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Abstract 1 Introduction

Path planning is one of the fundamental problems in mo-
bile robotics. As mentioned by Latombe [10], the capabil-
ity of effectively planning its motions is “eminently nec-
essary since, by definition, a robot accomplishes tasks by

Coordinating the motion of multiple mobile robots is onB0ving in the real world.”

of the fundamental problems in robotics. The predomi- In this paper we consider the problem of motion plan-
nant algorithms for coordinating teams of robots are deing for multiple mobile robots. The goal is to compute
coupled and prioritized, thereby avoiding combinatorialfjajectories for the individual robots such that collisions
hard planning problems typically faced by centralized apetween the robots are avoided. Especially in the context
proaches. While these methods are very efficient, thelymulti-robot systems different undesirable situations can
have two major drawbacks. First, they are incompletegcur like congestions or even deadlocks. Since the size
i.e. they sometimes fail to find a solution even if one egf the joint state space of the robots grows exponentially
ists, and second, the resulting solutions are often not épthe number of robots, planning paths for teams of mo-
timal. In this paper we present a method for finding arile robots is significantly harder than the path planning
optimizing priority schemes for such prioritized and de?roblem for single robot systems. Therefore, the exist-
coupled planning techniques. Existing approaches appii@ approaches for single robot systems cannot directly
single priority scheme which makes them overly prone kg transferred to multi-robot systems.

failure in cases where valid solutions exist. By searchingThe existing methods for solving the problem of mo-
in the space of priorization schemes, our approach ovien planning for multiple robots can be divided into two
comes this limitation. It performs a randomized searciategories [10]. In theentralizedapproach [3, 15, 19]
with hill-climbing to find solutions and to minimize thethe configuration spaces of the individual robots are com-
overall path length. To focus the search, our algorithmbéned into one composite configuration space which is
guided by constraints generated from the task specifithen searched for a path for the whole composite sys-
tion. To illustrate the appropriateness of this approadem. In contrast, thelecoupledapproach [6, 8, 13, 18]
this paper discusses experimental results obtained witht computes separate paths for the individual robots and
real robots and through systematic robot simulation. Ttieen resolves possible conflicts of the generated paths.
experimental results illustrate the superior performance ofWhile centralized approaches (at least theoretically) are
our approach, both in terms of efficiency of robot motioable to find the optimal solution to any planning problem
and in the ability to find valid plans. for which a solution exists, their time complexity is ex-



