
Generating, Executing and Revising Schedules
for Autonomous Robot Office Couriers

Maren Bennewitz and Michael Beetz
University of Bonn, Dept. of Computer Science III,

Roemerstr. 164, D-53117 Bonn, Germany,
email:

�
maren, beetz � @cs.uni-bonn.de

Abstract

Scheduling the tasks of an autonomous robot office
courier and carrying out the scheduled tasks reliably and
efficiently pose challenging problems for autonomous
robot control. To carry out their jobs reliably and ef-
ficiently many autonomous mobile service robots act-
ing in human working environments have to view their
jobs as everyday activity: they should accomplish long-
term efficiency rather than optimize problem-solving
episodes. They should also exploit opportunities and
avoid problems flexibly because often robots are forced
to generate schedules based on partial information.

We propose to implement the controller for scheduled
activity by employing concurrent reactive plans that
reschedule the course of action whenever necessary and
while performing their actions. The plans are repre-
sented modularly and transparently to allow for easy
transformation. Scheduling and schedule repair meth-
ods are implemented as plan transformation rules.

Introduction
To carry out their jobs reliably and efficiently many au-
tonomous mobile service robots acting in human work-
ing environments have to view their jobs as everyday
activity. We consider a particular instance of every-
day activity: performing office courier service. Thus,
scheduling everyday activity differs from many other
scheduling tasks such as job scheduling (FS84), space
shuttle scheduling (DSB94), or transportation schedul-
ing in the following aspects:

� Long-term efficiency. The goal of scheduling ev-
eryday activity is the optimization of long-term ef-
ficiency rather than problem-solving episodes. In
certain situations, for instance, a competent office
courier distributes empty envelopes according to an
expected consumption profile while performing its
delivery jobs. Distributing the envelopes beforehand
decreases the chances that the robot has to pickup
empty envelopes before delivering a letter and there-
fore misses a deadline. Such preparation actions

make the performance of individual jobs slower but
they can be expected to improve the overall perfor-
mance significantly.

� Robustness and Flexibility. Schedules are to be gen-
erated based on partial information about the envi-
ronment and the tasks. For instance, incomplete task
specifications like “pick up the letter from Wolfram’s
desk and deliver it,” lack proper descriptions of the
envelope as well as the destination of the letter. In
such a case, the robot has to postpone the execution
until more information is available. Acting flexibily
requires the robot courier to watch out for opportuni-
ties and exploit them as well as to detect and avoid
problems while executing scheduled activity.

� Experience. Information acquired through extended
experience is exploited to compute more appropriate
schedules. For instance, knowledge about the time
needed by individual users to upload or unload items
can be exploited to estimate the required overall time
more accurately.

It is important that the scheduler of an autonomous
robot office courier is able to interleave delivery jobs,
reschedule when problems are detected, and exploit op-
portunities. The scheduler also has to be able to predict
whether exploiting an opportunity that has just been de-
tected might cause failures in other activity threads such
as missing deadlines (BG98). What seems less impor-
tant is the computation of schedules that guarantee min-
imal path length because loading and unloading takes
significant amount of time.

We propose to implement the controller for sched-
uled activity by employing concurrent reactive plans
that reschedule the course of action whenever necessary
and while performing their actions. The plans are rep-
resented modularly and transparently to allow for easy
transformation. Scheduling and schedule repair meth-
ods are implemented as plan transformation rules.



Fig. 1: RHINO

Our research on schedul-
ing everyday activity is
carried out in the context
of FAXBOT, a structured
reactive controller (SRC)
(Bee98) that is designed for
robust and efficient execu-
tion of delivery plans on the
autonomous mobile robot
RHINO (see Fig. 1), an RWI

B21 robot.
The main contributions of this paper are that we show

(1) the installation of modular and transparent sched-
ules in complex concurrent and reactive robot control
programs; (2) explain the design of schedules and con-
trollers that allow for opportunisticand robust execution
of scheduled activity; and (3) describe novel plan trans-
formation techniques for scheduling and rescheduling
everyday activity.

FAXBOT’s Scheduling Methods at Work
FAXBOT’s delivery routines are implemented in RPL

(Reactive Plan Language) (McD91). RPL provides con-
ditionals, loops, program variables, processes, and sub-
routines. RPL also places high-level constructs (inter-
rupts, monitors) to synchronize parallel physical ac-
tions and make plans reactive and robust by incorporat-
ing sensing and monitoring actions, and reactions trig-
gered by observed events at the programmer’s disposal.
The RPL constructs used to specify scheduled activity
are the PLAN-, WITH-POLICY-, WHENEVER-, and WAIT-FOR-
statements; but see (McD91) for a complete description.

