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Abstract— Foresighted, human-aware navigation is a prereq-
uisite for service robots acting in indoor environments. In this
paper, we present a novel human-aware navigation approach
that relies on long-term prediction of human movements. In
particular, we consider the problem of finding a path from the
robot’s current position to the initially unknown navigation goal
of a moving user to provide timely assistance there. The naviga-
tion strategy has to minimize the robot’s arrival time and at the
same time comply with the user’s comfort during the movement.
Our solution predicts the user’s navigation goal based on the
robot’s observations and prior knowledge about typical human
transitions between objects. Based on the motion prediction,
we then compute a time-dependent cost map that encodes the
belief about the user’s positions at future time steps. Using this
map, we solve the time-dependent shortest path problem to
find an efficient path for the robot, which still abides by the
rules of human comfort. To identify robot navigation actions
that are perceived as uncomfortable by humans, we performed
user surveys and defined the corresponding constraints. We
thoroughly evaluated our navigation system in simulation as
well as in real-world experiments. As the results show, our
system outperforms existing approaches in terms of human
comfort, while still minimizing arrival times of the robot.

I. INTRODUCTION

As robots become ever more present in human environ-
ments, so does the need for human-aware navigation policies.
To be able to provide a real benefit for humans, a robot
should coexist with them without causing discomfort. One
common way to achieve this is to mimic human social
behavior [1]. Humans are more than dynamic obstacles and
special constraints need to be fulfilled to enable efficient
robot navigation that still abides by social rules, ensuring
human comfort. A prerequisite for this is the ability to predict
human movements and foresee and avoid situations in which
the robot could violate social constraints with its navigation
policy.

In this paper, we present a novel approach to accomplish
human-aware navigation of service robots in indoor envi-
ronments. We solve this task using a framework to predict
human movements based on their typical transitions between
objects [2] in combination with time-dependent planning of
the robot’s path. We hereby plan the path in a time-dependent
cost map that takes into account the user’s predicted move-
ments as well as compliance to human comfort. Both the
prediction and the cost map are periodically updated based
on new robot observations to deal with uncertainties and
prediction errors. To specify robot behavior that abides by the
rules of human comfort, we use existing knowledge [3], [1]
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Fig. 1: Motivating example of our approach. (a) The robot observes
the moving user interacting with an object (pink circle) and predicts
his most likely navigation goal and path (violet). Using the predic-
tion, the robot is able to compute a short path to the navigation
goal of the human (blue) while avoiding paths that would result
in discomfort for the user (white). (b) Still, the robot arrives at the
goal location before the user and early enough for direct assistance.

as well as the results of an interview and online survey we
conducted.

Fig. 1 depicts an application example of our approach. As
can be seen, the robot chooses a path to the user’s predicted
navigation goal. It also tries to minimize discomfort of the
human by avoiding the direct route which interferes with the
human’s path.

To summarize, our contributions are the following:
1) A human-aware navigation system based on long-term

movement prediction, human comfort constraints, and
path planning on a time-dependent cost-map.

2) The conduct of a survey about human comfort to
evaluate different navigation strategies.

3) An evaluation of the complete system in terms of
arrival time and human comfort in comparison to
state-of-the-art methods [4], [5], [6], both in simulated
environments with pre-defined metrics and in real-
world experiments with direct human feedback.

II. RELATED WORK

A vast amount of research has been invested to determine
human-aware robot navigation policies. Typical tasks for
human-aware navigation include socially acceptable person
following [4], navigation through dense crowds [7], guiding
people to goal positions [8] and providing unobtrusive as-
sistance at different locations [9]. An overview was given
by Kruse et al. [1]. The authors defined three metrics to
evaluate human-aware navigation policies: human comfort
(absence of annoyance and stress for humans), naturalness
(similarity between robot and human behavior), and socia-
bility (adherence to cultural conventions). Common imple-



mentations of these metrics are proximity constraints w.r.t.
the human [3], navigation rules [10] and user specific [11]
or general anthropomorphic robot design [12] to increase
the similarity between users and robots, both visually and
behavior wise. The authors also highlighted that a reliable
prediction about human movements is a prerequisite to
achieve good results with these metrics [3].