ponential in the dimension of the composite configuration
space. In practice one is therefore forced to use heuristics |
for the exploration of the huge joint state space. 5
Many methods use potential field techniques [2, 3, 20] |
to guide the search. These techniques apply different ap- |
proaches to deal with the problem of local minima in the
potential function. Other methods restrict the motions &fgure 1: Situation in which no solution can be found if
the robots to reduce the size of the search space. Forrekot 3 has higher priority than robot 1 (leftmost image)
ample, the approaches presented in [9, 11, 19] restrict &l independently planned optimal paths for two robots
trajectories of the robots to lie on independent road mafgecond image), sub-optimal solution if robot 1 has higher
The coordination is achieved by searching the Cartesfaiiority (third image), and solution resulting if the path for
product of the separate road maps. robot 2 is planned first (right).
Decoupled planners determine the paths of the individ-
ual robots independently and then employ different strate-
gies to resolve possible conflicts. According to that, de- ) . )
coupled techniques are incomplete, i.e. they may fa”tlg,the_lrtarget Iocaﬂo_n. In[1] all _poss!ble assignments are
find a solution even if there is one. A popular decoupl&@nsidered. Due to its complexity this approach has only
approach is planning in the configuration time-space [Bf€N applied to groups of up to three robots.
which can be constructed for each robot given the posi-For decoupled and prioritized methods the order in
tions and orientations of all other robots at every point ihich the paths are planned has a serious influence on
time. Techniques of this type assign priorities to the indihether at all a solution can be found and how long the
vidual robots and compute the paths of the robots bagegulting paths are. To illustrate this, let us consider two
on the order implied by these priorities. The method prexamples. Figure 1 (leftmost image) shows a situation in
sented in [21] uses a fixed order and applies potential figftich no solution can be founid robot 3 has a higher
techniques in the configuration time-space to avoid colriority than robot 1. Since the path of robot 3 is planned
sions. The approach described in [7] also uses a fixed Fyyithout considering robot 1, it enters the corridor contain-
ority scheme and chooses random detours for the robig its target location (marked') before robot 1 has left
with lower priority. this corridor. Since the corridors are too narrow to allow
Another approach to decoupled planning is the path d#/0 robots to pass by, robot 3 blocks the way of robot 1
ordination method which was first introduced in [18]. Theo that it cannot reach its target poidj. However, if
key idea of this technique is to keep the robots on th#iie change the priorities and plan the trajectory of robot
individual paths and let the robots stop, move forward,before that of robot 3, then robot 3 considers the tra-
or even move backward on their trajectories in order i@ctory of robot 1 during path planning and thus will wait
avoid collisions (see also [4]). To reduce the complexiti the hallway until robot 1 has left the corridor. Another
in the case of huge teams of robots [13] recently presen@mple is shown in Figure 1 (three images on the right).
a technique to separate the overall coordination probléinwe start with robot 1 then we have to choose a large
into sub-problems. This approach, however, assumes @gtiour for robot 2 (see Figure 1, third image). This is be-
the overall problem can be divided into very small sulgause robot 1 blocks the corridor. However, if the path of
problems, a serious assumption which, as various exd®Pot 2 is planned first, then we can obtain a much more
ples described below demonstrate, is often not justified.aflicient solution (see Figure 1, right). These two exam-
general, therefore, a prioritized variant has to be appliegles illustrate that the priority scheme has a serious influ-
The methods described above leave open how to asgiiée on whether a solution can be found and on how long
the priorities to the individual robots. In the past, diffethe resulting paths are. Moreover, it suggests that no sin-
ent techniques for selecting priorities have been used. @i prioritization scheme will be sufficient for all possible
applied a heuristic which assigns higher priority to robofgulti-robot motion problems.
which can move on a straight line from the starting point In this paper, we present a technique that searches in




the space of all priority schemes while solving hard muliits search in parts of the state space most relevant to the
robot planning problems. Our approach performs a rggroblem of finding a shortest path. This property, which
domized hill-climbing search in the space of possible prrakesA* an efficient search algorithm, has giver an
ority schemes. Since each change of a scheme requiregti@mous popularity in the robotics community. How-
computation of the paths for many of the robots, it is inever, A* also requires a discrete search graph, whereas
portant to focus the search. Our method achieves thisrbyot configuration spaces are continuous. In our case we
exploiting constraints between the different robots whia@ssume that the environment is readily represented by a
are derived from the task specification. This has two sediscrete occupancy grid map—which is common in the
ous advantages. First, it reduces the time required to fimdbile robotics literature.
a solution, and second, it increases the number of prob©Occupancy grids [16] separate the environment into a
lems for which a solution can be found in a given amougtid of equally spaced cells and store in each ¢elly)
of time. Additionally, our algorithm is able to reduce theéne probability P(occ,,) that it is occupied by a static
overall path length once a solution has been found. It haisiect. The cost for traversing a céfl, y) is proportional
anytime characteristics [22], which means that the quat-its occupancy probability’(occ, ,, ). Furthermore, the
ity of the solution depends on the available computatie’timated cost for reaching the target location is approx-
time. imated byc - ||(z,y) — (=*, y*}|| wherec > 0 is chosen
Our approach has been successfully applied to physigglthe minimum occupancy probabilif§(occ, ,,) in the
mobile robots. These results are complemented by extatap and||(x,y) — (z*,y*)|| is the straight-line distance
sive simulations, to characterize the relation between thetween(z, y) and(z*,y*). Since this heuristic is admis-
planning performance and various problem parametesiple (see [17])A* determines the cost-optimal path from
In all experiments, we found that our approach producg starting position to the target location.
highly efficient motion plans even for very large teams of
robots, for different environments, and using two different
decoupled path planning techniques. 2.2 Decoupled Path Planning for Teams of
The paper is organized as follows. In the following Robots
section, we introduce two decoupled path planning tech-
niques that will be used throughout this paper. Section43 can easily be extended to the problem of decoupled
describes our algorithm for searching for priority schemégd prioritized path planning. Recall that in the multi-
during planning. Finally, in Section 4, we present systeripbot path planning problem, many robots simultaneously
atic experimental results illustrating the capabilities of og€€k to traverse an environment. If the robots could move
approach. freely regardless of other robot’s positions, the problem
could easily be decoupled into many local path planning
L. problems, in which each robot appliett to determine
2 Prioritized A*-based Path Plan- its optimal path. However, the impossibility for robots to

