (Line 11 of Alg. 1). Note, that the reachability
map need to be built only once in an offline step.

B. C-Space Sampling

To build a reachability map, we need to generate samples
from the robot’s configuration space C. To do so, values can
be either sampled uniformly from the respective joint range
or they can be selected iteratively by stepping through the
joint value range with a specific increment. The decision
of how to sample the C-space significantly depends on the
number of DOFs and constraints involved. Considering fixed
base and mobile manipulators most of the samples drawn
will fall in Cfree ⊂ C, i.e., the subspace of collision-free and
hence valid configurations. However, in the case of humanoid
robots additional loop-closure and stability constraints arise
when leg joints are involved in the sampling process. Hence,
the set of admissible configurations Cstable ⊂ Cfree for
a humanoid covers only a small portion of the entire C-
space. In this work, we follow the approach of generating
samples by stepping through the value ranges of the joints
actuating the kinematic chains. Here, we define two different
increments, a coarse increment for upper body joints and
a finer one for lower body joints that directly affect the
compliance with loop-closure and stability constraints.

C. Double Support Generation

In our approach, a voxel of the spatial data structure
is reachable when the end-effector can be placed within



Algorithm 2: Reachability Map Inversion (RM )
1 while v ← GET VOXEL(RM ) do
2 nc ← GET NUM CONFIGS(v)
3 for i = 1 to nc do
4 (qc, qSWL, w)← GET CONFIG DATA(v, i)
5 ptcp ← COMPUTE TCP POSE(qc)
6 pbase ← (ptcp)−1

7 idx← FIND EE VOXEL(pbase )
8 IRM ← ADD CONF TO VOXEL(idx, qc , qSWL, w)
9 end

10 end

its extend from a statically stable and collision-free double
support configuration. Since sampling is performed only
for a serial chain of the robot, e.g., for the joint between
the foot and gripper link, the loop-closure and stability
constraint must be additionally enforced. The former requires
the adaption of the swing leg configuration such that the feet
of the robot are placed parallel to each other on the floor.
Here, we apply the active-passive link decomposition method
introduced in [12] to achieve a closed-loop configuration for
the leg, where the active chain is the support leg for which
joint values are sampled and the passive chain is the swing
leg. Let us assume w.l.o.g that the right leg is the support
leg whose configuration is given by qSUL (Line 3 of Alg. 1).
By computing the forward kinematics we obtain the pose
phip of the hip frame Fhip w.r.t. the support foot frame
Frfoot (see Fig. 2). Then, using the fixed transformation
pSUF
SWF expressing the desired pose of the swing foot frame
Flfoot w.r.t. the support foot we can infer the desired pose
pSWF of the swing foot w.r.t. frame Fhip . We then apply
an inverse kinematics solver to find a configuration for the
swing leg qSWL.

V. REACHABILITY MAP INVERSION

The reachability map generated according to Sec. IV rep-
resents the robot’s capability of reaching certain end-effector
poses from statically stable, collision-free double support
configurations. In manipulation and reaching tasks, however,
we face exactly the inverse problem. Namely, the required
end-effector pose is predefined by the pose of an object to be
grasped and we aim at finding a base or feet configuration
that maximizes the probability of successful task execution.
For this purpose, we use an inverse reachability map (IRM)
that represents potential base or feet poses relative to the end-
effector. The IRM is generated by inverting the previously
generated reachability map. The individual steps performed
for inverting the reachability information are shown as
pseudo code in Alg. 2 and will be explained in detail in
the following.

Given the reachability map RM as input, we iterate
through its voxels v and for each of them in turn through the
nc configurations stored in it (Line 1 of Alg. 2). Here, the i-th
configuration of voxel v is represented by the data structure
composed of the configuration of the sampled chain qc, the
configuration of the swing leg qSWL and the manipulability
measure w (Line 4 of Alg. 2). By computing the inverse
of the end-effector transformation ptcp, obtained by solving
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Fig. 3: Cross section through the IRM showing potential
right foot locations (left foot is parallel) relative to the hand
of the robot. Voxels are colored by their manipulability
index (red = low, green = high).

the forward kinematics for the sampled chain, we obtain
the pose pbase of the support foot w.r.t. the end-effector
frame (Line 5, 6 of Alg. 2). Equivalent to the reachability
map construction in Alg. 1, we afterwards determine the
index idx of the IRM voxel containing the support foot
in pose pbase and add the configuration to the inverse reach-
ability map data structure (Line 7, 8 of Alg. 2). Note that the
map inversion process does not invalidate any configurations
of the RM . Thus, no additional check for constraint violation
is required. The generated IRM is representing a set of
valid stance poses relative to the end-effector independent
from any specific grasp configuration. A cross section of an
IRM , representing all right foot poses w.r.t. the right gripper
is shown in Fig. 3. As with the RM , the IRM needs to be
built only once in an offline step and can subsequently be
used in all stance pose selection queries for required target
grasp poses.