According to Foka et al. [13], prediction systems can be
classified into short- and long-term prediction. A short-term
system primarily forecasts the human motions for the next
few time steps while a long-term prediction system focuses
on inferring navigation goals. Frameworks that target at
following a user commonly use short-term motion prediction,
e.g., Pradhan et al. [14] proposed to use predictive fields
to avoid moving obstacles and Ferrer et al. [6] developed
a variant of the social force model [15] in which they
additionally use the position and orientation of the human to
predict their next movement. Kollmitz et al. [16] presented
a method to predict the users path to achieve a good local
social navigation behavior of the robot. The authors proposed
to model the sensitive area around the human using a Gaus-
sian that decays with time to model the uncertainty in the
prediction. The robot then takes into account the predicted
occupied areas during planning to avoid interference. How-
ever, for applications that aim at generating foresighted robot
behavior to reach the user’s intended target locations, short-
term motion prediction is not sufficient. Instead forecasting
of the user’s motion for a longer time horizon, i.e., long-term
prediction, is necessary.

Long-term prediction systems often use a set of known
paths [1] to predict the user’s future motions based on
observations. For example, Bayoumi et al. [5] developed a
framework based on Q-learning to predict a user’s navigation
goal and determine the best robot actions. The learned
policy is then applied to enable foresighted robot navigation.
Usually, such approaches depend on a specific environment
and typical human trajectories in it. Our system, on the
contrary, uses human transition probabilities between objects
instead of key points on a given map so that the learned
transitions are independent of a specific map [2], [17].

In contrast to all the methods discussed above, our ap-
proach combines long-term motion prediction with human-
aware navigation, making explicit use of the prediction at
every time step. This allows to use time-dependent path
planning to avoid situations in which the robot would cause
discomfort to the user.

III. CONSTRAINTS DERIVED FROM STUDIES ABOUT
HUMAN COMFORT

An essential component of human-aware navigation is
the identification and avoidance of robot actions that de-
crease human comfort. A detailed overview of research in
this area is given by the surveys of Kruse et al. [1] and
Rios-Martinez et al. [3] who analyzed that proximity rules
are currently seen as most important for human comfort [18].
In our approach, we combine findings from these works

with results from our own survey to define human comfort
constraints as described in the following.

According to proxemic theory [19], humans have personal
space regions around them in that others, including robots,
normally cannot intrude without causing discomfort. The size
and form of these regions depend on the familiarity of the
intruder, e.g., a friend is allowed to move closer to a person
than a stranger. To model the allowed proximity of entities
in an unfamiliar social context the social zone (SZ) is used,
which is a circular interpersonal space region around the
human with a radius of 1.2 meter [19]. As a service robot
represents a typical example of an unfamiliar entity inside
social context, we model the SZ as a minimal distance that
the robot must hold to humans. Furthermore, as noticed by
Kitazawa et al. [20], objects inside a rectangular area with
a length of 4 meters and a width of 1 meter in front of
moving humans are considered as potential obstacles. This
area is called information process space (IPS). Moving inside
the IPS does thereby by definition disturb the path planning
of humans and a robot should avoid this area to reduce
interferences.

To find further constraints, we conducted an interview
survey with 8 student participants from the University of
Bonn. Each interview lasted around 15 minutes. Participants
were asked about their feelings towards service robots, for
which tasks they could envision to use robots, how they
would design them, and whether there was any behavior
that they saw as desirable or undesirable. All participants
favored unobtrusive robot behavior. Interestingly, this was
even more important than efficient working of the robot for
most participants. Most participants also disliked behavior
in which the robot would follow them, move silently or
unpredictably, or would come too close to them.