ning and Path Coordination occupy the same location at the same point in time intro-
duces non-trivial restrictions that have to be incorporated
2.1 A*-based Path Planning into the individual robot paths.

A common approach is the following. In a first path
Our system applies thé* procedure [17] to compute theplanning step, each robot computes its optimal path using
cost-optimal paths for the individual robotd* addresses A*, without any consideration of the paths of the other
the problem of finding a shortest path from an initial statebots. In the remainder we denote the paths generated
to a goal state in a graph. To search efficiently, Atigoro- in this step as the independently planned optimal paths
cedure takes into account the accumulated cost of reafti-the individual robots. Clearly, these paths might not
ing a certain locationz, y) from the starting position, be admissible since they lead to collisions, if executed.
and an estimate of the cost of reaching the target lo@dwus, in a second planning step, each robot checks for
tion (x*,y*) from (x, y). By doing so0,A* tends to focus possible conflicts with all other robots. Conflicts between



robots are then resolved by introducing a priority schems. Finding and Optimizing Solvable
A priority scheme determines the order in which the paths P

for the robots are re-planned. The path of a robot is then PI’IOrIty Schemes
planned in its configuration time-space computed bas.ﬁ(ili

. s section describes our approach to searching in the
on the map of the environment and the paths of the rob bp 9

ith hiah iorit 8E§ace of priority schemes during decoupled path plan-
WIA IQII erdpnon y't' e h Iso b d tning. The examples given above illustrate that the order

s aready mentionedst Search can also be Used g, \pich the paths are planned has a significant influence
plan the motions of the robots in the configuration t'm?gswhether a solution can be found and on how long the
space. To incorporate the restrictions imposed by § ulting paths are. This raises the question of how to find

other robots we do not allow a robot to enter a cell thgtpriority scheme for which the decoupled approach does

s occgpied by a robot with higher prior?ty "’.lt that timenot fail and for which the length of the resulting paths is
In addition to the generall*-based planning in the con-

) o ; ._minimized.
figuration time-space we consider a second and restricted

version of this approach denoted as the path coordination

technique [13]. It differs from the general approach 3.1 The Randomized Search Technique
that it only explores a subset of the configuration time- ) o . .
space given by those states which lie on the independeéi?gr algorithm for. flh_dlng eligible priority Schgmes 'for
planned optimal paths for the individual robots. The pa coupled and prioritized path planning techniques inter-

coordination technique thus forces the robots to stay ves the searc_h for collision-free paths with the se_arch
their initial trajectories. The overall complexity of botH‘or a solvable priority scheme. It performs a randomized

approaches i®)(n - m - log(m)) wheren is the number search combined with hill-climbing. It starts with an arbi-

of robots andm is the maximum number of states extrary initial priority scheme and randomly exchanges the

panded byA* during planning in the configuration time Priorities of_two robqts in _this scheme. If the new or-
space (i.e. the maximum length of the OPEN-list). pier results in a solution with shorter paths than the best
to the restriction during the search, the path Coordinatiﬁﬂe fpunq So far, it contmges V‘_”th this new order. Slnpe
method is more efficient than the genert search. Its lll-climbing approaches like this frequently get stuck in

major disadvantage, however, lies in the fact that it faff@c@ minima, it performs random restarts with different
more often. initial orders of the robots. The number of restarts and

