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Abstract

Coordinating the motion of multiple mobile robots is one
of the fundamental problems in robotics. The predomi-
nant algorithms for coordinating teams of robots are de-
coupled and prioritized, thereby avoiding combinatorially
hard planning problems typically faced by centralized ap-
proaches. While these methods are very efficient, they
have two major drawbacks. First, they are incomplete,
i.e. they sometimes fail to find a solution even if one ex-
ists, and second, the resulting solutions are often not op-
timal. In this paper we present a method for finding and
optimizing priority schemes for such prioritized and de-
coupled planning techniques. Existing approaches apply a
single priority scheme which makes them overly prone to
failure in cases where valid solutions exist. By searching
in the space of priorization schemes, our approach over-
comes this limitation. It performs a randomized search
with hill-climbing to find solutions and to minimize the
overall path length. To focus the search, our algorithm is
guided by constraints generated from the task specifica-
tion. To illustrate the appropriateness of this approach,
this paper discusses experimental results obtained with
real robots and through systematic robot simulation. The
experimental results illustrate the superior performance of
our approach, both in terms of efficiency of robot motion
and in the ability to find valid plans.

1 Introduction

Path planning is one of the fundamental problems in mo-
bile robotics. As mentioned by Latombe [10], the capabil-
ity of effectively planning its motions is “eminently nec-
essary since, by definition, a robot accomplishes tasks by
moving in the real world.”

In this paper we consider the problem of motion plan-
ning for multiple mobile robots. The goal is to compute
trajectories for the individual robots such that collisions
between the robots are avoided. Especially in the context
of multi-robot systems different undesirable situations can
occur like congestions or even deadlocks. Since the size
of the joint state space of the robots grows exponentially
in the number of robots, planning paths for teams of mo-
bile robots is significantly harder than the path planning
problem for single robot systems. Therefore, the exist-
ing approaches for single robot systems cannot directly
be transferred to multi-robot systems.

The existing methods for solving the problem of mo-
tion planning for multiple robots can be divided into two
categories [10]. In thecentralizedapproach [3, 15, 19]
the configuration spaces of the individual robots are com-
bined into one composite configuration space which is
then searched for a path for the whole composite sys-
tem. In contrast, thedecoupledapproach [6, 8, 13, 18]
first computes separate paths for the individual robots and
then resolves possible conflicts of the generated paths.

While centralized approaches (at least theoretically) are
able to find the optimal solution to any planning problem
for which a solution exists, their time complexity is ex-
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ponential in the dimension of the composite configuration
space. In practice one is therefore forced to use heuristics
for the exploration of the huge joint state space.

Many methods use potential field techniques [2, 3, 20]
to guide the search. These techniques apply different ap-
proaches to deal with the problem of local minima in the
potential function. Other methods restrict the motions of
the robots to reduce the size of the search space. For ex-
ample, the approaches presented in [9, 11, 19] restrict the
trajectories of the robots to lie on independent road maps.
The coordination is achieved by searching the Cartesian
product of the separate road maps.

Decoupled planners determine the paths of the individ-
ual robots independently and then employ different strate-
gies to resolve possible conflicts. According to that, de-
coupled techniques are incomplete, i.e. they may fail to
find a solution even if there is one. A popular decoupled
approach is planning in the configuration time-space [6]
which can be constructed for each robot given the posi-
tions and orientations of all other robots at every point in
time. Techniques of this type assign priorities to the indi-
vidual robots and compute the paths of the robots based
on the order implied by these priorities. The method pre-
sented in [21] uses a fixed order and applies potential field
techniques in the configuration time-space to avoid colli-
sions. The approach described in [7] also uses a fixed pri-
ority scheme and chooses random detours for the robots
with lower priority.