Based on those findings, we conducted a follow-up on-
line survey1 with 261 participants, distributed via Click-
worker [21]. We restricted the survey to German participants
to stay consistent with our interview survey and our later
real-world experiments. We did not have any other formal
requirements for participants and aimed for a cross section of
the population. In the survey, we asked participants how they
feel about robots following them, which distances to robots
they prefer (based on pictures) and how they rate unobtrusive
robot behavior against efficient working of robots.

We found that 61% of the participants did not want the
robot to follow them and 57% would accept a reduced
work performance if the robot would then behave more
unobtrusively supporting the trend of our interview study.
Regarding the robot distance, we found that 77% of the
participants had no problem if the robot was moving at
approximately 3 meters in front of them (as long as the robot
did not enter their IPS) while only 58% would say the same
if the robot was moving at the same distance behind them.
However, this number increased to 70% if the robot was at
least 5 meters behind the human.

1The survey questions are available on our website https://www.
hrl.uni-bonn.de/publications/comfort_survey.pdf
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Fig. 2: Example of our approach. The human (dark violet) started their movement after interacting with a sofa. The robot (light blue)
observed the interaction and started to plan its movement with our approach. The computed likelihood of the objects to be the user’s
navigation goal are shown in green, the darker the color the higher the likelihood. Cost values of possible robot positions are shown in
blue, the darker the color the lower the cost. The position with the lowest cost value is shown as blue cross. (a) Based on the initial
observation the robot predicts that the human will head to a nearby office and moves accordingly. However, the robot then observes that
the human is moving in another direction, concluding that its initial prediction is false. (b) The robot updates the prediction accordingly
and computes a new navigation goal and path to it. The robot cannot pass by the user in the corridor as it does not want to enter their
SZ or IPS (light violet). As other paths are not available it chooses to follow the user at 5 meter distance. (c) Once the user reached a
wider corridor, the robot is able to pass by the user and reach a position close to their true navigation goal.

We therefore derived the following constrains: the robot
should not enter the SZ and IPS, it should minimize close
following of the human and prioritize these constraints
over its work efficiency. The formal representation of these
constraints and resulting path planning is presented in the
next section.

IV. HUMAN-AWARE TIME-DEPENDENT PATH PLANNING

We tackle the scenario of a service robot that needs
to provide assistance to the user at certain locations. The
objective is to find a path from the robot position to the
initially unknown navigation goal of a moving user, that
minimizes the robot’s arrival time and complies with the
user’s comfort. Our solution consists of the following steps:

1) Prediction of the user’s navigation goal by applying
Bayesian inference, using prior information about the
transitions between objects and the knowledge about
their locations as well as current observations.

2) Computation of a time-dependent cost-map based on
the predicted user positions at future time steps and
social constraints, determined as described in Sec. III.

3) Solving the time-dependent shortest path problem [22]
on the given cost map and executing the returned path.

These steps are regularly executed to update the prediction
and recalculate the best robot navigation action based on
new observations. Fig. 2 demonstrates the functioning of our
system for an example scenario. In the following, we explain
the individual steps of our approach in detail.

A. Prediction of the Navigation Goal

To predict the user’s navigation goal, we use an updated
version of our previously published object interaction based
system [2]. We thereby assume that humans move between

objects and that knowledge about typical object transitions
can therefore be used to predict future navigation goals. In
contrast to our previous system, we now use a less complex
Bayesian inference approach. As before, we assume that a
map of the environment as well as the locations of relevant
objects is known.

The prediction relies on a so-called interaction model I
that models the user’s transition probabilities between dif-
ferent object classes. To learn the model, we used data sets
of human interaction sequences with objects as described
in our previous work [17]. I then acts as prior knowledge
and provides the probability that given a previously observed
interaction with an object of class A, the user will interact
next with an object of class B.

Given an observation about the user’s state S = (Xh, θ),
with Xh as their position in a map of the environment and
θ as their orientation, our framework calculates the belief
about the user’s navigation goal as described in the following.
Let O = {o1, o2, ..., on} be the set of all relevant objects
in the environment with oi = (Xoi , τoi) where Xoi is the
location and τoi the class of object oi. The belief about the
navigation goal is computed using Bayesian inference.