As already discussed above, the introduction of a priG¥io"ty €xchanges are controlled by the two parameters
ity scheme for the decoupled path planning leads to a S&@XTries  andmaxFlips
rious reduction of the overall complexity. Whereas there
are schemes leading to a viable solution with collisio®,2 Exploiting Constraints to Focus the
free paths, it is easy to see that there are schemes for gagrch
which no solution can be found. In addition to the fact,
that the order in which the robots may plan their pathghereas the plain randomized search technique produces
has a profound impact on the ability of finding a solutiogood results, it has the major disadvantage that often a
even the quality of the solution depends heavily on the plét of iterations are necessary to come up with a solution.
ority scheme. Examples of such situations were alreddgr example, we found that for a situation with ten robots
discussed in the introduction to this paper. Unfortunately, the environment shown in Figure 2 (leftmost image)
the problem of finding the optimal priority scheme, is more than 20 iterations on average were necessary to find
non-trivial matter. More specifically, the NP-hard Jola solvable priority scheme. In this section we therefore
Shop Scheduling problem with the goal to minimize mayresent a technique to focus the search that tends to reduce
imum completion time [14, 12] can be regarded as an itite search time significantly.
stance of the path coordination method. Therefore, weOur approach can be motivated through the situation
have to be content with possibly sub-optimal planning adepicted in the leftmost image of Figure 1. In this situa-
ders. tion, it is impossible to find a path for robot 1 if the path



of robot 3 is planned first, because the goal location of
robot 3 lies on the optimal path for robot 1. The key idea
of our approach is to introduce a constrgipt> p; be-
tween the priorities of two robotsand j, whenever the
goal position of roboy lies on the optimal path of robot
. In our example we thus obtain the constraint> ps
between the robots 1 and 3. Additionally, we get the cohigure 2: Independently planned paths for ten robots
straintp, > p1, since the goal location of robot 1 lies todleft), resulting constraints (center), and the paths result-
close to the trajectory of robot 2. ing after priority optimization (right).

Although the satisfaction of the constraints by a certain
priority scheme does not guarantee that valid paths can be

fOllm(.j’ or?‘ers sa_ltls_fylngk':he cons_tr;eur_]ts more oft'en ha&/?o%ots lying on a cycle in the constraint graph. The result-
solution than priority schemes violating constraints. ri}ig corresponding collision-free paths for all robots are

fortunately, depending on the environment and the NU8Kown in the right image of Figure 2. This demonstrates,
ber of the robots, it is possible that there is no order s

fifat the constraints can drastically reduce the search space

istying all cqnstraints. In such a case the constraints P¥hd still allow the system to quickly find solvable priority
duce a cyclic dependency. The key idea of our approa%jc“rhemes

is to initially reorder only those robots that are involve

in such a cycle in the constraint graph. Thus, we separate

all robots into two sets. The first group; contains all 4 Experimental Results

robots that, according to the constraints, do not lie on a

cycle and have a higher priority than the robot with higt@ur approach has been tested thoroughly on real robots

est priority which lies on a cycle. This set of robots iand in extensive simulation runs. The key questions ad-

ordered according to the constraints and this order is ripéssed in our experiments were: (1) Practicability: is our

changed during the search. The second set, denotedy@sroach relevant and applicable to real robot systems?