The FAXBOT controller carries out two kinds of sub-
plans: primary activities, actions taken to accomplish
the robot’s mission, and policies, which monitor and
maintain the conditions necessary for the successful and
efficient execution of the primary activities. WITH-POLICY

P B means “execute the primary activity B such that the
execution satisfies the policy P.” Policies are concurrent
processes that run while the primary activity is active
and interrupt the primary if necessary. Primary activi-
ties must handle interrupts and, due to the possible side-
effects of policies, have to make suitable preparations
for their successful continuation after reactivation.

The primary activities are separated into the oppor-
tunistic primaries and the active primaries. The active
primaries are the ones that the robot is able to accom-
plish without help. The order in which the subplans of
the active primaries are executed is given by the order
constraints that specify a (partial) order on the naviga-
tion tasks contained in the active primary tasks. The
opportunistic primaries are the ones that robot cannot
accomplish autonomously. To complete them it has

to wait for enabling conditions. For example, because
FAXBOT has no action for opening doors it might have
to wait for doors to open in order to complete its deliver-
ies. The open door might be an opportunity to complete
a user command.

Consider the following experiment that is carried out
on RHINO using FAXBOT’s scheduling capabilities (de-
tails on the scheduling and plan transformation methods
can be found in (BB98)). RHINO receives two com-
mands: “put the red letter on the meeting table in room
A-111 onto the desk in room A-120” and “deliver the
green book from the librarian’s desk in room A-110 to
the desk in room A-114” (see Fig. 2).

A-112

A-113

A-111

Library
A-110

Classroom

A-121
A-120

A-119

A-118

A-117

A-114

Hallway

Fig. 2: Environment of the office courier

In the beginning, FAXBOT carries out no primary ac-
tivities. Its outermost policy ensures that new com-
mands are received and processed.

WITH-POLICY integrate command revisions (P-1)

WITH-POLICY replan/reschedule when necessary (P-2)

PRIMARY ACTIVITIES

Upon receiving the two commands the policy P-1
puts plans for the commands into the active primary ac-
tivities of the SRC.

WITH-POLICY integrate command revisions (P-1)

WITH-POLICY replan/reschedule when necessary (P-2)

PRIMARY ACTIVITIES

:TAG CMD-1 Plan for: Deliver the red letter

:TAG CMD-2 Plan for: Deliver the green book

The insertion of the commands triggers the scheduler
of the policy P-2 that orders the navigation tasks in the
primary activities.

Figure 3 shows the formalization of the transforma-
tion rule that schedules office delivery tasks. The trans-
formation rule revises the primary activities by adding
another policy that hat generates a bug whenever an as-
sumption underlying the current schedule is detected as
violated. The rule also revises the active primaries by



1.) ?PLANNED-POLICIES
AT PLANNED-POLICIES
== (PAR !?CURR-PLANNED-POLICIES)

2.) ?MAIN-PLAN
AT MAIN-PLAN
== (PLAN ?STEPS !?CURR-CONSTRAINTS)�

1.) PAR ?MONITOR !?CURR-PLANNED-POLICIES
2.) PLAN ?STEPS !?CURR-CONSTRAINTS !?SCHED-CONSTRAINTS

���������
�

UNSCHEDULED-PLAN-BUG (a)
(?ROOT-TASK ?ACTIVE-PRIMARIES)�

ACTIVE-NAVIGATION-TASKS (b)
(?ROOT-TASK ?NAV-TASKS)�

OPEN-DOOR-ASSUMPTIONS (c)
(?NAV-TASKS ?OPEN-ASSMTS))�

DOOR-ASSUMPTIONS-MONITOR (d)
(?OPEN-ASSMTS ?MONITOR))�

PROPOSED-SCHEDULE (e)
(?NAV-TASKS ?SCHED-CONSTRAINTS)

Figure 3: Plan revision rule for the the installation of task schedules.

adding the ordering contraints of the schedule to the
constraints of the primary activities. The scheduling
rule is applicable under a set of conditions specifying
that (a) There is a bug of the category “unscheduled
plan”; (b) The navigation tasks contained in the ac-
tive primaries are ?NAV-TASKS; (c) ?NAV-TASKS can be ac-
complished if ?OPEN-ASSMPTS are satisfied; (d) ?SCHED-

CONSTRAINTS are ordering constraints on ?NAV-TASKS such
that any order which satisfies ?SCHED-CONSTRAINTS will
accomplish the active primary tasks fast and avoid dead-
line violations and overloading problems. The rule is
applied whenever the set of user commands changes.