Another approach to decoupled planning is the path co-
ordination method which was first introduced in [18]. The
key idea of this technique is to keep the robots on their
individual paths and let the robots stop, move forward,
or even move backward on their trajectories in order to
avoid collisions (see also [4]). To reduce the complexity
in the case of huge teams of robots [13] recently presented
a technique to separate the overall coordination problem
into sub-problems. This approach, however, assumes that
the overall problem can be divided into very small sub-
problems, a serious assumption which, as various exam-
ples described below demonstrate, is often not justified. In
general, therefore, a prioritized variant has to be applied.

The methods described above leave open how to assign
the priorities to the individual robots. In the past, differ-
ent techniques for selecting priorities have been used. [5]
applied a heuristic which assigns higher priority to robots
which can move on a straight line from the starting point
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Figure 1: Situation in which no solution can be found if
robot 3 has higher priority than robot 1 (leftmost image)
and independently planned optimal paths for two robots
(second image), sub-optimal solution if robot 1 has higher
priority (third image), and solution resulting if the path for
robot 2 is planned first (right).

to their target location. In [1] all possible assignments are
considered. Due to its complexity this approach has only
been applied to groups of up to three robots.

For decoupled and prioritized methods the order in
which the paths are planned has a serious influence on
whether at all a solution can be found and how long the
resulting paths are. To illustrate this, let us consider two
examples. Figure 1 (leftmost image) shows a situation in
which no solution can be foundif robot 3 has a higher
priority than robot 1. Since the path of robot 3 is planned
without considering robot 1, it enters the corridor contain-
ing its target location (markedG3) before robot 1 has left
this corridor. Since the corridors are too narrow to allow
two robots to pass by, robot 3 blocks the way of robot 1
so that it cannot reach its target pointG1. However, if
we change the priorities and plan the trajectory of robot
1 before that of robot 3, then robot 3 considers the tra-
jectory of robot 1 during path planning and thus will wait
in the hallway until robot 1 has left the corridor. Another
example is shown in Figure 1 (three images on the right).
If we start with robot 1 then we have to choose a large
detour for robot 2 (see Figure 1, third image). This is be-
cause robot 1 blocks the corridor. However, if the path of
robot 2 is planned first, then we can obtain a much more
efficient solution (see Figure 1, right). These two exam-
ples illustrate that the priority scheme has a serious influ-
ence on whether a solution can be found and on how long
the resulting paths are. Moreover, it suggests that no sin-
gle prioritization scheme will be sufficient for all possible
multi-robot motion problems.

In this paper, we present a technique that searches in
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the space of all priority schemes while solving hard multi-
robot planning problems. Our approach performs a ran-
domized hill-climbing search in the space of possible pri-
ority schemes. Since each change of a scheme requires the
computation of the paths for many of the robots, it is im-
portant to focus the search. Our method achieves this by
exploiting constraints between the different robots which
are derived from the task specification. This has two seri-
ous advantages. First, it reduces the time required to find
a solution, and second, it increases the number of prob-
lems for which a solution can be found in a given amount
of time. Additionally, our algorithm is able to reduce the
overall path length once a solution has been found. It has
anytime characteristics [22], which means that the qual-
ity of the solution depends on the available computation
time.

Our approach has been successfully applied to physical
mobile robots. These results are complemented by exten-
sive simulations, to characterize the relation between the
planning performance and various problem parameters.
In all experiments, we found that our approach produces
highly efficient motion plans even for very large teams of
robots, for different environments, and using two different
decoupled path planning techniques.

The paper is organized as follows. In the following
section, we introduce two decoupled path planning tech-
niques that will be used throughout this paper. Section 3
describes our algorithm for searching for priority schemes
during planning. Finally, in Section 4, we present system-
atic experimental results illustrating the capabilities of our
approach.