R contains all other robots. Initially, our algorithm only2) Solvability: Does our approach succeed more fre-

changes the order of the robots in the second group. Afiently in finding valid multi-robot paths than approaches

ter a certain number of iterations, we include all robots iith fixed prioritization? (3) Optimality: If our approach

the search for a priority scheme. In our experiments weacceeds, does it generate more efficient plans? All exper-

figured out that this leads to better results with respectitnents were carried out using different environments. To

the overall path length, especially for large numbers of #valuate the general applicability, we applied our method

erations. The number of iterations carried out using tk@the two decoupled and prioritized path planning tech-

robots inR;, only is controlled by a parameter denoted niques described above. The current implementation is

in the remainder of this paper. highly efficient. It requires less than 0.1 seconds on a
To illustrate our approach, again consider the situB900 MHz Pentium lll to plan a collision-free path for one

tion with ten robots shown in the leftmost image of Fig-obot in all environments described below. The whole op-

ure 2. Whereas the starting locations are marked tiyization for 10 robots with 10 restarts and 10 iterations

So, - .., Sy the corresponding goal positions are markeskr restart requires approximately one minute.

by Gy, ...,Gg. The independently planned optimal tra-

jectories are indicated by solid lines. Given these patﬁ?_ An Example with Real Robots

we obtain the constraints depicted in the center image o

Figure 2. According to the constraints, in the beginninthe goal of the first experiment is to demonstrate the ap-

the order of the six robots 3, 6, 7, 2, 4, and 9 remains yslicability of our approach to real robot systems. This ex-

changed during the search process. Given the restrigbediment has been carried out using the pioneer | robots of

search space, our system quickly finds a solution. In thige CS-Freiburg RoboCup team. The task of the robots is

example, we obtained the order 0, 1, 5, and 8, for theget into their initial formation which has to be done at




picted in the right image of Figure 3. As can be seen, the
paths of the robots are changed in order to avoid colli-
sions. Whereas the robots 1 and 2 shortly wait to let robot
0 pass by (the corresponding positions are marked with a
“W” in the right image of Figure 3), robot 3 has to take a
detour.

_ o _ 4.2 Simulation Experiments
Figure 3: An application example with the Robots of the
CS-Freiburg RoboCup team. The left image shows thie elucidate the scaling properties of our approach to
independently planned optimal paths for the four robd&sger number of robots, we performed extensive simu-
and the resulting collision-free paths computed by our d&tion experiments. In particular, we were interested in
gorithm are depicted on the right. characterizing the dependence between the performance
of our system on various components of our approach.
In our experiments, we analyzed the number of planning
problems that can be solved using our strategy, the speed-
up obtained by exploiting the constraints, and the reduc-
tion of the overall path length. In all experiments, we
found that our approach produces highly efficient motion
plans even for very large teams of robots, for different en-
vironments, and regardless of the specific baseline path
planning technique (e.g., generdl or the path coordina-
tion method).

Figure 4: These four pictures show the robots carrying dhg-1  Solved Planning Problems

t_he n_awg_atlon plans. Th_e top left images depicts the "Fhis first set of experiments was designed to character-

ial situation. In the top right image robot 2 makes spa e the effect of our search scheme on the overall number

for robot 1 while robot 3 takes a detour. The lower le f failures. For each number of robots considered. we

Images shc_>ws robot 1 waiting to let robo.t 0. pass by.. T &rformed 100 experiments. In each experiment we ran-

lower rightimage shows the robots at their final location omly chose the starting and target locations of the robots.
We applied four different strategies to find solvable prior-
ity schemes:

the beginning of each match. Thereby they have to avoi :

colliding with other robots that are on the field already.q' A single randomly chosen order for the robots.

In the particular example described here, the robots arg A single order which satisfies the constraints for the
deployed on one side of the field and have to move t0 oot in R and consists of a randomly chosen order
their home positions on the other side. The left image of o, the robots in R.

Figure 3 shows this initial configuration along with the in-

dependently planned optimal paths. As can be seen from. Unconstrained randomized search starting with a
this figure, these paths cross each other close to the cen- random order and without considering the con-
ter of the field leading to several several conflicts. Here straints.

we applied our approach td* search in the configura-

tion time-space, and the paths of the robots were planned. Constrained randomized search starting with an or-
in the order 0, 1, 2, and 3. The resulting paths are de- der computed in the same way as strategy (2).
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Figure 5: Solved planning problems for different strate-
gies usingA*-based planning in the configuration time- w T andom priovity scheme

space in the cyclic corridor environment depicted in Fig- W0f P e el s ch .
ure 6.

