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Abstract

Whenever people move through their environments they do not move ran-
domly. Instead, they usually follow specific trajectories or motion patterns cor-
responding to their intentions. Knowledge about such patterns enables a mobile
robot to robustly keep track of persons in its environment and to improve its be-
havior. This paper proposes a technique for learning collections of trajectories that
characterize typical motion patterns of persons. Data recorded with laser-range
finders is clustered using the expectation maximization algorithm. Based on the
result of the clustering process we derive a Hidden Markov Model (HMM) that is
applied to estimate the current and future positions of persons based on sensory
input. We also describe how to incorporate the probabilistic belief about the po-
tential trajectories of persons into the path planning process. We present several
experiments carried out in different environments with a mobile robot equipped
with a laser range scanner and a camera system. The results demonstrate that our
approach can reliably learn motion patterns of persons, can robustly estimate and
predict positions of persons, and can be used to improve the navigation behavior
of a mobile robot.

1 Introduction

Recently, there has been a substantial progress in the field of service robots (see for
example the book by Schraft and Schmierer [57] for an overview) and a variety of
mobile robots has already been developed that are designed to operate in populated
environments. These robots, for example, have been deployed in hospitals [9, 28],
office buildings [1, 2, 21, 47, 62], department stores [8, 18], and museums [4, 61, 67].
Existing robotic systems are already able to perform various services such as deliver,
educate, provide tele-presence [15, 20, 59], clean [23], or entertain [68]. Furthermore
there are prototypes of autonomous wheelchairs [29, 33] and intelligent service robots
which are designed to assist people in their homes [32, 41, 56].
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Obviously, robots operating in populated environments can improve their service
if they react appropriately to the activities of the people in their surrounding and do
not interfere with them. This requires that robots can locate and track persons using
their sensors. Furthermore, the robots need to be able to identify and potentially learn
intentions of people so that they can make better prediction about their future actions.
In the past, various approaches have been presented to track the positions of persons
(see for example [29, 42, 58]) or to predict their short-term motions [66, 69]. These
approaches assume that motion models of the persons are given. A lot of research has
already been focused on the problem of learning (e.g. [14, 48, 54]) and recognizing
behaviors or plans (e.g. [16, 27, 45]) of persons. Additionally, systems have been
developed to detect atypical behaviors or unusual events (see for example [24, 64]).

In this paper we present an approach that, in contrast to these previous approaches
which are discussed in detail in Section 6, allows a mobile robot to learn motion pat-
terns of persons from sensor data, to utilize these learned patterns to maintain a belief
about where the persons are, and to adapt the navigation behavior of the robot. Such
capabilities can be useful in various kinds of situations. For example, they allow a
robot to reliably predict the trajectory of a person and to avoid that the robot blocks the
path of that person. Furthermore, a home-care robot can more robustly keep track of
the person it is providing service to and this way increase the time it stays in the vicin-
ity of the person, for example to support necessary interactions. Thus, the knowledge
about motion patterns of a person can be quite useful for several tasks such as collision
avoidance, strategic positioning, and verbal assistance.

Our approach to learning motion patterns of persons is purely probabilistic. It is
motivated by the observation that people usually do not move randomly when they
move through their environments. Instead, they usually engage in motion patterns,
related to typical activities or specific locations they might be interested in approaching.
The input to our algorithm is a set of trajectories of persons between so-called resting
places where the persons typically stop and stay for a certain period of time. Such
places can be desks in office environments or the TV set in home environments. Our
approach clusters these trajectories into motion patterns using the EM algorithm [39].
It then derives Hidden Markov Models (HMMs) [51] from the learned motion patterns
and uses these HMMs to maintain a belief about the positions of persons. Several
experiments carried out with a mobile robot in different environments demonstrate
that our algorithm is able to reliably learn motion patterns of persons and to use this
information for an accurate estimation of the positions of the persons. Additionally,
we describe how the robot can use the motion patterns for predicting future poses
of the persons and how it can choose appropriate navigation actions based on these
predictions.

The paper is organized as follows. The next section introduces our approach to
learn typical motion patterns from observed trajectories. Section 3 contains a descrip-
tion of how we derive Hidden Markov Models from the learned motion patterns to
predict motions of persons. In Section 4 we explain our technique to detect and iden-
tify persons using sensor data. In Section 5 we present several experiments carried
out in different environments illustrating that our approach can robustly learn typical
motion patterns. We also describe experimental results demonstrating that the Hidden
Markov Models derived from the learned models can be used to reliably estimate and
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predict the positions of multiple persons with a mobile robot based on laser and vision
data. Finally, Section 6 contains a discussion of related work.

2 Learning Motion Patterns of Persons

When people perform everyday activities in their environments they do not move per-
manently. They usually stop at several locations denoted as resting places and stay there
for a certain period of time, depending on what activity they are currently carrying out.
Accordingly, we assume that the input to our algorithm is a collection of trajectories
s = {s1, . . . , sI} between resting places. The output is a number of different types
of motion patternsθ = {θ1, . . . , θM} a person might exhibit in its natural environ-
ment. Each trajectorysi consists of a sequencesi = {s1i , s2i , . . . , s

Ti
i } of positionssti.

Accordingly,s1i is the resting place the person leaves andsTi
i is the destination. The

task of the algorithm presented here is to cluster these trajectories into different motion
patterns. Our method is an extension of thek-Means algorithm to the multi-step case
that independently appliesk-Means to each step in a normalized trajectory.

2.1 Motion Patterns

We begin with the description of our model of motion patterns, which is subsequently
estimated from data using EM. A motion pattern denoted asθm with 1 ≤ m ≤ M
is represented byK probability distributionsP (x | θkm) whereM is the number of
different types of motion patterns a person is engaged in.

