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Abstract— In this paper, we consider the problem of pre-
dicting the navigation goal of a moving human in an indoor
environment. Knowledge about this goal can greatly increase
the efficiency of robots acting in the same environment as
interferences can be avoided and assistance quickly provided if
necessary. Often the navigation goal depends on the previous
action of the human and the object the human has interacted
with before. Thus, the information about previous object
interactions can be used to infer possible objects the human
will interact with next, which in term can be used to predict
the current navigation goal. We propose to learn a probability
distribution of subsequent object interactions and present a
framework that utilizes the learned transition model as well as
observations of the human’s location and pose for the prediction
of their movement goal. As we show in various experiments, the
information about transition probabilities of object interactions
leads to reliable predictions of the navigation goal and improves
the accuracy compared to prediction approaches that rely only
on spatial information and do not consider object interactions.
Furthermore, we demonstrate how the prediction can be used
to realize foresighted robot navigation.

I. INTRODUCTION

The prediction of human movements is of great impor-
tance for any robot that operates in the same environment.
A service robot can utilize this prediction for anticipating
when and where the human may need assistance with certain
tasks as well as for avoiding interferences by inferring the
trajectory of the human.

Previous approaches to movement prediction mainly focus
on learning typical human trajectories in the environment [1],
[2] or with respect to other humans and obstacles in the local
surrounding [3] and neglect information about subsequent
objects with which the human interacts. However, humans
naturally interact with objects while moving through the
environment, e.g., with a plate, table, cup, coffee machine,
fridge, TV, laptop, etc.

In this work, we consider the problem of predicting
the next destination of a moving human inside an indoor
environment utilizing information about their interactions
with objects in combination with observations about their
movement. We propose to use the information about the
previous object the human has interacted with to infer
possible objects the human will interact with next, which
in term can be used to predict the human’s future motions
and the navigation goal. Fig. 1 shows a motivating example
of our approach in which our system predicts the human’s
navigation goal to be the table since an interaction with a
cup is detected.
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Fig. 1: The aim of our framework is to infer the navigation
goal of a moving human. In this example, our system detects
an interaction with a cup and predicts the table to be the most
likely next object the human will interact with. The position
of the table is therefore the most likely navigation goal of
the human.

Our approach relies on learned transition probabilities of
object interactions and uses this information in combination
with observations about the current human’s location and
pose to predict the navigation goal using a recursive Bayes’
filter. As we show in extensive experiments in different
environments, the information about transition probabilities
of object interactions in combination with observations of the
human’s location and pose yields reliable estimates about the
navigation goal. Furthermore, we can improve the prediction
accuracy compared to approaches that rely only on spatial
information and which do not consider object interactions.
To the best of our knowledge, our approach to human
movement prediction is the first one that explicitly considers
object transition probabilities to infer navigation goals. As
we demonstrate in a real-world experiment, a mobile robot
can use our prediction framework for foresighted navigation
and positioning.

II. RELATED WORK

Several approaches to human motion prediction exist.
Vasquez et al. [4] propose to create a joint probability
distribution to predict the movement of a human based on
observed position changes, a pre-trained cost-based predic-
tion model, and a gradient-based goal prediction function. In
contrast to our approach, this system works only for short-
term predictions.
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using a maximum entropy approach is proposed by Ziebart et
al. [2]. The authors argue that humans plan their movement
according to cost functions that assign costs to environmental
features, like surfaces or available spaces. Ziebart et al. aim
to learn these functions based an observed data and then
use the learned models to predict future movements. In this
method, objects are only implicitly considered, i.e., as envi-
ronmental features. Note that by predicting the destination of
a human as in our approach, we can also infer the path the
human will probably take using the assumption that humans
operate based on a cost function as in [2].

Other existing motion prediction methods include velocity-
based modeling of future human movements [5], [6] or learn
social models to predict the behavior of humans in lively
places [3], [7], [8] However, those approaches have been
developed for short-term prediction of human motions and
trajectory adaption of a mobile robot and not for foresighted
navigation as in our application.