P (oi|S) =
P (S|oi)P (oi)∑

oj∈O P (S|oj)P (oj)
(1)

The prior knowledge P (oi) = I (oi|τL) is hereby given
by the learned object transition probabilities encoded in the
interaction model I and the class of the last object τL the
user interacted with. This simplifies Eq. (1) to

P (oi|S) = η · P (S|oi)I (oi|τL) (2)

with η = (
∑

oj∈O P (S|oj)P (oj))
−1 as a normalizer. Note

that it is also possible that the robot did not observe the



last object interaction. In this case, we use the marginalized
interaction probability over each possible last object

I(oi) =
∑

oj∈OL

I(oi|oj) (3)

where OL ⊆ O is the set of all objects in the environment
that are ”behind” the user considering their walking direc-
tion. In this case Eq. (1) transforms to

P (oi|S) = η · P (S|oi) · I(oi). (4)

In both equations, P (S|oi) corresponds to the likelihood
of the user’s observed state S = (Xh, θ), given the navigation
goal oi. To evaluate this likelihood, we use the assumption
that the user moves on the shortest path towards the navi-
gation goal. We therefore compute the shortest path Ph→oi

from the user’s position Xh to the object location Xoi in
an occupancy grid map of the environment with A∗. Let
L(Ph→oi) be the length of Ph→oi . Furthermore, we com-
pute the difference ∆a(θ, θopt) between the user’s current
orientation θ and the orientation θopt the user would have if
they moved from Xh to the next grid cell on Ph→oi .

Accordingly, the likelihood of the observed user state
given the navigation goal oi is defined as

P (S|oj) = L(Ph→oi)
−1 ·∆a(θ, θopt)

−1. (5)

Finally, P (oi|S) can be computed according to Eq. (2) and
Eq. (5) as

P (oi|S) = η · L(Ph→oi)
−1 ·∆a(θ, θopt)

−1 · I (oi|τL). (6)

Using Eq. (6), the robot has an estimate about the navigation
goal of the moving user, which is regularly updated based
on new observations.

B. Time-Dependent Path Planning

Given the computed belief, the robot needs to determine
a path from its current position to the user’s predicted
navigation goal. We assume that enough space is available in
the environment for the robot to navigate. The path should
minimize the robot’s arrival time while complying with the
comfort of the user. To calculate the path, we use a cost
grid and apply time-dependent shortest path planning. The
grid costs are hereby defined based on the distance of cells
to the user’s possible navigation goals and human comfort
constraints.

Given the observed user state S, our approach assigns
costs to each cell X that is not occupied with a static
obstacle. To do so, we sum up the distances from X to each
possible navigation goal Xoj weighted by their probability

Cdist(X ) =
∑
oj∈O

P (oj |S) · L(PX→Xoj
) (7)

with L(PX→Xoj
) as the length of the A* path from X to Xoj .

Furthermore, our approach considers the constraints de-
rived from the studies about human comfort introduced in
Sec. III. To do so, we need to predict the user’s path given
the belief about their navigation goal. Let us assume that the
current observation S = S0 was done at time t = 0 and that

Fig. 3: Visualization of the regions around the human that the robot
should not enter, based on our surveys. The social zone (SZ), with
a radius of 1.2 meters, and the information process space (IPS),
with a length of 4 meters and a width of 1 meter, are impassable
regions depicted in dark violet. The area behind the human (B),
with a length of 5 meters and a width of 2.4 meters depicted in
light violet, can be entered by the robot but has increased costs
since a robot in this region would likely be perceived as a follower.

og is the user’s most likely navigation goal according to the
observation and the prediction as described in Eq. (6). To
predict the user’s path, we assume that they follow the A*
path from their current position Xh to og on the grid map
with their current velocity until the next observation takes
place. Let us further assume that the user reaches og at time
step tf according to the current velocity.