Throughout this paper we assume that the input to our algorithm consists of trajec-
tories which have the same number of observed positions, i.e., thatTi = T for all i.
To achieve this, we transform the trajectories ins into a setd of I trajectories such that
eachdi = {x1

i , x
2
i , . . . , x

T
i } has a fixed lengthT and is obtained fromsi by a linear

interpolation. The lengthT of these trajectories corresponds to the maximum length
of the input trajectories ins. The learning algorithm described below operates solely
on d1, . . . , dI and does not take into account the velocities of the persons during the
learning phase. In our experiments we never found evidence that the linear interpola-
tion led to wrong results or that the walking speed of a person depends on the typical
activity it is carrying out. Note, however, that one can easily extend our algorithm
to also incorporate the velocities of the persons. This can be achieved by introducing
further dimensions to the state variables.

For eachθkm the probability distributionP (x | θkm) is computed based onβ =
dT/Ke subsequent positions on the trajectories. Accordingly,P (x | θkm) specifies the
probability that the person is at locationx after [(k − 1) · β + 1; k · β] steps given that
it is engaged in motion patternm. Thus, we calculate the likelihood of a trajectorydi
under them-th motion patternθm as

P (di | θm) =
T∏
t=1

P (xti | θdt/βem ). (1)

Note that we assume consecutive positions on the trajectories to be independent.
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This is generally not justified, however, in our experiments we never found evidence
that this led to wrong results.

2.2 Expectation Maximization

Throughout this paper we assume that each motion pattern is represented byK Gaus-
sian distributions with a fixed standard deviationσ. Accordingly, the application of
EM leads to an extension of thek-Means algorithm [6, 13, 38, 40] to trajectories. In
essence, our approach seeks to identify a modelθ that maximizes the likelihood of the
data.

First we have to introduce a set ofcorrespondence variables, denotedcim. Herei
is the index of the trajectorydi andm is the index of the motion patternθm. Eachcim
is a binary variable, that is, it is either 0 or 1. It is 1 if and only if thei-th trajectory
corresponds to them-th motion pattern. If we think of the motion pattern as a specific
motion activity a person might be engaged in,cim is 1 if the person was engaged in
motion activitym during trajectoryi.

Note that if we knew the values of the correspondence variables learning of the
motion patterns would be easy. But since those values are hidden we have to compute
the model which has the highest expected data likelihood.

EM is an algorithm that iteratively maximizes expected log likelihood functions
by optimizing a sequence of lower bounds. In particular, it generates a sequence of
models, denotedθ[1], θ[2], . . . of increasing log likelihood.

The optimization involves two steps: calculating the expectationsE[cim | θ[j], d]
given the current modelθ[j], and finding the new modelθ[j+1] that has the maximum
expected likelihood under these expectations. The first of these two steps is typically
referred to as the E-step (short for: expectation step), and the latter as the M-step (short
for: maximization step).

To calculate the expectationsE[cim | θ[j], d] we apply Bayes’ rule, obeying inde-
pendence assumptions between different data trajectories:

E[cim | θ[j], d] = P (cim | θ[j], d) = P (cim | θ[j], di)
= ηP (di | cim, θ[j])P (cim | θ[j])
= η′P (di | θ[j]m ), (2)

where the normalization constantsη andη′ ensure that the expectations sum up to 1
over allm. Sine the probability distributions are represented by Gaussians we obtain:

E[cim | θ[j], d] = η′
T∏
t=1

e−
1

2σ2 ‖x
t
i−µ

dt/βe[j]
m ‖2

. (3)

Finally, the M-step calculates a new modelθ[j+1] by maximizing the expected likeli-
hood. Technically, this is done by computing for each model componentm and for
each probability distributionP (x | θk[j+1]

m ) a new meanµk[j+1]
m of the Gaussian distri-

bution. Thereby we consider the expectationsE[cim | θ[j], d] computed in the E-step:

µk[j+1]
m =

1
β
·

k·β∑
t=(k−1)·β+1

∑I
i=1E[cim | θ[j], d]xti∑I
i=1E[cim | θ[j], d]

. (4)
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2.3 Monitoring Convergence and Local Maxima

The EM algorithm is well-known to be sensitive to local maxima during the search.
In the context of clustering local maxima correspond to situations in which data items
are associated to wrong model components or clusters. Luckily, such cases can be
identified quite reliably during EM. Our approach continuously monitors two types of
occurrences to detect local maxima:

Low data likelihood: If a trajectorydi has low likelihood under the modelθ, this is
an indication that no appropriate model component fordi has yet been identified
that explains this trajectory.

Low model component utility: The aim of this criterion is to discover multiple model
components that basically represent the same motion pattern. To detect such
cases, the total data log likelihood is calculated with and without a specific model
componentθm.

Whenever the EM algorithm has converged, our approach extracts those two statis-
tics and considers “resetting” individual model components. In particular, if a low data
likelihood trajectory is found, a new model component is introduced that is initialized
using this very trajectory (this is an adaption of the partition expansion presented by
Li et al. [35]). At the same time the model component which has the lowest utility
is eliminated from the model. If no model component exists with a utility lower than
a predefined threshold our algorithm terminates and returns the current set of model
components.

In our experiments we found this selective resetting and elimination strategy ex-
tremely effective in escaping local maxima. Without this mechanism, the EM fre-
quently got stuck in local maxima and generated models that were significantly less
predictive of human motions.