5 constrained search E==3
80 [~
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All four strategies can be cast as special cases of our algo- “0

rithm. In the first two strategies the corresponding values 20
for maxTries andmaxFlips are 1. For the first strat- o LLEHE |
egy the value of the threshaidis 0. The strategies 3 and 4 6 8
4 only differ in the value of the threshold Whereas the

unconstrained search is obtained by seting-= 0, the Figure 7: Solved planning problems for all four strategies
constrained search corresponds to a valuesfoo. using A*-based planning in the configuration time-space

Please note that in this experiment we chose a smalthe noncyclic environment depicted in Fig. 2
number of iterations for the last two strategies in order to

assess the advantages of the constrained search under se-
rious time constraints. Particularly, we chose a value of
3 for the parametenmaxFlips andmaxTries . Obvi-
ously, the larger the number of iterations, the higher is th
probability that a solution can be found by an arbitrary.

randomized search. However, larger numbers of ite (_:tgd in Figure 2,‘ Lh(; resglts ari shownfm F|gu”re Z]
tions drastically increase the computation time. For eac ain, our constrained-based search outperforms all other

technique, we performed*-based planning in the COn_strategies. All these and the following results are signifi-
’ (é%nt on the 95% confidence level.

figuration time-space and counted the number of solv
planning problems. To investigate the performance using a different base-

Figure 5 summarizes the results we obtained for thiee path planning algorithm, we applied all four strategies
cyclic corridor environment depicted in Figure 6. Thasing the path coordination method instead of pldin
horizontal axis represents the number of robots, and e used a variant of the environment depicted in Figure 2
vertical axis depicts the percentage of solved path plamith five corridors on both sides. Since the path coordi-
ning problems. As this result illustrates, our constrain@@tion method restricts the robots to stay on their inde-
search technique succeeds more often than any of thepalhdently planned optimal trajectories, the number of un-
ternative strategies. It is interesting to note that the seolvable problems is much higher compared to the general
ond strategy, which exploits the constraints but considet$-based planning in the configuration time-space. As
only one scheme in each experiment, shows a similar pegin be seen from Figure 8, our constrained search leads to
formance than the unconstrained randomized search.alimuch higher success rate.

number of solutions [%]

8
N
N
N
N
N
N
N
N
N
5
N
1

0 12 14 16
number of robots

mplement these results, we performed a similar series
experiments for the noncyclic corridor environment de-
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Figure 8: Solved planning problems for the four strate-

gies using the path coordination method in the noncycli¢y, re 9: Iteration in which the first solution was found if

environment. the planning problem could be solved for the cyclic corri-
dor environment.

4.2.2 Speed-up Obtained by Exploiting the Con-
straints

constrained search -~
45 unconstrained search ———

The second set of experiments was performed to inves-
tigate the ability or our approach to guide the search in
the space of all priority schemes. We were especially in-
terested in the question how much the computation time
necessary to find a solution can be reduced by constrain-
ing the search. During these experiments we increased
the values ofmaxFlips andmaxTries to 10 and eval-
uated in which iteration the first solution was found if the
planning problem could be solved. Figure 9 plots the re- number of robots

sults obtained for different number of robots in the cyclic. ) ] ) o
corridor environment and Figure 10 shows the same evalgure 10: Ite_ratlons _needed to find first solution in the
uation for the noncyclic environment. As can be seen, tR@NCyclic corridor environment,

unconstrained search needs significantly more iterations
to generate a solution for both environments. Thus, the
advantages of our constrained search is two-fold. On g
hand, it requires fewer iterations than the unconstraingﬁ
counter-part. On the other hand, it requires less computa-
tion, since the search is restricted to a subset of the robg%
which reduces the number of paths that have to be ge
ated in each iteration during the search.

