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Abstract

We propose a method for learning models of people’s mo-
tion behaviors in indoor environments. As people move
through their environments, they do not move randomly.
Instead, they often engage in typical motion patterns, re-
lated to specific locations that they might be interested in
approaching and specific trajectories that they might fol-
low in doing so. Knowledge about such patterns may en-
able a mobile robot to develop improved people following
and obstacle avoidance skills. This paper proposes an al-
gorithm that learns collections of typical trajectories that
characterize a person’s motion patterns. Data, recorded
by mobile robots equipped with laser-range finders, is
clustered into different types of motion using the popu-
lar expectation maximization algorithm, while simulta-
neously learning multiple motion patterns. Experimental
results, obtained using data collected in a domestic resi-
dence and in an office building, illustrate that highly pre-
dictive models of human motion patterns can be learned.

1 Introduction

Whenever mobile robots are designed to operate in pop-
ulated environments, they need to be able to perceive the
people in their environment and to adapt their behavior
according to the activities of the people. The knowledge
of typical motion behaviors of the surrounding people can
be used in several ways to improve the behavior. If a
robot is able to predict the motions of a person it can, for
example, choose appropriate detours that minimize the
risk of collisions. Knowing where the person currently
is or where it is currently going to is an important aspect
in the context of a nursing robot project [12]. The goal
of this project is to develop intelligent service robots than
can assist people in their daily living activities.

Recently, a variety of service robots were developed that
are designed to operate in populated environments. These
robots, for example, are deployed in hospitals [7], muse-
ums [4], office buildings [1], and department stores [6],
where they perform various services, e.g., deliver, edu-
cate, entertain [14] or assist people [13, 9]. Additionally,
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a variety of techniques has been developed that allows a
robot to estimate the positions of people in its vicinity
or to adapt its behavior accordingly. For example, the
techniques described in [15] are designed to track multi-
ple persons in the vicinity of a robot. The approach pre-
sented in [16] uses a given probabilistic model of typical
motion behaviors in order to predict future poses of the
persons. The system described in [8] uses a camera to
estimate where persons typically walk and adapts the tra-
jectory of the robot appropriately. [17] apply a Hidden-
Markov-Model to predict the motions of moving obsta-
cles in the environment of a robot. [10] present a system
that is able to keep track of a moving target even in the
case of possible occlusions by other obstacles in the en-
vironment. All the techniques described above assume
the existence of a model of the motion behaviors. Our
approach, in contrast, is able to learn such models and
to use the learned models for the prediction of the peo-
ples movements. The technique described in [3] uses an
Abstract Hidden-Markov-Model to learn and to predict
motions of a person. This approach assumes that all mo-
tions are already clustered into the corresponding motion
behaviors during the learning phase. Our method extends
this approach as it determines both, the clustering and the
corresponding motion behaviors.

In this paper we present an approach that allows a mo-
bile robot to learn motion patterns of persons, while they
are carrying out their every-day activities. We use the
popular EM-algorithm [11] to simultaneously cluster tra-
jectories belonging to one motion behavior and to learn
the characteristic motions of this behavior. We apply our
technique to data recorded by mobile robots equipped
with laser-range finders and demonstrate how the learned
models can be used to predict the trajectory of a person
in the natural environment. This paper extends out pre-
vious work described in [2] in different aspects. First,
the method presented here is able to learn the number of
motion patterns. Second, it includes a better approach to
deal with trajectories of different length. Finally, it uses
piecewise linear approximations to reduce the complexity
of the learned models.

This paper is organized as follows. In the next section,
we present the probabilistic representation of the motion



patterns and describe how to learn them using the expec-
tation maximization algorithm. In Section 3 we describe
our application based on data recorded with laser-range
finders. Section 4 presents experimental results regard-
ing the learning process and the prediction accuracy of
the learned models.

2 Learning Motion Patterns

Our approach to discovering typical motion patterns
of people is strictly statistical, using the popular EM-
algorithm to find different types of activities that in-
volve physical motion throughout the natural environ-
ment. The input to our routine is a collection of trajec-
tories d = {d1, . . . , dN} (called: the data). The out-
put is a number of different types of motion patterns
θ = {θ1, . . . , θM} a person might exhibit in their natural
environment. Each trajectorydi consists of a sequence
di = {x1

i , x
2
i , . . . , x

Ti
i } of positionsxt

i. Accordingly,x1
i

is the first position covered by the person andxTi
i is the

final destination. Throughout this paper we assume that
all trajectories have the same lengthT . In our current
system we chooseT as the maximum length of all trajec-
tories. A trajectorydi of lengthTi < T is extended by
linear interpolation.