2.4 Estimating the Number of Model Components

The approach presented above works well in the case that the actual number of different
motion patterns is known. In general, however, the correct number of motion patterns
is not known in advance. Thus, we need to determine this quantity during the learning
phase. If the number of model components is wrong, we can distinguish two different
situations. First, if there are too few model components, there must be trajectories, that
are not explained well by any of the current model components. On the other hand,
if there are too many model components there must be trajectories that are explained
well by different model components. Whenever the EM algorithm has converged, our
algorithm checks whether the model can be improved by increasing or decreasing the
number of model components. During the search, we continuously monitor the two
types of occurrences mentioned above: low data likelihood and low model component
utility. If a low data likelihood trajectory is found, a new model component is intro-
duced that it initialized using this very trajectory. Conversely, if a model component
with low utility is found, it is eliminated from the model.
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To limit the model complexity and to avoid overfitting we use the Bayesian Infor-
mation Criterion [60] to evaluate a modelθ[j]:

Ec[lnP (d, c | θ[j]) | θ[j], d]− M [j]

2
log2 I. (5)

In this termEc[lnP (d, c | θ[j] | θ[j], d] is the total expected data log likelihood com-
puted as

Ec[lnP (d, c | θ[j]) | θ[j], d]

=
I∑
i=1

(
T ·M · ln 1√

2πσ
− 1

2σ2

T∑
t=1

M∑
m=1

E[cim | θ[j], d]‖xti − µdt/βe[j]m ‖2

)
.(6)

The Bayesian Information Criterion is a popular approach to score a model during clus-
tering. It trades off the number of model componentsM [j] multiplied by the logarithm
of the number of input trajectories with the quality of the model with respect to the
given data.

Our algorithm terminates and returns the model with the best overall evaluation
found so far after the maximum number of iterations has been reached or when the
overall evaluation cannot be improved by increasing or decreasing the number of model
components.

2.5 Laser-based Data Acquisition

The EM-based learning procedure has been implemented for data acquired with laser-
range finders. To acquire the data we used several laser-range scanners which were
installed in the environment such that the relevant parts of the environment were cov-
ered. The laser scanners were mounted on a height of approximately 30 cm. Typical
range data obtained during the data acquisition phase are depicted in Figure 1.

To determine the trajectories that are the input to our algorithm our system first
extracts features which are local minima in the range scans that come from the persons’
legs. Additionally, it considers changes in consecutive scans to identify the moving
people. After determining the positions of the person based on the range scans we
proceed with the next step and determine the so-called resting places where the person
frequently stays for a while. This can easily be done by identifying time periods in
which the person does not move. Then we perform a segmentation of the data into
different slices in which the person moves. Finally, we compute the trajectories which
are the input to the learning algorithm described above, i.e. the sequence of positions
covered by the person during that motion. When computing these trajectories we ignore
positions which lie closer than 15 cm to each other. A typical result of this process is
shown in Figure 2.
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Figure 1: Typical laser range data obtained in a home environment equipped with three
laser-range scanners. This data is used to extract resting places and trajectories of
persons between these resting places.

Figure 2: A single trajectory extracted from the laser data.

3 Deriving Hidden Markov Models from Learned Mo-
tion Patterns

So far we have described our approach to learning motion patterns of people. In the
following we explain how to derive HMMs from the learned patterns which can be
used to predict the motions of people.

As explained before, people usually do not permanently move. Rather they typi-
cally move between the resting places. Our approach assumes that the motion patterns
of a person are given in the form ofM trajectoriesθm each consisting of a sequence
of points interconnected by line segments. Obviously, the initial point and the final
point of each motion pattern must correspond to resting places. To derive a Hidden
Markov Model from the given typical trajectories of a person we therefore distinguish
two types of states. The first class are the initial and final states that correspond to the
resting places. To connect these states we introduce so-called intermediate states which
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lie on the motion patterns. In our current system we use a sequence ofLm intermediate
statesρ1

m, . . . , ρ
Lm
m for each motion patternθm. The intermediate states are distributed

overθm such that the distance between two consecutive states is∆ρ = 50cm. Given
this equidistant distribution of the intermediate-states and assuming a constant speed
v with standard deviationσv of the person, the transition probabilities of this HMM
depend on the length∆t of the time interval between consecutive updates of the HMM
as well as onv andσv. In our current system this value is set to∆t = 0.5 secs. Accord-
ingly, we compute the probabilityP (ρ′m|ρm,∆t) that the person is in stateρ′m after
ρm in the direction of the motion pattern given its current state isρm and given that the
time∆t has elapsed as:

P (ρ′m|ρm,∆t) =
∫ ρ′m+

∆ρ
2

ρ′m−∆ρ
2

N (ρm + v ·∆t, σv, ρ) dρ. (7)

HereN (ρm + v · ∆t, σv, ρ) is the quantity obtained by evaluating the Gaussian with
meanρm + v ·∆t and standard deviationσv atρ.

The transition probabilities for the resting places are computed based on a statistics
about the average time period that elapses until the person starts to move on a particular
trajectory after arriving at the corresponding resting place.

4 Person Detection and Identification

To keep track of multiple persons in an environment, one in principle would have to
maintain a belief over the joint state space of all persons. This approach, however, is
usually not feasible since the complexity of the state estimation problem grows expo-
nentially with the number of persons or dimensions of the state space. Additionally,
learning the joint transition probability distribution would require a huge amount of
training data. Therefore we approximate the posterior by factorizing the belief over the
joint state space and consider independent beliefs over the states of all persons. Thus,
we use an individual HMM for each person. To maintain the individual beliefs we
need to be able to update the HMMs for the persons based on observations made by
the robot, which requires the ability to reliably detect persons and to identify them. To
achieve this, our current systems combines laser and vision information.