2 Prioritized A∗-based Path Plan-
ning and Path Coordination

2.1 A∗-based Path Planning

Our system applies theA∗ procedure [17] to compute the
cost-optimal paths for the individual robots.A∗ addresses
the problem of finding a shortest path from an initial state
to a goal state in a graph. To search efficiently, theA∗ pro-
cedure takes into account the accumulated cost of reach-
ing a certain location〈x, y〉 from the starting position,
and an estimate of the cost of reaching the target loca-
tion 〈x∗, y∗〉 from 〈x, y〉. By doing so,A∗ tends to focus

its search in parts of the state space most relevant to the
problem of finding a shortest path. This property, which
makesA∗ an efficient search algorithm, has givenA∗ an
enormous popularity in the robotics community. How-
ever, A∗ also requires a discrete search graph, whereas
robot configuration spaces are continuous. In our case we
assume that the environment is readily represented by a
discrete occupancy grid map—which is common in the
mobile robotics literature.

Occupancy grids [16] separate the environment into a
grid of equally spaced cells and store in each cell〈x, y〉
the probabilityP (occx,y) that it is occupied by a static
object. The cost for traversing a cell〈x, y〉 is proportional
to its occupancy probabilityP (occx,y). Furthermore, the
estimated cost for reaching the target location is approx-
imated byc · ||〈x, y〉 − 〈x∗, y∗〉|| wherec > 0 is chosen
as the minimum occupancy probabilityP (occx,y) in the
map and||〈x, y〉 − 〈x∗, y∗〉|| is the straight-line distance
between〈x, y〉 and〈x∗, y∗〉. Since this heuristic is admis-
sible (see [17]),A∗ determines the cost-optimal path from
the starting position to the target location.

2.2 Decoupled Path Planning for Teams of
Robots

A∗ can easily be extended to the problem of decoupled
and prioritized path planning. Recall that in the multi-
robot path planning problem, many robots simultaneously
seek to traverse an environment. If the robots could move
freely regardless of other robot’s positions, the problem
could easily be decoupled into many local path planning
problems, in which each robot appliedA∗ to determine
its optimal path. However, the impossibility for robots to
occupy the same location at the same point in time intro-
duces non-trivial restrictions that have to be incorporated
into the individual robot paths.

A common approach is the following. In a first path
planning step, each robot computes its optimal path using
A∗, without any consideration of the paths of the other
robots. In the remainder we denote the paths generated
in this step as the independently planned optimal paths
for the individual robots. Clearly, these paths might not
be admissible since they lead to collisions, if executed.
Thus, in a second planning step, each robot checks for
possible conflicts with all other robots. Conflicts between
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robots are then resolved by introducing a priority scheme.
A priority scheme determines the order in which the paths
for the robots are re-planned. The path of a robot is then
planned in its configuration time-space computed based
on the map of the environment and the paths of the robots
with higher priority.

As already mentioned,A∗ search can also be used to
plan the motions of the robots in the configuration time-
space. To incorporate the restrictions imposed by the
other robots we do not allow a robot to enter a cell that
is occupied by a robot with higher priority at that time.
In addition to the generalA∗-based planning in the con-
figuration time-space we consider a second and restricted
version of this approach denoted as the path coordination
technique [13]. It differs from the general approach in
that it only explores a subset of the configuration time-
space given by those states which lie on the independently
planned optimal paths for the individual robots. The path
coordination technique thus forces the robots to stay on
their initial trajectories. The overall complexity of both
approaches isO(n · m · log(m)) wheren is the number
of robots andm is the maximum number of states ex-
panded byA∗ during planning in the configuration time-
space (i.e. the maximum length of the OPEN-list). Due
to the restriction during the search, the path coordination
method is more efficient than the generalA∗ search. Its
major disadvantage, however, lies in the fact that it fails
more often.