Based on the results of Sec. III, we have 3 human comfort
constraints: minimizing time inside the SZ, IPS, and the
region up to 5 meters behind the human. Furthermore our
survey showed that, if they must decide, humans prefer non-
disturbing robot paths over efficient working of the robot.
We also observed that humans dislike situations in which
the robot follows them. We therefore choose the following
modeling: The SZ and IPS are impassable regions for the
robot, as by definition humans are disturbed if a robot enters
these areas. For the same reason positions up to 5 meters
behind the human have increased cost, the closer to the
human the higher. As a result, the robot only enters this
area if no alternative paths are available and only to reach
more cost efficient positions, e.g., in front of the human.

Formally, this results in the following time-dependent cost
function for the grid cells

Ct
h(X ) =


∞ if X ∈ SZ (St)
∞ if X ∈ IPS (St)

5
dist(X ,Xoj

) if X ∈ B(St)

1 else

(8)

with SZ (St) and IPS (St) as the SZ and IPS at time t,
respectively, and B(St) as the backwards extended SZ or
back area of the human, which corresponds to a rectangular
region with a length of 5 meters, a width of 2.4 meters and
its center 2.5 meters behind the human, orthogonal to their
movement direction at time t. This area represents the region
in which humans tend to view a robot as a follower. Fig. 3
visualizes these areas.



The final cost of a cell X at time t is then given as

Ct(X ) = Cdist(X ) · Ct
h(X ). (9)

according to Eq. (7) and Eq. (8). Let Xmin be the position
with the lowest cost at time tf

Xmin = min
X

Ctf (X ) (10)

and Xr be the robot’s position at time t = 0. As described
above, tf corresponds to the estimated time step when the
user reaches the predicted navigation goal. Given the time-
dependent cost function Ct, we can now solve the time-
dependent shortest path problem from Xr to Xmin using A*
following the algorithm of Zhao et al. [22].

Once the path is computed the robot starts following it
and after a fixed time interval performs a new prediction
about the user’s navigation goal based on a new observation.
Afterwards, the best path for the robot is recalculated using
an updated cost map. The process is repeated until the user
has reached their destination.

V. EXPERIMENTAL EVALUATION

To evaluate our approach, we performed a quantitative
evaluation in simulation with 140 trajectories and a real-
world experiment in our lab with 11 participants. For the
quantitative evaluation, we used as metrics the human com-
fort (HC) and the difference in arrival time between the
robot and the user (∆T). Positive ∆T values indicate that
the robot arrives at the goal before the user. The higher this
value the earlier the robot will be at the true navigation goal
of the human. To quantify HC, we measured the ratio of
the number of robot positions outside of the SZ or IPS and
the robot’s overall number of positions as social distance
compliance (SDC) as well as the average human-robot dis-
tance (HRD). Based on our surveys, an optimal human-aware
robot path has an SDC of 1.0 and a high average distance.
During the real-world experiment, we asked the participants
to rate their comfort with the robot navigation behavior on
a 5-point Likert scale rating from very uncomfortable (1) to
very comfortable (5).

In all experiments, we compared our results with three
existing approaches. The social force approach by Fer-
rer et al. [6], which applies a short-term prediction system,
the reinforcement learning approach by Bayoumi et al. [5],
which uses long-term prediction but no time-dependent path
planning, and the follower approach by Tee et al. [4], which
does not use a prediction system and was configured to
follow the user at a distance of 2 meters.

A. Quantitative Evaluation

For the quantitative evaluation, we created five different
simulated office and home environments with sizes between
100m2 and 150m2, a grid resolution of 0.25 meter and up
to 110 different objects from 15 different classes using the
V-REP editor [23]. We randomly sampled a set of 140 test
trajectories over all environments and based on a training set
of 128 previously recorded human object interactions. The
same set of test trajectories was used for all evaluations.