To detect persons in the laser-range scans obtained with the robot our system ex-
tracts features which are local minima that correspond to the persons’ legs as explained
above. We also need to be able to identify a person in order to appropriately update the
belief about the location of that person. To achieve this we employ the vision system
of our robot and learn an image database beforehand. For each person this database
contains one histogram which is built from 20 images. To identify a person, we pro-
ceed as follows. Every time the laser-based people detection system reports a feature
in the field of view of the camera, an image is collected and the following three steps
are applied:

1. Segmentation:A rectangular area containing the person is extracted from the
image. To determine the area in the image corresponding to a feature detected
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by the laser-based people detection system, we rely on an accurate calibration
between the camera and the laser. We use a perspective projection to map the 3D
position of the person in world coordinates to 2D image coordinates.

2. Color histograms:We compute a color histogram for the area selected in the
previous step. Whereas color histograms are robust with respect to translation,
rotation, scale and to any kind of geometric distortions they are sensitive to vary-
ing lighting conditions. To handle this problem we consider the HSV (Hue-
Saturation-Value) color space. In this color model the intensity factor can be
separated so that its influence is reduced. In our current system we simply ig-
nore this factor. Throughout all our experiments we could not find any evidence
that this negatively affected the performance of the system.

3. Database matching:To determine the likelihood that the area extracted in the
segmentation step contains a particular person, we compare the histogram com-
puted in step 2 to all prototypes existing in the database. As a measure of simi-
larity between a query histogramq with a prototypeπ in the database we use the
normalized intersection normH(q, π) [65]. This quantity can be computed as:

H(q, π) =
∑B
b=1 min(qb, πb)∑B

b=1 πb
, (8)

whereq andπ are color histograms both havingB bins. One advantage of this
norm is that it also allows to compare partial views, i.e.,when the person is close
to the camera and only a part of it is visible.

As an application example consider the situation depicted in the left image of Fig-
ure 3. In this particular situation two persons (personB and personC) were walking
along the corridor within the perceptual field of the robot. The right image of Figure 3
shows the estimate of the laser-based people detection system at the same point in time.
The corresponding image obtained with the robot’s camera is shown in the left image
of Figure 4. The two segments of the image that correspond to the two features detected
by the laser-based people detection system are also shown in this image. Figure 5 de-
picts the resulting color histograms of the two extracted segments. The right image of
Figure 4 plots the similarities between these histograms and the three prototypes stored
in the data base.

Since we consider independent beliefs over the states of the persons we have to
determine which feature is caused by which person and we have to update each HMM
depending on the likelihood that the corresponding person has been observed. For that
purpose we apply Joint Probabilistic Data Association Filters (JPDAFs) [5].

Let ξt = {ξt1, . . . , ξtR} denote the state of theR persons we are tracking at time
t. Eachξtr is a random variable ranging over the state space of a single person. A
measurement at timet is denoted aszt = {zt1, . . . , ztSt}. HereSt is the number of
features detected at timet. In our case, eachzts is the position of a feature provided
by the laser-based people detector together with the corresponding similarity values
provided by the vision system. If the detected feature is not in the field of view of the
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detected features

Figure 3: Typical scene with two persons walking along the corridor (left image) and
corresponding estimate of the laser-based people detection system (right image).

Figure 4: Segmentation of the two persons from the image grabbed with the camera of
the robot (left image) and the similarity between the color histograms (see Figure 5) of
the extracted segments and the data base prototypes (right image).
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Figure 5: Corresponding color histograms for the left and right segment shown in
Figure 4 (left image).
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camera we assume that the similarity values are uniformly distributed over all data base
images.

Whenever new sensory input arrives we follow the idea of Joint Probabilistic Data
Association Filters and integrate the single features according to the assignment prob-
ability λsr that features corresponds to personr [58]:

P (ξtr | z(1:t)) = η
St∑
s=0

λsrP (zts | ξtr) P (ξtr | z(1:t−1)). (9)

Hereη is a normalization factor andz(1:t) denotes the sequence of all measurements
up to timet.

To computeλsr one considers so-called joint association events. Each such event
ψ is a set of pairs(s, r) ∈ {0, . . . , St} × {1, . . . , R} that uniquely determines which
feature is assigned to which person. Note that in the JPDAF framework,zt0 is used to
model situations in which a personr has not been detected, i.e., no feature has been
obtained forr. This is represented in the association event as(0, r). We additionally
have to consider false alarms which occur if a feature is not caused by any of the persons
that are tracked using the HMMs. Letγ denote the probability that an observed feature
is a false alarm. The number of false alarms contained in an association eventψ is
given byφ = St − A whereA = R − ‖{(0, ·) ∈ ψ}‖ is the number of persons to
which features have been assigned. Thus,γφ is the probability assigned to all false
alarms inzt givenψ. Finally, letΨsr denote the set of all valid joint association events
which assign features to personr. At time t the JPDAF computes the probability that
features is caused by personr according to:

λsr =
∑
ψ∈Ψsr

η′ γφ ∏
(j,i)∈ψ

∫
P (ztj | ξti)P (ξti | z(1:t−1))dξti

 . (10)

Again,η′ is a normalizer. Since we use HMMs to represent the belief about the states
of the persons the integration in (10) corresponds to summing over all states of the
HMM for the particular person.