As already discussed above, the introduction of a prior-
ity scheme for the decoupled path planning leads to a se-
rious reduction of the overall complexity. Whereas there
are schemes leading to a viable solution with collision-
free paths, it is easy to see that there are schemes for
which no solution can be found. In addition to the fact,
that the order in which the robots may plan their paths
has a profound impact on the ability of finding a solution,
even the quality of the solution depends heavily on the pri-
ority scheme. Examples of such situations were already
discussed in the introduction to this paper. Unfortunately,
the problem of finding the optimal priority scheme, is a
non-trivial matter. More specifically, the NP-hard Job-
Shop Scheduling problem with the goal to minimize max-
imum completion time [14, 12] can be regarded as an in-
stance of the path coordination method. Therefore, we
have to be content with possibly sub-optimal planning or-
ders.

3 Finding and Optimizing Solvable
Priority Schemes

This section describes our approach to searching in the
space of priority schemes during decoupled path plan-
ning. The examples given above illustrate that the order
in which the paths are planned has a significant influence
on whether a solution can be found and on how long the
resulting paths are. This raises the question of how to find
a priority scheme for which the decoupled approach does
not fail and for which the length of the resulting paths is
minimized.

3.1 The Randomized Search Technique

Our algorithm for finding eligible priority schemes for
decoupled and prioritized path planning techniques inter-
leaves the search for collision-free paths with the search
for a solvable priority scheme. It performs a randomized
search combined with hill-climbing. It starts with an arbi-
trary initial priority scheme and randomly exchanges the
priorities of two robots in this scheme. If the new or-
der results in a solution with shorter paths than the best
one found so far, it continues with this new order. Since
hill-climbing approaches like this frequently get stuck in
local minima, it performs random restarts with different
initial orders of the robots. The number of restarts and
priority exchanges are controlled by the two parameters
maxTries andmaxFlips .

3.2 Exploiting Constraints to Focus the
Search

Whereas the plain randomized search technique produces
good results, it has the major disadvantage that often a
lot of iterations are necessary to come up with a solution.
For example, we found that for a situation with ten robots
in the environment shown in Figure 2 (leftmost image)
more than 20 iterations on average were necessary to find
a solvable priority scheme. In this section we therefore
present a technique to focus the search that tends to reduce
the search time significantly.

Our approach can be motivated through the situation
depicted in the leftmost image of Figure 1. In this situa-
tion, it is impossible to find a path for robot 1 if the path
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of robot 3 is planned first, because the goal location of
robot 3 lies on the optimal path for robot 1. The key idea
of our approach is to introduce a constraintpi > pj be-
tween the priorities of two robotsi andj, whenever the
goal position of robotj lies on the optimal path of robot
i. In our example we thus obtain the constraintp1 > p3

between the robots 1 and 3. Additionally, we get the con-
straintp2 > p1, since the goal location of robot 1 lies too
close to the trajectory of robot 2.

Although the satisfaction of the constraints by a certain
priority scheme does not guarantee that valid paths can be
found, orders satisfying the constraints more often have a
solution than priority schemes violating constraints. Un-
fortunately, depending on the environment and the num-
ber of the robots, it is possible that there is no order sat-
isfying all constraints. In such a case the constraints pro-
duce a cyclic dependency. The key idea of our approach
is to initially reorder only those robots that are involved
in such a cycle in the constraint graph. Thus, we separate
all robots into two sets. The first groupR1 contains all
robots that, according to the constraints, do not lie on a
cycle and have a higher priority than the robot with high-
est priority which lies on a cycle. This set of robots is
ordered according to the constraints and this order is not
changed during the search. The second set, denoted as
R2 contains all other robots. Initially, our algorithm only
changes the order of the robots in the second group. Af-
ter a certain number of iterations, we include all robots in
the search for a priority scheme. In our experiments we
figured out that this leads to better results with respect to
the overall path length, especially for large numbers of it-
erations. The number of iterations carried out using the
robots inR2 only is controlled by a parameter denotedk
in the remainder of this paper.