VI. SELECTING STANCE POSES USING THE INVERSE
REACHABILITY MAP (IRM)

Once the IRM has been computed, it can be used to
determine the optimal stance pose for a given grasping pose.
Here, we assume a 6D target pose for the end-effector given
as

pglobalgrasp = (x, y, z, roll, pitch, yaw)T , (3)

where (x, y, z)T and (roll, pitch, yaw)T is the position and
orientation of the desired grasp pose w.r.t. the global frame
Fglobal . To obtain the set of potential stance poses for a
specific grasp pose from the IRM , we perform the following
steps (see also Alg. 3). At first, the IRM is transformed in
order to align its center with the grasp frame Fgrasp (Line 1
of Alg. 3). Afterwards, we determine the intersection of
the transformed map IRMgrasp with the ground plane on
which the feet must be placed planar (Line 2 of Alg. 3). The
resulting layer IRMfloor of ground floor voxels represents
all support foot positions from which the grasp pose pglobalgrasp is
reachable. However, the orientation of the support foot poses



Algorithm 3: Stance Pose Selection (IRM, pgrasp)
1 IRMgrasp ← TRANSFORM IRM(IRM, pgrasp)
2 IRMfloor ← INTERSECT IRM FLOOR(IRMgrasp)
3 IRMstance ← CHECK STANCE FEASIBILITY(IRMfloor)
4 pglobalstance ← GET MAX MANIP VOXEL(IRMstance)

stored in IRMfloor is not necessarily planar to the ground
plane. Therefore, our algorithm iterates through the voxels
of the IRMfloor and eliminates invalidated configurations.
To do so, it determines for each configuration q stored in a
voxel of IRMfloor, the pose of the support foot pglobalSUP with
respect to the global frame as

pglobalSUP = pglobalgrasp · p
grasp
SUP , (4)

where the transformation pgraspSUP is obtained by solving the
forward kinematics for the sampled chain in configuration q.
Given the z-axis of Fglobal being oriented perpendicular to
the ground plane, we only need to check whether the roll and
pitch angle of pglobalSUP is sufficiently close to zero in order
to determine whether the stance pose is feasible (Line 3
of Alg. 3). Note that the roll and pitch angles are never
exactly zero due to the discretization of the joint range for
sampling in the generation of the RM . Thus, we consider
a certain tolerance for the support foot orientation w.r.t. the
ground plane to be acceptable. Furthermore, we exclude all
support foot configurations, though kinematically admissible,
whose vertical orientation with respect to the grasp frame
exceeds ±90 (Line 3 of Alg. 3). This operation eliminates
unnatural configuration in which the robot is oriented with
the back to the object to be grasped. Finally, IRMstance

represents a set of statically stable, collision-free double
support configurations from which the given grasp pose is
reachable (see Fig. 4) and the stance pose pglobalstance of the voxel
providing the whole-body configuration with the highest
manipulability measure among all voxel configurations in
IRMstance can be retrieved (Line 4 of Alg. 3) (see also
Fig. 4) and used as input for a footstep planner [13].
Assuming perfect navigation capabilities of the robot, the
whole-body configuration stored in the voxel could be even
used as a goal configuration for a bidirectional whole-body
motion planner [14], once the stance destination has been
reached. Thus, subsequent solving of the whole-body inverse
kinematics would no longer be required.

VII. IMPLEMENTATION DETAILS

We implemented our approach for pose selection for
humanoid robots based on inverse reachability maps in ROS
(Robot Operating System) and use FCL (flexible collision
library) [15] for self-collision checks. We evaluate the sta-
bility of whole-body configurations by checking whether
the robot’s center of mass (CoM) projected to the ground
plane is within the support polygon. For solving the forward
and inverse kinematics, we use KDL [16] and find swing
leg configurations using the Newton-Raphson numerical IK
solver. We developed additional functions to be able to
build arbitrary serial chains from the kinematic tree structure
representing the robot. Previously, it was only possible to

Fig. 4: Potential stance poses for the right foot for reaching
a desired grasping target with the right gripper. The left foot
is always set parallel to the right. Voxels are colored by the
maximum achievable manipulability among the configura-
tions stored in the voxel (red = low, green = high).

generate kinematic chains going forwards along branches of
the kinematic tree.