It remains to describe how the termP (ztj | ξti) is computed. As explained above,
eachztj consists of the positionytj of the featurej at timet and the similarity measure
H(qtj , πi) between the query histogramqtj of the corresponding segment in the camera
image and the database histogram of personi. In our current system we use the follow-
ing approximation to compute the likelihoodP (ytj ,H(qtj , πi) | ξti), which has turned
out to yield satisfactory results in practice:

P (ztj | ξti) = P (ytj ,H(qtj , πi) | ξti) = H(qtj , πi) P (ytj | ξti). (11)

HereP (ytj | ξti) is the probability that the laser-based people detection system reports
a feature detection at locationytj given that the person is in stateξti . We compute this
quantity using a mixture of a uniform distribution and a bounded Gaussian with mean
ytj . Note that we also take into account visibility constraints, i.e., states that are oc-
cluded are regarded as states outside the bounded Gaussian. In the case that no feature
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Figure 6: Trajectories of three different motion patterns and evolution of the model
components during different iterations of the EM algorithm. The means of the three
model components are indicated by circles and the numbers indicate the three resting
places.

has been obtained for a person we use the likelihood of false negative observations for
such states that are within the range of the robot’s sensors. For all other states we use
the average likelihood that the robot does not detect a person given it is outside the
robot’s sensor range.

5 Experimental Results

The experiments described in this section are designed to illustrate that our algorithm
can learn complex motion patterns of persons in different types of environments. We
also demonstrate that the HMMs derived from the learned motion patterns allow a ro-
bust estimation of the positions of multiple persons and that the behavior of a mobile
robot can be improved by predicting the motions of persons based on the learned mo-
tion patterns.

5.1 Learning Results

To analyze the ability of our approach to learn different motion patterns from a set
of trajectories we performed extensive experiments in different environments. This in-
cluded a domestic residence, an office environment, and a large hallway. The following
section describes an experiment using data collected in the home environment. In this
experiment the actual number of motion patterns is known beforehand. In the second
set of experiments, in which we use the data obtained in the office environment, the
number of motion patterns is unknown and has to be determined during the clustering
process.

To get the random initial model we initialize the expectations with a unimodal dis-
tribution for each trajectory, i.e., for eachdi the expectationsE[ci1 | θ[0], d], . . . , E[ciM [0] |
θ[0], d] form a distribution with a unique randomly chosen peak. In all experiments we
set the parameterβ to 5 which means that the mean of each probability distribution is
computed based on 5 subsequent positions on the trajectories. The standard deviation

12



σ was set to 170 cm. We experimentally found out that these values yield good results.

5.1.1 Known Number of Motion Patterns

To see how our EM-based learning procedure works in practice consider Figure 6 (see
also Extension 1). In this example, a model for nine trajectories belonging to three
different motion patterns has to be learned. There are three trajectories leading from
resting place 3 to resting place 1, three trajectories leading from 3 to 2, and three
trajectories leading from 2 to 3.

The leftmost image shows the initial model (the means of the three model com-
ponents are indicated by circles). In the following images one can see the evolution
of the model components during different iterations of the EM algorithm. Finally, the
rightmost image shows the model components after convergence of the EM algorithm.
As can be seen, the trajectories have been approximated quite well by the individual
model components.

5.1.2 Unknown Number of Motion Patterns

In the remaining experiments the task was to correctly learn the motion patterns of
the persons along with their number. In principle, one could start our algorithm with
a single model component and just introduce in each iteration (after convergence of
the EM) a new model component for the trajectory which has the lowest likelihood
given the current model. When the overall evaluation cannot be improved anymore by
increasing the number of components, the system automatically alternates decreasing
and increasing operations until the evaluation of the best model cannot be improved any
more. However, to speed up the process we usually start our algorithm with a model
that contains one component for six trajectories in the input data. This reduces the
learning time since typically fewer increasing operations are needed. In general, it is
not easy to guess a good initial value of the number of motion patterns. Even if there is
a heuristic about the correct number of motion patterns, initializing our algorithm with
this number does not automatically lead to a small number of iterations. This is because
the EM often gets stuck in local maxima which means that there exist redundant model
components that basically represent the same motion pattern. Those redundant model
components are first eliminated before new model components will be introduced for
trajectories with low likelihood.

We applied our algorithm to data recorded in our office environment (see map in
Figure 8). From the collected data we extracted 129 trajectories. Figure 7 shows the
model complexity and model evaluation for one run in which we started with 20 dif-
ferent model components. As can bee seen from the figure, the algorithm decreased
the number of model complexity until only 17 (non-redundant) components remained.
This is because, the model contained components with very low utilities. Afterwards it
increased the number of model components to improve the model evaluation. Finally,
it terminated with the model correctly representing all 49 different motion patterns.
The trajectories of the learned model can be seen in Figure 8. The identified resting
places are indicated by numbers.
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Figure 7: Evolution of the number of model components and the overall evaluation
of the model during the application of our algorithm. In this case a model for 129
trajectories collected in our office environment (see map in Figure 8) has to be learned.

Figure 8: Trajectories of the 49 learned motion patterns in the office environment as
well as the identified resting places.

To evaluate the performance of our approach we carried out a series of experiments
using several data sets. In each experiment we chose a random set of trajectories and
counted the number of correct classifications. It turned out that our algorithm was
able to learn the correct model in 96% of all cases. We furthermore did not discover
evidence that the number of model components we initialized our algorithm with has
an influence on the overall result.
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5.1.3 Discussion

Note that the output of our learning algorithm depends on the standard deviationσ and
on the number of probability distributionsK used to represent the motion patterns. It is
clear that smaller values ofσ will result in a higher number of model components. Fur-
thermore, if there is only a relatively small number of trajectories for one motion pattern
compared to the other motion patterns, our algorithm tends to underestimate the num-
ber of model components and to assign these trajectories to other clusters. Due to the
assumption that all model components have the same length, our algorithm prefers to
cluster longer trajectories into single components rather than short trajectories. This is
because the distance between long trajectories and their cluster is typically higher than
for short trajectories. A solution to this problem would be to additionally estimate the
number of probability distributions constituting each particular motion pattern. This
aspect will be subject of future research.