The algorithm for ordering the navigation tasks sorts
the destinations on one side of the hallway (see Fig. 2)
in ascending and the others in descending order. After
this initial sort, the scheduler iteratively resolves prob-
lems such as missed deadlines or confusions caused by
carrying objects that look identical.

The scheduling routine is implemented as a plan
transformation rule that can be applied to FAXBOT’s
overall plan while the plan is executed (BM97; BM94).

In our example, the application of the revision rule
yields:

WITH-POLICY integrate command revisions (P-1)

WITH-POLICY replan/reschedule when necessary (P-2)

WITH-POLICY reschedule when A-110, A-111, A-114,
or A-120 are closed

(P-3)

PRIMARY ACTIVITIES

:TAG CMD-1 Plan for: Deliver the red letter

:TAG NAV-1 go to pick up ...

:TAG NAV-2 go to deliver ...

:TAG CMD-2 Plan for: Deliver the green book

:TAG NAV-3 go to pick up ...

:TAG NAV-4 go to deliver ...
:ORDER NAV-1 � NAV-3, NAV-3 � NAV-2, NAV-2 � NAV-4

After FAXBOT has picked up the red letter from the
meeting table and left room A-111, it notices that the
door of room A-120 has been closed in the meantime.
Because FAXBOT cannot complete the delivery of the
red letter the corresponding command fails. This failure

triggers the replanning policy P-3.
Each violated scheduling assumption triggers the ap-

plication of the closed-door-transformation rule shown
in Figure 4.

The revision rule of the FAXBOT controller that is
triggered by closed doors (see Figure 4) causes the cor-
responding user command to fail. The rule deletes the
failed plan for the user command from the active pri-
mary activities and adds the plan to the opportunistic
primary activities. This is done by adding another pol-
icy that watches out for the door of A-120 to be opened
again.

WITH-POLICY integrate command revisions (P-1)

WITH-POLICY replan/reschedule when necessary (P-2)

WITH-POLICY reschedule when A-110, A-111,
or A-114 are closed

(P-3)

PRIMARY ACTIVITIES

WITH-POLICY WAIT-FOR OPEN?(A-120)

:TAG CMD-1 ...

:TAG CMD-2 ...

Thus, as soon as FAXBOT notices room A-120 to be
open it interrupts its current mission, completes the de-
livery of the red letter, and continues with the remaining
missions after the red letter has been successfully deliv-
ered.

1
5

6

7

2

4

3

Fig. 5: Complete trajectory for the two deliveries

Figure 5 pictures RHINO’s trajectory during the ac-
complishment of the two delivery jobs. FAXBOT starts
with the delivery of the red letter and heads to the meet-
ing table in A-111 where the letter is loaded (step 2). At



1.) ?ACT-PRIMARIES
AT ACTIVE-PRIMARIES

2.) ?OPP-PRIMARIES
AT OPPORTUNISTIC-PRIMARIES�

1.) ?REM-ACT-PRIMARIES
2.) TOP-LEVEL

:TAG ?TLC-NAME
SEQ WAIT-FOR(OPEN(?ROOM))

?TLC-PLAN
!?OPP-PRIMARIES

�������������
�

CLOSED-DOOR-BUG
(?CMD-FAILURE ?DOOR-FCT ?ROOM
(?TLC) ?FAILED-TASK)�

TLC-NAME(?TLC ?TLC-NAME)�
ROOT-TASK(?ROOT ?FAILED-TASK)�
DELETE-ACTIVE-PRIMARY-TLC-PLAN

(?ROOT ?TLC-NAME ?REMAINING-TLC-PLANS)�
TAGGED-SUBTASK(?ROOT ?TLC-NAME ?TLC-TASK)�
RPL-EXP(?TLC-TASK ?TLC-PLAN)

Figure 4: Plan revision rule for delivery tasks that cannot be completed because of closed doors.

this moment the door of A-120 is closed. Thus, when
FAXBOT enters the hallway to deliver the red letter at
Michael’s desk, it estimates the opening angle of the
door of room A-120. At this moment FAXBOT detects
that the door has been closed and that it cannot com-
plete the delivery (step 3). Thus FAXBOT navigates to
the librarian’s desk in A-110 to pick up the green book
to room A-114 (step 4). At this moment room A-120 is
opened again. As FAXBOT heads towards A-114 to de-
liver the green book it passes room A-120 (step 5). At
this point the door estimation process signals an oppor-
tunity: A-120 is open! Therefore, FAXBOT interrupts
its current delivery to complete the delivery of the red
letter. After the delivery of the red letter is completed
(step 6), FAXBOT continues the delivery of the green
book (step 7).