VIII. EXPERIMENTS

For the experimental evaluation of our approach, we use
a V4 Nao humanoid by Aldebaran Robotics. The robot
is 58 cm tall and has 25 DOF: 2 in the neck, 6 in each
arm (including one to open and close the hand), and 5 in
each leg. In addition, the legs share a common (linked) hip
joint that cannot be controlled independently. Inertia, mass,
and CoM of each link are known from CAD models. For
efficient collision checks, we created a low-vertex collision
mesh model for each of the robot’s links from the CAD
models. Generally, our approach is capable of performing
reachability analysis for arbitrary subchains of the robot,
e.g., for the chain leading from the torso down to one of
the feet. However, here we consider kinematic chains rooted
at one of the feet and ending at one of the grippers/hands
leading to 10 DOF. For building the reachability map for
the Nao humanoid we used a sampling resolution of 0.3 rad
for the upper body joints and 0.2 rad for the lower body
joints what we found out to be a good compromise between
performance and computational demands. The resulting IRM
has a memory consumption of 5GB.

A. Selecting a Stance Pose for Grasping

Fig. 4 shows the robot initially located at the global frame
and all potential stance poses for the support foot (here
right foot, left foot is always parallel) for a given grasping
pose pglobalgrasp = (0.5, 0.0, 0.3, 0.0, 0.0, 0.0)T specified for the
robot’s right gripper. Note that each of the voxels (shown
as spheres) can represent multiple stance poses of different
orientations. The color of the voxels corresponds to the
maximum manipulability measure encountered among the
configurations stored in it. Finally, the stance pose pglobalstance

with the highest manipulability measure among all voxel



Fig. 5: Example of a stance pose and whole-body configu-
ration for reaching a grasping target.

configurations in IRMstance can easily be determined. Fig. 5
shows a possible stance location and whole-body configura-
tion for reaching the desired grasping pose.

B. Comparison of Stance Selection With the IRM vs. Random
Stance Pose Sampling With the RM

In order to quantitatively evaluate the improvement
achieved by using inverse reachability information concern-
ing the ability of reaching a given grasping target, we
compared it to the success of reaching the same target pose
using the forward reachability map. To do so, we randomly
selected a stance pose from which the grasping target pose is
reachable by at least one support foot orientation according to
the reachability map generated in Sec. IV-A. Without further
knowledge, this is a reasonable approach. We sampled 10000
double support stance poses and checked whether the grasp
pose lying within the extend of the RM is actually reach-
able from the individual poses with the correct end-effector
orientation. The result was that only 17% of the sampled
stance locations allowed to reach the correct grasp. When
using the IRM, a success rate close to 100% can be reached,
depending on the joint sampling resolution chosen within
the RM construction process (see ∆q in Alg. 1). Thus,
using the IRM, the number of succesfully reached target
grasps without repeated stance pose adaption is substantially
increased. This shows that the humanoid can highly benefit
from the knowledge about its own manipulation capabilities
represented by the IRM . It takes 820 ms on average on an
Intel Core i7 3.4GHz to compute IRMfloor and IRMstance,
and to find the optimal stance pose.

IX. CONCLUSIONS

In this paper, we presented an approach to optimal pose
selection for humanoids to carry out object manipulation
tasks. We build an inverse reachability map (IRM) that
reflects the robot’s capability of reaching a grasping pose
from possible stance locations, thereby also considering
static stability of the robot. The IRM is computed only
once in an offline step and can subsequently be used to
generate stances poses optimizing a manipulability criterion
for arbitrary grasping targets. Optimal stance pose selection
is especially important if the number of available DOFs in the

upper body is limited and redundancy is not given. By using
the IRM for the pose selection, we substantially increase the
probability of successful reaching task execution, without the
need of repeatedly adapting the stance location and calling
an inverse kinematics solver.

As we have shown in our experiments with a Nao hu-
manoid, equipped only with a 5 DOF arm, the set of potential
stance poses with high manipulability represented within
the IRM is relatively small. This emphasizes the demand
for intelligent stance pose selection for such platforms as
realized by our technique. Note that our approach of building
an IRM for legged humanoids and its use for stance pose
selection is general and can also be applied to humanoids
with a higher number of DOFs freedom to efficiently select
an optimal configuration for manipulation.
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[6] F. Stulp, A. Fedrizzi, L. Mösenlechner, and M. Beetz, “Learning and
reasoning with action-related places for robust mobile manipulation,”
Journal of Artificial Intelligence Research (JAIR), vol. 43, pp. 1–42,
2012.

[7] L. Jamone, L. Natale, K. Hashimoto, G. Sandini, and A. Takanishi,
“Learning the reachable space of a humanoid robot: A bio-inspired
approach,” IEEE RAS and EMBS Int. Conf. on Biomedical Robotics
and Biomechatronics (BioRob), 2012.
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