Furthermore, there are several alternative clustering approaches that might be ap-
plicable to our problem of learning motion patterns. For the purpose of comparison we
also implemented the classicalk-Means algorithm. This algorithm differs from the ap-
proach used in this paper in that the correspondence variables have binary values only
and that each data trajectorydi is assigned to the “closest” model component, i.e., the
model componentθm which has the highest probability thatdi is observed given the
person is engaged inθm. In our experiments it turned out that the classicalk-Means
algorithm yields a similar success rate compared to our approach. The advantage of
our technique lies in the probabilistic framework and its correspondence to the EM
algorithm as a general optimization procedure.

5.2 Tracking Persons

The experiments described in this section are designed to illustrate that our approach
can be used to robustly estimate the positions of multiple persons, even if they are
not in the field of view of the robot. Finally, we present experiments illustrating that
the belief about current and future positions of persons can be used by a mobile robot
to adapt its navigation behavior. To analyze the applicability of the HMMs for the
prediction of the locations of a person we performed several experiments with our
B21r robot Albert in our office environment. The Hidden Markov Model used to carry
out these experiments was computed based on data recorded over two hours in our
office environment. During the acquisition phase the average speed of the person was
v=107 cm/sec with a standard deviation ofσv=25 cm/sec. The possible transitions of
the Hidden Markov Model that was derived from the learned motion patterns in the
office environment is shown in Figure 9. Whereas the numbered squares indicate the
eight resting places, the small circles on the trajectories are the intermediate states.

5.2.1 Tracking a Single Person

The first experiment is designed to illustrate that our approach is able to reliably esti-
mate the position of a person in its environment. In this experiment, a single person was
moving in our department and the task of the robot, which itself did not move, was to
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Figure 9: Possible Transitions of the Hidden Markov Model derived from learned mo-
tion patterns. The numbered squares indicate the eight resting places. The small circles
on the trajectories correspond to the intermediate states.

estimate the positions of this person. Especially, we were interested in the probability
that the person stayed at the correct resting place.

Figure 10 shows a scene overview (left image) for an experiment in which the
person walked through the environment. The robot could only cover a part of the envi-
ronment with its sensors but even though it was able to maintain and update the belief
about the position of the person at any point in time. The right image of Figure 10 de-
picts the results of the laser-based feature detection system. The left image of Figure 11
shows the corresponding beliefs about the position of the person after integrating the
observation. In this case we did not use vision information since there was only one
person in the environment of the robot. The grey dot corresponds to the position of the
feature provided by the laser-based people detector. The size of the squares of the states
of the HMM represents the probability that the person is currently in the corresponding
state. Additionally, the resting places are labeled with the probability that the person
stays at this particular place. When the robot observed the person as it walked through
the corridor it assigned high likelihood to the states close to the detected feature. Af-
ter the person entered the room and moved outside the field of view of the robot most
of the probability mass “wandered” to resting place 7 (see right image of Figure 11)
which was according to the transition probabilities encoded in the HMM.

Figure 12 plots for different resting places the probability that the person stayed at
this particular place over time. The dashed-dotted, dashed, and solid curve correspond
to resting places 3, 7, and 6 respectively. Whereas the x-axis represents the individual
time steps, the y-axis indicates the probability. The graph also includes the ground
truth, which is indicated by the corresponding horizontal line-pattern at the .9 level.
As can be seen from the figure, the system can reliably determine the location of the
person. During this experiment the robot predicted the correct position of the person in
93% of the time.
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detected feature

Figure 10: Robot Albert tracking a person while it is moving through the environment.
The left image shows a scene overview and the right images depicts the corresponding
results of the laser-based feature detection system.

Figure 11: The left image shows the corresponding belief over the position of the
person after integrating the observation shown in Figure 10. The size of the squares
represents the probability that the person is currently in the corresponding state and
the resting places are labeled with the probability that the person stays currently there.
Even if the robot does not observe the person any more it is able correctly infer that the
person is going to resting place 7 (right image).

Figure 13 shows another experiment with a moving robot (see also Extension 2).
Here the robot traveled along the corridor and looked into one of the offices where it
detected personA (see left image of Figure 13). The evolution of the probabilities
for personA to be at resting places 3, 6, and 7 is plotted in the right image of this
figure. Whereas the robot initially was rather uncertain as to where personA was, the
probability of resting place 3 seriously increased after the detection.

5.2.2 Estimating the Locations of Multiple Persons

As an application example with multiple persons consider the situation depicted Fig-
ure 14 (see also Extension 3). In this experiment the database of the robot consisted
of three persons. For all three persons we used identical motion patterns and transition
probabilities in the HMMs. In the situation described here the robot was initially quite
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Figure 12: Evolution of the probability of the person to be at the different resting places
over the time. The ground truth is indicated by the horizontal line-pattern at the .9 level.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

pr
ob

ab
ili

ty

time

resting place 3
resting place 6
resting place 7

Figure 13: Trajectory of the robot including the detection of personA in his office (left
image) as well as the corresponding evolution of the probability that personA is at the
resting places 3, 6, or 7 (right image).

certain that personsA andB were in the room containing resting place 3. Then the
robot observed a person leaving the room (see images in the first row of Figure 14).
The grey circles labeled with names indicate the position provided by the laser-based
feature detection system. Since the robot did not get vision information at this particu-
lar time step it was uncertain who the person was. Note that we use uniform similarity
values for all database images in such situations. The intensity of the circle represents
the similarity between the extracted segment and the database images of the person
corresponding to the HMM (the darker the more likely). Again, the size of the squares
represents the probability that the person is currently in the corresponding state and the
probabilities of the resting places are indicated by numbers. In the images shown in
the second row a second person entered the corridor. Now the robot received vision
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information and updated the individual HMMs according to the data association prob-
abilities computed by the JPDAF (see images in the third row). During the next time
steps both persons left the field of view of the robot but nevertheless the robot was able
to maintain an adequate belief about their positions.