While object-based prediction, to our knowledge, has not
been applied in existing motion prediction systems it is often
used in the context of higher-level action prediction [9],
[10]. In these frameworks, predicted actions are typically
associated with objects, e.g., if a person holds a plate the next
action will likely be setting the plate on some kind of surface
or table. Those approaches have been used successfully in a
local context but the authors did not consider general human-
object interactions also including moving to other places.

In previous work, we learned a prediction model for
moving humans in indoor environments consisting of sev-
eral rooms. The predicted motions were used to learn
a foresighted navigation policy for a service robot via
Q-learning [1] and to find a user quickly if they cannot be
located in the proximity of the robot [11]. In contrast to our
current work, objects have not been explicitly used during the
prediction, however, they inherently have an effect on many
typical trajectories of humans and can be used to improve
the prediction as we will show.

III. PREDICTION OF THE NAVIGATION GOAL

We consider the problem of predicting the navigation goal
of a moving human in an indoor environment. The prediction
is based on observations of the human’s location and pose
and knowledge about their typical transitions between ob-
jects. This knowledge can be collected by observing humans
in indoor environment and learning a probability distribution
called interaction model [12].

We represent the environment as an inflated grid map M ,
on which possible paths of the human can be computed.
We model objects in the environment as tuples o = (τo, xo)
with known type τo and position xo on M between which
the human moves. To predict the current navigation goal, we
use a recursive Bayes’ filter and integrate observations of the
human as well as the pre-learned object interaction model.
In the next subsection, we first introduce the human-object
interaction model before we describe our new framework to
predict the navigation goal.

Fig. 2: Example for the goal prediction based solely on the in-
teraction model after a detected worktop interaction. Objects
are color coded with respect to their likelihood to be the next
movement goal of the human (H). The darker the green the
higher the likelihood. Object names are abbreviated: dining
table (T), microwave (M), refrigerator (R), and sofa (S).

A. Interaction Model

We define the interaction model I(τa|τb) as the distribution
of the probability that after the human interacted with an
object of type τb they will next interact with an object of
type τa. We collected data of users in indoor environments
and recorded their object interaction sequences to learn the
interaction model. We plan to publish an approach to gather
this data automatically from video streams. Note that to
generalize well between different environments, we only
consider object-interaction sequences to learn the interaction
model and do not consider the actual trajectories of the hu-
man. The interaction model can then be used to predict future
movements of the human based on the known locations of
objects (see Fig. 2).

B. Formulation as a Bayes’ Filter

Let τLt
be the type of the last observed object the human

has interacted with and St = (xht
, θht

) be the human state
at time t with xht

being the observed position and θht
the

orientation at time t (e.g., obtained from a pose estimation
system [13]). We define the belief about the navigation goal
at time t based on all previous observations as bel(ot) =
p(ot|S1:t, τL1:t

). The belief is recursively computed as:

bel(ot) = p(ot|S1:t, τL1:t
) (1)

= η · p(St|ot, S1:t−1, τL1:t) · p(ot|S1:t−1, τL1:t) (2)
= η · p(St|ot) · p(ot|S1:t−1, τL1:t) (3)

= η · p(St|ot) ·
∑
ot−1

p(ot|ot−1, S1:t−1, τL1:t
)

· p(ot−1|S1:t−1, τL1:t−1) (4)

= η · p(St|ot) ·
∑
ot−1

p(ot|τLt
) · p(ot−1|S1:t−1, τL1:t−1) (5)

= η · p(St|ot) ·
∑
ot−1

p(ot|τLt
) · bel(ot−1) (6)



with p(St|ot) as the observation model and p(ot|τLt
)

as the motion model. For the derivation, we use Bayes’
rule (Eq. (2)) with the normalizer η, the Markov assump-
tion (Eq. (3), Eq. (5)), the law of total probability (Eq. (4)),
and conditional independence.