To illustrate our approach, again consider the situa-
tion with ten robots shown in the leftmost image of Fig-
ure 2. Whereas the starting locations are marked by
S0, . . . , S9 the corresponding goal positions are marked
by G0, . . . , G9. The independently planned optimal tra-
jectories are indicated by solid lines. Given these paths
we obtain the constraints depicted in the center image of
Figure 2. According to the constraints, in the beginning
the order of the six robots 3, 6, 7, 2, 4, and 9 remains un-
changed during the search process. Given the restricted
search space, our system quickly finds a solution. In this
example, we obtained the order 0, 1, 5, and 8, for the
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Figure 2: Independently planned paths for ten robots
(left), resulting constraints (center), and the paths result-
ing after priority optimization (right).

robots lying on a cycle in the constraint graph. The result-
ing corresponding collision-free paths for all robots are
shown in the right image of Figure 2. This demonstrates,
that the constraints can drastically reduce the search space
and still allow the system to quickly find solvable priority
schemes.

4 Experimental Results

Our approach has been tested thoroughly on real robots
and in extensive simulation runs. The key questions ad-
dressed in our experiments were: (1) Practicability: is our
approach relevant and applicable to real robot systems?
(2) Solvability: Does our approach succeed more fre-
quently in finding valid multi-robot paths than approaches
with fixed prioritization? (3) Optimality: If our approach
succeeds, does it generate more efficient plans? All exper-
iments were carried out using different environments. To
evaluate the general applicability, we applied our method
to the two decoupled and prioritized path planning tech-
niques described above. The current implementation is
highly efficient. It requires less than 0.1 seconds on a
1000 MHz Pentium III to plan a collision-free path for one
robot in all environments described below. The whole op-
timization for 10 robots with 10 restarts and 10 iterations
per restart requires approximately one minute.

4.1 An Example with Real Robots

The goal of the first experiment is to demonstrate the ap-
plicability of our approach to real robot systems. This ex-
periment has been carried out using the pioneer I robots of
the CS-Freiburg RoboCup team. The task of the robots is
to get into their initial formation which has to be done at
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Figure 3: An application example with the Robots of the
CS-Freiburg RoboCup team. The left image shows the
independently planned optimal paths for the four robots
and the resulting collision-free paths computed by our al-
gorithm are depicted on the right.

Figure 4: These four pictures show the robots carrying out
the navigation plans. The top left images depicts the ini-
tial situation. In the top right image robot 2 makes space
for robot 1 while robot 3 takes a detour. The lower left
images shows robot 1 waiting to let robot 0 pass by. The
lower right image shows the robots at their final locations.

the beginning of each match. Thereby they have to avoid
colliding with other robots that are on the field already.
In the particular example described here, the robots are
deployed on one side of the field and have to move to
their home positions on the other side. The left image of
Figure 3 shows this initial configuration along with the in-
dependently planned optimal paths. As can be seen from
this figure, these paths cross each other close to the cen-
ter of the field leading to several several conflicts. Here
we applied our approach toA∗ search in the configura-
tion time-space, and the paths of the robots were planned
in the order 0, 1, 2, and 3. The resulting paths are de-

picted in the right image of Figure 3. As can be seen, the
paths of the robots are changed in order to avoid colli-
sions. Whereas the robots 1 and 2 shortly wait to let robot
0 pass by (the corresponding positions are marked with a
“W” in the right image of Figure 3), robot 3 has to take a
detour.

4.2 Simulation Experiments

To elucidate the scaling properties of our approach to
larger number of robots, we performed extensive simu-
lation experiments. In particular, we were interested in
characterizing the dependence between the performance
of our system on various components of our approach.
In our experiments, we analyzed the number of planning
problems that can be solved using our strategy, the speed-
up obtained by exploiting the constraints, and the reduc-
tion of the overall path length. In all experiments, we
found that our approach produces highly efficient motion
plans even for very large teams of robots, for different en-
vironments, and regardless of the specific baseline path
planning technique (e.g., generalA∗ or the path coordina-
tion method).