5.3 Improving the Navigation Behavior of a Mobile Robot

In the experiments described above we demonstrated that our approach can be used to
learn motion patterns of persons and how to use such information to maintain a belief
about the positions of the persons. The following experiment is designed to show
that a robot, which takes into account different motion patterns during path planning,
performs significantly better than a robot that just relies on a linear prediction of the
movements of persons.

In particular, we use the learned motion patterns to predict the movements of de-
tected persons and consider the forecasted trajectories during path planning. In our
current system we apply theA∗ algorithm [46] to determine the minimum-cost path
in the three dimensional configuration time-space of the robot. The environment is
represented using an occupancy grid map [43]. Each cell〈x, y〉 of this grid stores the
probabilityP (occx,y) that the corresponding area in the environment is occupied. The
cost for traversing a cell〈x, y〉 is proportional to its occupancy probabilityP (occx,y).
To incorporate the robot’s belief about future movements of detected persons, we ad-
ditionally discount a cell〈x, y〉 according to the probability, that one of the persons
covers〈x, y〉 at a given timet.

Consider the situation depicted in the left image of Figure 15. The robot was mov-
ing along the corridor from left to right to reach its target location, which is labeled C
in the figure. At the position labeled with A the robot detected a person approaching
it. According to the learned motion patterns the person was most probably walking to
resting place 3. The motion patterns which had a sufficiently high probability are de-
picted in Figure 16 (the thicker the trajectory the higher the probability that the person
will follow this specific trajectory). Since the probabilities of the motion patterns with
target locations 4 and 8 were very low, the additional costs introduced to the configura-
tion time-space did not prevent the robot from driving further along the corridor. Thus,
the robot moved to the location labeled B in the left image of Figure 15 and waited
there until the person entered the room in the north. After that it moved to its target
location, which is labeled C.

We repeated this experiment with a system that does not use the motion patterns
and instead only linearly predicts the trajectory of persons. The trajectory of the robot
in this experiment is shown in the right image of Figure 15. After the robot detected
the person it continued to move and simultaneously replanned its path using the con-
figuration time space computed based on a linear prediction of the movements of the
person. When it detected that it would block the path of the person it turned around and
moved to the location labeled B in the right image of Figure 15. After it noticed that
the person disappeared the robot continued to its designated target location C. We also
performed this experiment with a collision avoidance system that does not predict the
motions of persons [63]. In a situation like the one considered here, the person always
had to slow down because the robot was blocking its path.
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Figure 14:This figure shows an experiment with two persons. Whereas the left column depicts
the belief about the position of personA the right column shows the belief about the position of
personB. The circles labeled with names are detected features. The grey value of each circle
represents the similarity to the person corresponding to the HMM.
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Figure 15: In the left image the robot used the motion patterns to predict future poses of
persons. At the position labeled A the robot observed a person approaching it. Based
on the learned motion patterns it inferred that the person will enter the room to the
north to go to resting place 3 with very high likelihood (see Figure 16). Accordingly,
the robot moved forward and waited at the position labeled B until the person left the
corridor. In the right image the the robot used a linear prediction of the trajectory of
the person. It anticipated that it will block the person’s way and thus it moved to the
position labeled B. After the person left the corridor the robot continued approaching
its target location.

Figure 16: Most probable trajectories of the person in the experiment shown in Fig-
ure 15. The thicker the trajectory the higher the probability that the person follows this
motion pattern.

We performed ten similar experiments for each of the prediction strategies and
measured the time needed to complete the navigation task. The average time for both
systems is shown in Figure 17. As can be seen from the graph the time can be sig-
nificantly reduced when taking into account learned motion patterns compared to the
approach that only performs a linear prediction.
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Figure 17: Average time needed to complete the navigation task when the robot per-
forms linear prediction (left column) and when it uses the learned motion patterns (right
column) for ten experiments.