The belief is updated at fixed time intervals as long as the
human is visible and moving. At each time step, the object
with the highest probability is assumed to be the navigation
goal.

C. Motion Model

The motion model is based on the pre-learned interaction
model I(τa|τb), which is defined as a probability distribution
that provides the probability that after the human interacted
with an object of type τb they will next interact with an
object of type τa (Sec. III-A). Given an interaction model
we can define the motion model as follows:

p(ot|τLt
) = I(ot|τLt

) (7)

If the robot has no knowledge about the previous human-
object interaction, I(ot|τLt

) is replaced with the normal-
ized sum over the probability of all possible object types
η′ ·

∑
τ I(ot|τ) with η′ as normalizing parameter.

D. Observation Model

The observation model p(St|ot) is used to update the
belief about the navigation goal based on observations about
the human’s pose. The closer the human gets to a possible
navigation goal the higher the likelihood. Accordingly, we
use the inverse distance of the A* path from the human’s
position xht to the possible navigation goal xot on the
map in the observation model. Additionally, we compute
the orientation θoptt the human would have on the A* path
from their current position xht

to xot in the 2D map. We
then compute the inverse angular distance of the human’s
orientation θht and θoptt , both wrt. to the coordinate system
of the 2D map.

Let dist(xht
, xot) be the A* distance between xht

and xot
on M and let distA(θht , θoptt) be the angular distance
between θht and θoptt . The observation model is then defined
as:

p(St|ot)
= p((xht

, θht
)|ot)

= p(xht
|ot) · p(θht

|ot)
= dist(xht

, xot)
−1 · distA(θht

, θoptt)
−1

Now, we have defined all components of our recursive
Bayes’ filter that is used to predict the navigation goal of
the human.

IV. EXPERIMENTAL EVALUATION

To demonstrate the capabilities of our new prediction
framework, we conducted a set of experiments. The first
experiments were designed to show that based on the learned
object interaction model we can reliably infer the navigation

Fig. 3: Example trajectory and map from our dataset. The
map corresponds to an office environment with the following
object types: refrigerator, laptop, table, chair and cupboard.
The human first interacts with the refrigerator and then
moves to a table.

goal of the human using the presented Bayes’ filter. We
furthermore demonstrate the improvement compared to a
system that does not use information about subsequent object
interactions but only knowledge about the frequency of
moving between common destinations on specific trajec-
tories [14]. Finally, we provide experiments with a real
robot observing a user and predicting its motions to realize
foresighted navigation.

A. Data Collection

To test our prediction framework, we recorded a evaluation
dataset of 64 human trajectories in 25 different simulated
office or home environments with sizes between 100m2 and
150m2 that contained 24 objects on average. We created the
maps using the V-REP editor [15]. Fig. 3 shows an example
map. The trajectories were recorded by users who gener-
ated typical movements in office or domestic environments.
Each trajectory started and ended at an object. Interaction
objects included bottles, cups, microwaves, chairs, tables,
beds, toilets, handbasins, bathtubs, washbasins, cupboards,
wardrobes, refrigerators, sofas, and laptops. We recorded the
simulated human’s pose every time they moved one meter.
To train the interaction model for our prediction framework
we used a separate training dataset containing 161 human-
object interaction sequences.

B. Quantitative Evaluation

For the quantitative evaluation of the goal prediction, we
tested our approach on the recorded trajectories between two
subsequent objects with and without knowledge about the
last object interaction. For the first scenario, we assume that
the robot observes the human movement and their initial
interaction with an object. For the latter, the robot only
observes the human during their movement and not the initial
object interaction before the human started to move. In this
scenario, we have to take into account all possible previous
objects to compute a prediction (see Sec. III-C).