Avg. Std. Avg. Std. Avg. Std.
SDC SDC HRD HRD ∆T ∆T

Our approach 0.97 0.009 8.7m 1.9m 8.6s 2.9s

Social force
approach [6] 0.99 0.004 2.5m 0.4m -4.5s 1.7s

Reinforcement learning
approach [5] 0.87 0.04 4.2m 0.8m 9.5s 2.8s

Non-predictive
approach [4] 0.50 0.05 2.0m 0.4m -9.0s 1.4s

TABLE I: Results of the quantitative evaluation with 140 trajec-
tories in five different simulated environments. As can be seen,
our approach achieves by far the highest average human-robot-
distance (HRD), while simultaneously achieving the second highest
average social distance compliance (SDC) and difference in arrival
time (∆ T). We refer to the text for a detailed definition of these
metrics and discussion of the results.

Tab. I shows the evaluation results. As can be seen,
our approach archives the highest HRD and the second
highest SDC and ∆T . Social distance violations were mostly
encountered when the user moved unexpectedly while the
robot was trying to pass them. Typically, the robot would
pass by the user as early as possible and wait at key points
of the map to update its prediction. In contrast to that, the
reinforcement learning approach [5] focuses on reaching the
most likely goal position as fast as possible. Early predictions
tend to be false, which resulted in unnecessary movement of
the robot and some passes through the SZ and IPS. When
using the social force approach [6], the robot followed the
user outside of their SZ. However, while the robot was able
to predict the user’s short-term movements and anticipate and
avoid situation in which it would enter the SZ, it was not able
to reach the goal before the user nor hold a high distance
to the user. The small HRD and the fact that the robot
could not predict long-term goals resulted in the behavior of
closely following the user. The non-predictive approach [4]
performed similarly. However, as no prediction system was
used the robot was not able to anticipate changes in the
user’s movement pattern and many intrusions inside the SZ
happened.

We performed a paired t-test to check whether there is
a significant difference between the individual approaches,
with a alpha level of 0.05. We found that the difference in
SDC and ∆T between our approach and the best performing
other approaches is not significant, with p-values of 0.83
and 0.52 respectively. However the difference between the
HRD values of our approach and the second best approach
is significant, with a p-value of 0.002. We can therefore
conclude that no approach is significantly better than our
approach regarding SDC and ∆T , while we significantly
outperform the other approaches in terms of HRD.

B. Real-World Experiments
For the qualitative evaluation, we designed a wizard of Oz

real-world user experiment with 11 student participants from
different departments of the University of Bonn. The task of
the participants was to follow a specific trajectory, while a
robot would predict and navigate to their movement goal
using our approach as well as the three different methods



VC C N U VU Avg. Std.
(5) (4) (3) (2) (1) value value

Our approach 27% 63% 0% 9% 0% 4.1 0.8

Social force
approach [6] 18% 27% 36% 18% 0% 3.5 1.0

Reinforcement learning
approach [5] 9% 9% 18% 45% 18% 2.5 1.6

Non-predictive
approach [4] 0% 0% 9% 36% 54% 1.5 0.7

TABLE II: Results of the qualitative evaluation with 11 participants.
Participants rated the robot’s behavior on a Likert scale with five
values, ranging from 1 to 5: very uncomfortable (VU), uncomfort-
able (U), neutral (N), comfortable (C), very comfortable (VC). As
can be seen, our approach achieves the highest rating and was on
average seen as comfortable (4.1). We refer to the text for a more
detailed discussion of the results.

introduced above. After the experiment, the participants had
to rate their feeling of comfort for each of these approaches
on a Likert scale with five values, ranging from 1 to 5:
very uncomfortable (VU), uncomfortable (U), neutral (N),
comfortable (C), very comfortable (VC). Tab. II depicts the
results of the qualitative evaluation. We observed the same
trend as in our previous surveys. Participants felt uncom-
fortable to very uncomfortable if a robot passed through
their SZ and or IPS (reinforcement learning, non-predictive)
and comfortable to very comfortable if a robot would not
enter these areas (our approach, social force). Participants
also particularly disliked if the robot would just follow them
(non-predictive). We also observed that participants felt more
comfortable if they thought that the robot had a policy to
actively avoid them (our approach, social force). As these
results demonstrate, the navigation strategy produced by our
approaches achieves the highest rating and was on average
seen as comfortable.