4.2.1 Solved Planning Problems

This first set of experiments was designed to character-
ize the effect of our search scheme on the overall number
of failures. For each number of robots considered, we
performed 100 experiments. In each experiment we ran-
domly chose the starting and target locations of the robots.
We applied four different strategies to find solvable prior-
ity schemes:

1. A single randomly chosen order for the robots.

2. A single order which satisfies the constraints for the
robots in R1 and consists of a randomly chosen order
for the robots in R2.

3. Unconstrained randomized search starting with a
random order and without considering the con-
straints.

4. Constrained randomized search starting with an or-
der computed in the same way as strategy (2).
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Figure 5: Solved planning problems for different strate-
gies usingA∗-based planning in the configuration time-
space in the cyclic corridor environment depicted in Fig-
ure 6.

All four strategies can be cast as special cases of our algo-
rithm. In the first two strategies the corresponding values
for maxTries andmaxFlips are 1. For the first strat-
egy the value of the thresholdk is 0. The strategies 3 and
4 only differ in the value of the thresholdk. Whereas the
unconstrained search is obtained by settingk = 0, the
constrained search corresponds to a value ofk = ∞.

Please note that in this experiment we chose a small
number of iterations for the last two strategies in order to
assess the advantages of the constrained search under se-
rious time constraints. Particularly, we chose a value of
3 for the parametersmaxFlips andmaxTries . Obvi-
ously, the larger the number of iterations, the higher is the
probability that a solution can be found by an arbitrary
randomized search. However, larger numbers of itera-
tions drastically increase the computation time. For each
technique, we performedA∗-based planning in the con-
figuration time-space and counted the number of solved
planning problems.

Figure 5 summarizes the results we obtained for the
cyclic corridor environment depicted in Figure 6. The
horizontal axis represents the number of robots, and the
vertical axis depicts the percentage of solved path plan-
ning problems. As this result illustrates, our constrained
search technique succeeds more often than any of the al-
ternative strategies. It is interesting to note that the sec-
ond strategy, which exploits the constraints but considers
only one scheme in each experiment, shows a similar per-
formance than the unconstrained randomized search. To

Figure 6: Cyclic corridor environment used for simulation
experiments.
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Figure 7: Solved planning problems for all four strategies
usingA∗-based planning in the configuration time-space
in the noncyclic environment depicted in Fig. 2

complement these results, we performed a similar series
of experiments for the noncyclic corridor environment de-
picted in Figure 2. The results are shown in Figure 7.
Again, our constrained-based search outperforms all other
strategies. All these and the following results are signifi-
cant on the 95% confidence level.

To investigate the performance using a different base-
line path planning algorithm, we applied all four strategies
using the path coordination method instead of plainA∗.
We used a variant of the environment depicted in Figure 2
with five corridors on both sides. Since the path coordi-
nation method restricts the robots to stay on their inde-
pendently planned optimal trajectories, the number of un-
solvable problems is much higher compared to the general
A∗-based planning in the configuration time-space. As
can be seen from Figure 8, our constrained search leads to
a much higher success rate.
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Figure 8: Solved planning problems for the four strate-
gies using the path coordination method in the noncyclic
environment.

4.2.2 Speed-up Obtained by Exploiting the Con-
straints

The second set of experiments was performed to inves-
tigate the ability or our approach to guide the search in
the space of all priority schemes. We were especially in-
terested in the question how much the computation time
necessary to find a solution can be reduced by constrain-
ing the search. During these experiments we increased
the values ofmaxFlips andmaxTries to 10 and eval-
uated in which iteration the first solution was found if the
planning problem could be solved. Figure 9 plots the re-
sults obtained for different number of robots in the cyclic
corridor environment and Figure 10 shows the same eval-
uation for the noncyclic environment. As can be seen, the
unconstrained search needs significantly more iterations
to generate a solution for both environments. Thus, the
advantages of our constrained search is two-fold. On one
hand, it requires fewer iterations than the unconstrained
counter-part. On the other hand, it requires less computa-
tion, since the search is restricted to a subset of the robots,
which reduces the number of paths that have to be gener-
ated in each iteration during the search.