Evaluation results
Avg. Prediction Avg. Trajectory Length

Accuracy Until Correct Prediction
Last interaction

observed 0.67 28%
Last interaction

not observed 0.48 52%
Previous Approach

as in [11] 0.36 69%

TABLE I: Results of the quantitative evaluation on 64 dif-
ferent human trajectories. As can be seen, the interaction
model is essential to obtain a reliable prediction about the
navigation goal. Furthermore, our new framework seriously
outperforms our previous system.

As evaluation metric, we use the prediction accuracy, i.e.,
after each update step we checked if the predicted goal was
the true navigation goal of the human. If so we counted
the prediction as correct. The accuracy was then computed
by dividing the number of correct predictions by the total
number of integrated observations for the trajectory. As
second metric, we use the average length of the trajectory that
needed to be observed until our system continuously returns
the correct navigation goal. The belief about the navigation
goal is updated once every second as long as the human is
visible and moving.

As can be seen in Tab. I, our system is able to confidently
infer the true navigation goal after observing only 28% of the
trajectory on average if the last object interaction is known
and 52% of the trajectory otherwise. Furthermore, we achieve
an average prediction accuracy on the trajectory of 0.67 with
the interaction model and of 0.48 without.

We also compared our approach to a prediction based on a
hidden Markov model (HMM) as in our previous work [11].
This approach uses previously learned trajectories between
fixed destinations on a map of the environment. In contrast
to that, our approach is based on transition probabilities
between object types, where the actual object positions need
to be known but can vary. In this way, we achieve a more
general solution that additionally needs less training data.
As can be seen from Tab. I, our new framework is able to
outperform our previous HMM based prediction, especially
if the last object interaction is observed, but also if not.

C. Qualitative Evaluation

We further analyzed how the probability of the true navi-
gation goal changes over time. Fig. 4 shows the evolution of
the probability with respect to the percentage of the observed
length of a typical test trajectory for which the last object
interaction is known. As can be seen, the prediction becomes
correct after around 40% of the trajectory has been observed
and increases further with more observations of the human.
Only in the first third of the trajectory another object is
falsely assumed to be the navigation goal.

A concrete example of the evolution of the goal proba-
bilities over time can be seen in Fig. 5. Here, we show the
belief about the navigation goal for four different timesteps.
The further the human moved on the trajectory, the more

(a) Example trajectory for which the evolution of the goal probabili-
ties is shown below. Object names are abbreviated: dining table (T),
microwave (M), bed (B), chair (C), and sofa (S).

(b) Evolution of the belief about the navigation goal with respect to
the percentage of the observed length of a typical trajectory, which
is depicted above.

Fig. 4: Example of a typical trajectory, in this case the human
first interacts with a refrigerator and then moves to a chair. (a)
Trajectory observed so far at the point where the prediction
is correct for the first time. (b) Corresponding evolution of
the belief about navigation goal.

navigation goals could be excluded. In Fig. 5 (a), the
prediction mostly depended on the interaction model since
the human just started moving. In Fig. 5 (b), the information
about the human’s pose was used to update the belief and
according to our observation model, the goal probabilities of
the objects in the lower half of the map decreased. Fig. 5 (c)
then shows a situation in which a false navigation goal was
the most likely navigation goal. This goal already had a
high likelihood from the interaction model, that was further
increased by the movement of the human towards the door
which would lead to the room in which the object was
positioned. However, after integrating further observations
and updating the belief, our system corrected the prediction



(a) (b)

(c) (d)

Fig. 5: Evolution of the belief over time for an example
human trajectory. As can be seen, the initial belief based on
the interaction model (a) is continuously updated with new
observations (b), (c), (d). Possible goals are shown in green
with their probabilities to be the navigation goal: the darker
the green the higher the probability. Doors are colored in
grey and walls in black. The human is depicted as blue dot
with their trajectory as dashed line.

once the human moved away from the door and estimated
the true navigation goal (Fig. 5 (d)).