VI. CONCLUSION

In this paper, we presented a novel solution to human-
aware navigation for assistant robots in indoor environments.
As new contribution, we apply a long-term prediction of
human motions that utilizes prior knowledge about human
object transitions, in combination with time-dependent path
planning under consideration of human comfort constraints.

As we demonstrated in a quantitative evaluation, our
approach achieves a high average distance between the robot
and the human and avoids interpersonal space breaches,
which are seen as uncomfortable by humans. At the same
time, our framework leads to efficient navigation behavior,
so that the robot is often able to arrive before the user at
their navigation goal. Furthermore, our qualitative evaluation
with a real robot and participants in our lab shows that
the robot behavior resulting from our approach is rated
as comfortable and outperforms existing methods based
on social forces [6], reinforcement learning [5], and non-
predictive following [4]. We therefore achieved our goal of
realizing a human-aware robot navigation framework using
long-term movement prediction that minimizes travel time
and maximizes human comfort.
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[8] D. Feil-Seifer and M. Matarić, “People-aware navigation for goal-
oriented behavior involving a human partner,” in Proc. of the IEEE
Int. Conf. on Development and Learning (ICDL), vol. 2, 2011.

[9] L. Bruckschen, K. Bungert, M. Wolter, S. K. ans Michael Weinmann,
R. Klein, and M. Bennewitz, “Where can i help? human-aware
placement of service robots,” in IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN). IEEE,
2020.

[10] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion
planning with deep reinforcement learning,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2017,
pp. 1343–1350.

[11] K. Bungert, L. Bruckschen, K. Müller, and M. Bennewitz, “Robots
in education: Influence on learning experience and design considera-
tions,” in European Conference on Education (ECE). IAFOR, 2020.

[12] J. Fink, “Anthropomorphism and human likeness in the design of
robots and human-robot interaction,” in Proc. of the Intl. Conf. on
Social Robotics (ICSR), 2012.

[13] A. F. Foka and P. E. Trahanias, “Predictive autonomous robot naviga-
tion,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2002.

[14] N. Pradhan, T. Burg, S. Birchfield, and U. Hasirci, “Indoor naviga-
tion for mobile robots using predictive fields,” in American Control
Conference. IEEE, 2013.

[15] D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical review E, vol. 51, no. 5, 1995.

[16] M. Kollmitz, K. Hsiao, J. Gaa, and W. Burgard, “Time dependent plan-
ning on a layered social cost map for human-aware robot navigation,”
in Proc. of the Europ. Conf. on Mobile Robotics (ECMR), 2015.

[17] L. Bruckschen, S. Amft, J. Tanke, J. Gall, and M. Bennewitz, “Detec-
tion of generic human-object interactions in video streams,” in Proc. of
the Intl. Conf. on Social Robotics (ICSR), 2019.

[18] J. Mumm and B. Mutlu, “Human-robot proxemics: Physical and
psychological distancing in human-robot interaction,” in Proc. of
ACM/IEEE International Conference on Human-Robot Interaction
(HRI), 2011.

[19] E. T. Hall et al., “Proxemics,” Current anthropology, vol. 9, 1968.
[20] Kitazawa, Kay and Fujiyama, Taku, “Pedestrian vision and collision

avoidance behavior: Investigation of the information process space
of pedestrians using an eye tracker,” in Pedestrian and evacuation
dynamics 2008. Springer, 2010.

[21] C. GmbH, “Clickworker software,” https://www.clickworker.de/.
[22] L. Zhao, T. Ohshima, and H. Nagamochi, “A* algorithm for the time-

dependent shortest path problem,” in WAAC08: The 11th Japan-Korea
Joint Workshop on Algorithms and Computation, 2008.

[23] M. F. E. Rohmer, S. P. N. Singh, “V-REP: A versatile and scalable
robot simulation framework,” in Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2013.