The behavior generated by FAXBOT if all doors stay
open is shown in Fig. 6 and the one if A-120 is closed
but not opened again in Fig. 7.

1

2

3

4
5

1

2

3
4

Fig. 6. Trajectory if
A-120 stays open.

Fig. 7. Trajectory if
A-120 is closed

again.

Discussion
We have mainly focussed on the application of schedul-
ing techniques to plans that control an autonomous mo-
bile service robot. As such the contributions of this
paper lie mainly in the representation of complex con-
current and reactive plans that facilitate scheduling op-
erations, the specification of plan revision methods by
means of plan transformation rules, and the application
of these scheduling methods while the robot carries out
the scheduled activity.

FAXBOT accomplishes its jobs successfully because
its subplans are made interruptable and restartable using
high-level control structures that specify synchronized
concurrent reactive behavior. FAXBOT achieves adap-
tivity through plan revision and scheduling processes,
implemented as policies, that detect opportunities, con-
tingent situations, and invalid assumptions. Plan revi-
sion techniques are able to perform the required adap-
tations because of the modular and transparent speci-
fication of concurrent and reactive behavior. In par-
ticular the distinction of policies and primary activi-
ties increases the modularity significantly. Policies en-
able FAXBOT to specify opportunistic behavior and to
achieve reliable operation while making simplifying as-
sumptions.

Our research is still at an early stage. So far we have
only performed some simple experiments to validate
that the FAXBOT controller and its scheduler work; that
is that it can reliably monitor scheduling assumptions
and schedule delivery jobs during their execution.

There are many open issues that we would like to
investigate more carefully in the near future. These
issues include the development of more sophisticated
scheduling methods (ZF94), the application of learn-
ing techniques to acquire useful information that can
be exploited by heuristic scheduling methods (HC92b;
HV98a; HV98b; ZDD � 92), and a thorough experimen-
tal investigation on the effects of different scheduling
techniques on the behavior exhibited by autonomous
service robots (HC92a).

References
M. Beetz and M. Bennewitz. Planning, scheduling, and plan
execution for autonomous robot office couriers. In submitted
for publication, 1998.

M. Beetz. Structured reactive controllers. In submitted for
publication, 1998.

M. Beetz and H. Grosskreutz. Causal models of mobile
service robot behavior. In R. Simmons, M. Veloso, and
S. Smith, editors, to appear in Fourth International Confer-
ence on AI Planning Systems, Morgan Kaufmann, 1998.



M. Beetz and D. McDermott. Improving robot plans dur-
ing their execution. In Kris Hammond, editor, Second Inter-
national Conference on AI Planning Systems, pages 3–12,
Morgan Kaufmann, 1994.

M. Beetz and D. McDermott. Expressing transformations
of structured reactive plans. In Recent Advances in AI
Planning. Proceedings of the 1997 European Conference on
Planning, pages 64–76. Springer Publishers, 1997.

M. Drummond, K. Swanson, and J. Bresina. Scheduling
and execution for automatic telescopes. In M. Zweben
and M. Fox, editors, Intelligent Scheduling, pages 341–369.
Morgan Kaufmann Publishers, 1994.

M. S. Fox and S. Smith. Isis - a knowledge-based system for
factory scheduling. Expert systems, 1(1):25–49, 1984.

D. Hart and P. Cohen. Predicting and explaining success
and task duration in the phoenix planner. In J. Hendler, ed-
itor, AIPS-92: Proc. of the First International Conference
on Artificial Intelligence Planning Systems, pages 106–115.
Kaufmann, San Mateo, CA, 1992.

A. Howe and P. Cohen. Isolating dependencies on failure
by analyzing execution traces. In J. Hendler, editor, AIPS-
92: Proc. of the First International Conference on Artificial
Intelligence Planning Systems, pages 277–278. Kaufmann,
San Mateo, CA, 1992.

K. Haigh and M. Veloso. Learning situation-dependent
costs: Improving planning from probabilistic robot execu-
tion. In To appear in Autonomous Agents 98, 1998.

K. Haigh and M. Veloso. Planning, execution and learning
in a robotic agent. In To appear in AIPS-98, 1998.

D. McDermott. A reactive plan language. Research Report
YALEU/DCS/RR-864, Yale University, 1991.

M. Zweben, E. Davis, B. Daun, E. Drascher, M. Deale, and
M. Eskey. Learning to improve constraint-based scheduling.
Artificial Intelligence, 58:271–296, 1992.

M. Zweben and M. S. Fox. Intelligent Scheduling. Morgan
Kaufmann, 1994.