D. Application

To demonstrate the capabilities of our approach for fore-
sighted robot navigation we tested our framework on a
Robotino mobile platform [16] in an office environment1.
The robot uses a representation of the environment with
discretization of 0.75 meters to decide where to place itself in
order to be close to the human in case assistance is needed
but not to be in their way. The robot updates every five
seconds the belief about human’s navigation goal based on
new observations using the presented Bayes’ filter.

Avoiding interferences with the human as well as fore-
sighted robot navigation is important as humans react nega-
tively to robots that are too close to them or follow them
constantly [17], [18]. Accordingly, we designed a utility
function that gives high utility values for robot positions
that do not interfere with the human and their predicted path
while still being close to the potential goal. Using xr as the

1A video of one of the experiments is available online
at https://www.hrl.uni-bonn.de/bruckschen19ecmr.mp4.

position of the robot, the utility function is defined as:

U(x) =
∑
o

Bel(o) · (dist(xr, x) + dist(x, xo))
−1 (8)

The utility of a possible position thereby depends on its
distance to the robot and possible navigation goals of the
human weighted by their probabilities, i.e. the closer the
distances the higher the utility. To ensure that the robot does
not interfere with the human we set the utility of points with
a distance up to 1.5m to the human or to their A∗ path to
the currently most likely navigation goal to zero.

Fig. 6 illustrates an example experiment. Here, the robot
was in a corridor where it observed a human-object inter-
action with a cup. The robot then updated the belief about
the navigation goal and computed a new position based on
Eq. (8) (see Fig. 6 (a)). During their movement the robot
regularly stopped and updated both the prediction of the
navigation goal as well as the utility values of its own
placement positions (see Fig. 6 (b)). In Fig. 6 (c), the human
has entered the room containing the navigation goal and the
robot correctly updated its belief. The robot would not enter
the room itself since positions near the human have a utility
of zero and no collision-free path can be found to the other
side of the room. However, if the human called the robot to
help them, the robot would be there immediately due to its
foresighted positioning.

Thus, this real-world experiment shows how a mobile
robot can use our prediction framework for foresighted
navigation. As a result, the robot can avoid interferences but
is still always close to the human and can be called to assist
them if needed.

V. CONCLUSION

In this paper, we presented an approach to predict the
navigation goal of a moving human. As novelty, we proposed
to use knowledge about typical human-object interaction se-
quences. To learn the corresponding object interaction model,
we observed humans in indoor environments and learned
transition probabilities of human-object interactions. We then
utilized this information in combination with observations
about the movement and pose of the human to infer their
navigation goal using a recursive Bayes’ filter.

As we demonstrated in various experiments, our frame-
work can reliably predict the navigation goal of a moving
human even after observing only a fraction of its trajectory to
the goal. Furthermore, we show that our system outperforms
a traditional HMM based prediction approach that relies on
previously learned trajectories between fixed destinations.

Finally, we performed an experiment in which a mobile
robot uses the new prediction framework for foresighted
navigation by computing favorable positions based on the
predictions of the human’s navigation goal. With this ap-
proach, the robot is able to position itself close enough to the
human to provide assistance quickly if needed while avoiding
interference with the predicted path of the human.



(a) (b) (c)

Fig. 6: Application example of our approach to foresighted navigation. Possible navigation goals of the human are shown
in green and possible placement positions for the robot are shown in blue. The darker the color the higher the belief/utility.
(a) The robot (R) observes a moving human (H) that interacts with a cup. Based on this information, it updates the belief
about the navigation goal and computes a new position for itself taking into account the human’s most likely navigation goals
while avoiding interferences with the human and their predicted path. (b) The prediction as well as the robot’s placement
position are updated with new observations. (c) The human enters a room and the robot adapts its position to be close to the
human in order to enable quick reaction when called for assistance. Note that the robot ignores positions in direct proximity
to the human even if they lead to a higher utility to minimize interferences.
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