4.2.3 Influence on the Overall Path Length

The next experiments were carried out to analyze the per-
formance of our algorithm with respect to the overall path
length. Since our algorithm in the beginning only con-
siders a restricted set of priority schemes, and afterk it-
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Figure 9: Iteration in which the first solution was found if
the planning problem could be solved for the cyclic corri-
dor environment.
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Figure 10: Iterations needed to find first solution in the
noncyclic corridor environment.

erations explores the whole set of priority schemes, we
are especially interested in how long the resulting paths
are compared to the unconstrained search. We performed
over 100 experiments in the cyclic corridor-environment
and determined the average overall move costs at every
iteration. The corresponding graphs are shown in Fig-
ure 11. This plot contains the average move costs for three
different strategies at each iteration. The first data set was
obtained for the constrained search which corresponds to
k = ∞. Using this strategy we reorder only those robots
which lie on a cycle in the constraint graph. The data for
the unconstrained search was obtained usingk = 0. In
this case our algorithm chooses arbitrary priority schemes
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Figure 12: Resulting paths after priority optimization for
a team of 30 robots.

regardless of the constraints which were extracted given
the task specification. Finally, the third function labeled
“combining both techniques” corresponds to the results
obtained with our algorithm givenk = 20.

Since the constrained search focuses the search on the
robots that pose the most serious restrictions to the other
robots, it more quickly finds a solution and accordingly
has more time to optimize it. Thus, in the beginning, the
constrained search outperforms the unconstrained search.
After 20 iterations, however, the situation completely
changes. Because the unconstrained search can explore
many more priority schemes, it more often finds better
solutions than the constrained search. Thus, after 20 it-
erations, the unconstrained search leads to better results
than the constrained search. As can be seen from the fig-

ure, our approach combines the advantages of both meth-
ods. In the beginning, it applies the constraints to focus
the search and to quickly find a first solution which is op-
timized subsequently. After20 iterations it considers ar-
bitrary priority schemes so that the resulting path length
is reduced as in the unconstrained search.

Accordingly, our randomized search that initially uses
the constraints to focus the search for a viable solution and
afterwards uses the unconstrained search to optimize this
solution inherits the advantages of both techniques with
respect to efficiency and the overall resulting path length.

4.2.4 Planning Paths for Large Teams of Robots

The final experiment in this paper is designed to illustrate
that our system can be used to solve planning problems for
even large numbers of robots. Figure 12 shows the paths
planned for a team of 30 robots in an unstructured envi-
ronment. In this particular example our system was able
to generate a first solution in less than one second. The
paths shown in the figure are the best solution found after
10 restarts with 10 iterations in each round. The paths are
20% shorter than the first solution found.

5 Conclusions

This paper presented an approach to optimize priority
schemes for arbitrary decoupled and prioritized path plan-
ning methods for groups of mobile robots. Our approach
performs a randomized hill-climbing search in the space
of priority schemes in order to find a solution and to min-
imize the overall path length. To guide the search, our ap-
proach exploits constraints extracted from the task speci-
fication.

The approach has been implemented and tested on real
robots. One experiment carried out with the CS-Freiburg
RoboCup team demonstrated that our approach can effec-
tively be used for a team of mobile robots. In addition,
extensive simulations were performed to complement the
physical robot experiments. The experiments suggest that
our technique significantly decreases the number of fail-
ures in which no solution can be found. Additionally, our
approach leads to a significant reduction of the overall
path length. A further advantage of our method lies in
its general applicability. Although we applied our opti-
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mization technique only to two different baseline path-
planning techniques in this paper, it is not limited to these
two techniques. Rather, it can be used to find and optimize
paths generated with arbitrary prioritized path-planning
techniques.
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