6 Related Work

A variety of techniques has been developed that allows a robot to estimate the posi-
tions of people in its vicinity or to predict future poses. The approaches presented by
Tadokoro et al. [66] and Zhu [69] use given probabilistic motion models in order to
predict future poses of observed objects. Since these approaches do not learn typical
motion patterns, they can only predict short-term motions. The techniques developed
by Schulz et al. [58] and Montemerlo et al. [42] are able to robustly track multiple
persons in the sensor range of a mobile robot equipped with laser-range finders using
particle filters. Kluge et al. [29] also implemented a system to track people but they do
not apply a motion model to the objects. Thus, they cannot reliably keep track of indi-
vidual moving objects over time and deal with temporary occlusion. The same draw-
back has the approach presented by Lindström and Eklundh [36] which uses Gaussian
hypotheses to detect and track moving objects from a moving platform in furnished
rooms. Rosencrantz et al. [55] introduced variable-dimension particle filters to track
the location of moving objects even if they are temporarily occluded. However, they
are not able to estimate the probability of certain positions when the objects are outside
the sensor range. They can only predict that the persons are in specific areas (rooms).
There are also many vision-based techniques that are designed to keep track of moving
objects and which show robust behavior even in the case of temporary occlusions (for
example [53, 37]). Feyrer and Zell [10] use a combination of vision and laser data
to detect persons in front of stationary background and to track them. Furthermore,
they use an artificial potential field to pursue them in real-time thereby avoiding colli-
sions with obstacles. Fod et al. [11] use multiple statically mounted laser-range finders
and apply Kalman filters to maintain an estimate of the positions of people in every-
day environments whereas Krumm et al. [30] deployed multiple stationary cameras for
multi-person tracking in a living room. Lavalle et al. [34] presented a system that is
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able to follow of a moving target. They explicitely take into account possible short-
term occlusions by static obstacles in the environment. González-Bãnos et al. [17]
presented a modified version that works without a prior map of the environment. Fur-
thermore, some multi-robot systems have been developed that keep track of multiple
moving targets [44, 25, 49] or surround a moving target [50]. Riley and Veloso [52] use
predefined opponent models in the RoboCup domain to reason about the opponents’
strategy and predict their behavior. Depending on the inferred strategy they adapt their
own team play. Foka and Trahanias [12] suggested to predict the movements of people
using manually defined “hot points” which the people might be interesting in approach-
ing. Ehrenmann et al. [7] proposed the interpretation of dynamic gestures to command
robots and Kasper et al. [26] presented an approach to improve the behavior of a robot
by following the activities of a teacher.

The majority of the existing position tracking techniques assume that the models of
the motion behavior of the objects to be tracked are given. Our approach, in contrast, is
able to learn such models and to use the learned models for the long-term prediction of
the persons’ movements. Our system is able to maintain an estimate about the positions
of multiple persons even if they are not in the sensor range of the robot for a long period
of time.

The system described by Kruse and Wahl [31] uses a camera system mounted on
the ceiling to track persons in the environment and to learn where the people usually
walk in their workspace. A collision probability field similar to a potential field [3]
is computed which incorporates the average motion behavior of the persons. Accord-
ingly, their system can only make a short-term prediction of future poses of persons.
Johnson and Hogg [24] learn probability density functions of typical object trajectories
to detect atypical behaviors. Compared to the work presented here, they do not apply
a technique to estimate the number of different motion patterns. The goal of the work
by Stauffer and Grimson [64] is also to detect unusual events. They learn codebooks
of a given number of prototypes. Rosales and Sclaroff [54] analyze 3D trajectories to
learn typical classes of actions like walking, running, and biking. Oliver et al. [48] use
data obtained from various sensors as input to an Layered HMM and infer the state
of a user’s activity. Galata et al. [14] use Variable Length Markov Models (VLMMs)
to model structured behaviors. One problem to be solved in the context of VLMMs
is the estimation of the optimal size of the time window in order to correctly predict
the next states. We follow a conservative approach and assume all steps in the past to
be relevant. Nguyen et al. [45] recently proposed to use an Abstract Hidden Markov
mEmory Model (AHMEM) to infer intentions of persons. The idea of an AHMEM is
to model higher level behaviors by a stochastic sequence of more simple behaviors at
the lower levels. The authors apply an EM-based learning method for labeled trajecto-
ries to determine the transition probabilities for the states at the lowest level (grid cells)
and assume that the landmarks the persons want to approach are given. Our approach
in contrast applies an unsupervised clustering method to the observed trajectories and
is also able to automatically infer resting places which correspond to the landmarks
in the AHMEM. Illmann et al. [22] apply a fusion of omnidirectional vision and in-
formation of a laser-range finder to extract basic motion patterns like straight motion,
wandering aimlessly, or entering a queue. Their goal is to predict short-term motions of
surrounding people using the learned motion patterns so that a mobile robot can chose
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adequate behaviors. Finally, Guralnik and Haigh [19] use sequential pattern mining
to learn typical behaviors of humans in their homes. They installed 10-20 sensors of
different types in a home. Their algorithm uses this data to learn sequences of rooms in
which room the person was acting. Their algorithm uses domain knowledge to extract
sequences of rooms the person was acting in. These sequences are then analyzed by a
human expert to identify complex behavior models. The approach described here can
be seen as an alternative way of learning the sequences of rooms that does not require
domain knowledge.

7 Conclusions

In this article we presented a method for learning and utilizing motion patterns of per-
sons. Our approach applies the EM algorithm to cluster trajectories recorded with
laser-range sensors into a collection of motion patterns. We furthermore introduced
a method for automatically deriving an HMM from these typical motion patterns of
persons. To update the resulting HMMs based on laser-range data and vision informa-
tion we apply Joint Probabilistic Data Association Filters. We also described how to
incorporate predicted trajectories of persons into the path planning process.

Our approach has been implemented and successfully applied to trajectories recorded
in different environments. Practical experiments carried out with a mobile robot in dif-
ferent environments demonstrate that our method is able to learn typical motion pat-
terns of persons and to reliably use them for maintaining a probabilistic belief about
the current positions of persons. We furthermore presented experiments illustrating that
the behavior of a mobile robot can be improved by predicting the motions of persons
based on learned motion patterns.
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9 Index to Multimedia Extensions

The multimedia extensions to this article can be found online by following the hyper-
links from http://www.ijrr.org/.
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Extension Type Description

1 Video Application of EM: This video shows the evolution of the
model components during an application of EM. (100 KB)

2 Video Verifying a Person’s Location: In this experiment the robot
updates its belief about the position of a person while it
is moving. (3.4 MB)

3 Video Tracking the Positions of Multiple Persons: This video
shows the evolution of the belief about the positions of two
persons. (5.9 MB)
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