iterations needed to find first solution
N
(4]

tions explores the whole set of priority schemes, we
especially interested in how long the resulting paths
compared to the unconstrained search. We performed
r 100 experiments in the cyclic corridor-environment
U{d determined the average overall move costs at every
iteration. The corresponding graphs are shown in Fig-
ure 11. This plot contains the average move costs for three
4.2.3 Influence on the Overall Path Length different strategies at each iteration. The first data set was
obtained for the constrained search which corresponds to
The next experiments were carried out to analyze the per= co. Using this strategy we reorder only those robots
formance of our algorithm with respect to the overall patihich lie on a cycle in the constraint graph. The data for
length. Since our algorithm in the beginning only corthe unconstrained search was obtained uging 0. In
siders a restricted set of priority schemes, and aftiégr this case our algorithm chooses arbitrary priority schemes



ure, our approach combines the advantages of both meth-

7.9 T T — T T T
o 78 e s ] ods. In the beginning, it applies the constraints to focus
S 77k combinig both techniques ] the search and to quickly find a first solution which is op-
© 76| timized subsequently. Afte20 iterations it considers ar-
& 75] bitrary priority schemes so that the resulting path length
2 74l is reduced as in the unconstrained search.
§ 73| Accordingly, our randomized search that initially uses
g 701 the constraints to focus the search for a viable solution and
I afterwards uses the unconstrained search to optimize this
0 10 20 30 40 50 60 70 80 90 100 solution inherits the advantages of both techniques with

iterations respect to efficiency and the overall resulting path length.

Figure 11: Summed move costs plotted over time aver- )
aged over 100 planning problems for 15 robots in tfe2-4 Planning Paths for Large Teams of Robots

cyclic environment. The final experiment in this paper is designed to illustrate

that our system can be used to solve planning problems for
even large numbers of robots. Figure 12 shows the paths
planned for a team of 30 robots in an unstructured envi-

ronment. In this particular example our system was able

to generate a first solution in less than one second. The
paths shown in the figure are the best solution found after
10 restarts with 10 iterations in each round. The paths are
20% shorter than the first solution found.

5 Conclusions

Figure 12: Resulting paths after priority optimization fofy,;q paper presented an approach to optimize priority

a team of 30 robots. schemes for arbitrary decoupled and prioritized path plan-
ning methods for groups of mobile robots. Our approach
performs a randomized hill-climbing search in the space

regardless of the constraints which were extracted givefpriority schemes in order to find a solution and to min-

the task specification. Finally, the third function labeleithize the overall path length. To guide the search, our ap-

“combining both techniques” corresponds to the resufisoach exploits constraints extracted from the task speci-

obtained with our algorithm givek = 20. fication.

Since the constrained search focuses the search on thehe approach has been implemented and tested on real
robots that pose the most serious restrictions to the oth&lvots. One experiment carried out with the CS-Freiburg
robots, it more quickly finds a solution and accordinglRoboCup team demonstrated that our approach can effec-
has more time to optimize it. Thus, in the beginning, thively be used for a team of mobile robots. In addition,
constrained search outperforms the unconstrained seagestensive simulations were performed to complement the
After 20 iterations, however, the situation completelghysical robot experiments. The experiments suggest that
changes. Because the unconstrained search can exmglargechnique significantly decreases the number of fail-
many more priority schemes, it more often finds bettares in which no solution can be found. Additionally, our
solutions than the constrained search. Thus, after 20approach leads to a significant reduction of the overall
erations, the unconstrained search leads to better resuétth length. A further advantage of our method lies in
than the constrained search. As can be seen from the ifig-general applicability. Although we applied our opti-



mization technique only to two different baseline path{8] F. Gravot and R. Alami.

planning technigues in this paper, it is not limited to these
two techniques. Rather, it can be used to find and optimize tion. In Proc. of the IEEE International Conference
paths generated with arbitrary prioritized path-planning
techniques.
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