2.1 Motion Patterns

We begin with the description of our model of motion
patterns, which is subsequently estimated from data us-
ing EM. Within this paper we assume that a person en-
gages inM different types of motion patterns. A mo-
tion pattern, denotedθm with 1 ≤ m ≤ M , is repre-
sented byK probability distributionsp(x | θk

m). The
mean of each probability distribution is computed based
on β = dT/Ke subsequent positions on the trajectories.
Accordingly,p(x | θk

m) specifies the probability that the
person is at locationx after [(k−1)·β+1; k·β] steps given
that he or she is engaged in motion patternm. Thus, we
calculate the likelihood of a trajectorydi under them-th
motion modelθm as

p(di | θm) =
T∏

t=1

p(xt
i | θdt/βe

m ). (1)

Please note that the approach described in [2] is a special
instance of this scheme, as it corresponds toβ = 1.

2.2 Expectation Maximization

In essence, our approach seeks to identify a modelθ that
maximizes the likelihood of the data. To define the like-
lihood of the data under the modelθ, it will be useful to
introduce a set ofcorrespondence variables, denotedcim.
Herei is the index of a trajectorydi, andm is the index of
a motion modelθm. Each correspondencecim is a binary
variable, that is, it is either 0 or 1. It is 1 if and only if the
i-th trajectory corresponds to them-th motion pattern. If

we think of the motion model as a specific motion activ-
ity a person might be engaged in,cim is 1 if person was
engaged in motion activitym in trajectoryi.

In the sequel, we will denote the set of all correspon-
dence variables for thei-th data item byci, that is,ci =
{ci1, . . . , ciM}. For any data itemi, the fact that exactly
one correspondence is1 translates to

∑M
m=1 cim = 1.

Throughout this paper we assume that each motion pat-
tern is represented byT Gaussian distributions with a
fixed standard deviationσ. Accordingly, the application
of EM leads to an extension of the fuzzy k-Means Algo-
rithm (see e.g. [5]) to trajectories.

The goal is to find the set of motion patterns which has the
highest data likelihood. How this likelihood is computed
is explained in [2]. Since the logarithm is a monotonic
function we can maximize the log likelihood instead of
the likelihood which is given by:

ln p(d, c | θ) =
N∑

i=1

(
T · M · ln 1√

2πσ

− 1
2σ2

·
T∑

t=1

M∑
m=1

cim‖xt
i − µdt/βe

m ‖2

)
. (2)

Since the correspondence variablesc are not observable
in the first place the common approach is to integrate
over them, that is, to optimize the expected log likelihood
Ec[ln p(d, c | θ) | θ, d] instead. Since the expectation is
a linear operator we can move it inside the expression, so
that we finally get:

Ec[ln p(d, c | θ) | θ, d] =
N∑

i=1

(
T · M · ln 1√

2πσ

− 1
2σ2

·
T∑

t=1

M∑
m=1

E[cim | θ, d]‖xt
i − µdt/βe

m ‖2

)
, (3)

whereE[cim | θ, d] depends on the modelθ and the data
d.

Optimizing (3) is not an easy endeavor. EM is an algo-
rithm that iteratively maximizes expected log likelihood
by optimizing a sequence of lower bounds. In particular,
it generates a sequence of models, denotedθ[1], θ[2], . . .
of increasing log likelihood. Mathematically, the stan-
dard method is to turn (3) in a so-calledQ-function which
depends on two models,θ andθ′. In accordance with (3),
thisQ-function is factored as follows [2]:

Q(θ′ | θ) =
N∑

i=1

(
T · M · ln 1√

2πσ

− 1
2σ2

·
T∑

t=1

M∑
m=1

E[cim | θ, d]‖xt
i − µ′dt/βe

m ‖2

)
. (4)



The sequence of models is then given by calculating

θ[j+1] = argmax
θ′

Q(θ′ | θ[j]) (5)

starting with some initial modelθ[0]. Whenever theQ-
function is continuous as in our case, the EM algorithm
converges at least to a local maximum.

In particular, the optimization involves two steps: calcu-
lating the expectationsE[cim | θ[j], d] given the current
modelθ[j], and finding the new modelθ[j+1] that has the
maximum expected likelihood under these expectations.
The first of these two steps is typically referred to as the
E-step (short for: expectation step), and the latter as the
M-step (short for: maximization step).

To calculate the expectationsE[cim | θ[j], d] we apply
Bayes rule, obeying independence assumptions between
different data trajectories:

E[cim | θ[j], d] = p(cim | θ[j], d)
= p(cim | θ[j], di)
= ηp(di | cim, θ[j])p(cim | θ[j])
= η′p(di | θ[j]

m ), (6)

where the normalization constantsη andη′ ensure that
the expectations sum up to 1 over allm. If we combine
(1) and (6) exploiting the fact that the distributions are
represented by Gaussians we obtain:

E[cim | θ[j], di] = η′
T∏

t=1

e−
1

2σ2 ‖xt
i−µdt/βe[j]

m ‖2

. (7)

Finally, the M-step calculates a new modelθ[j+1] by
maximizing the expected likelihood. Technically, this
is done by computing for every motion patternm and
for each probability distributionp(x | θk

m) a new mean
µ

k[j+1]
m of the Gaussian distribution. Thereby we con-

sider the expectationsE[cim | θ[j], d] computed in the
E-step:

µk[j+1]
m =

1
β
·

k·β∑
t=(k−1)·β+1

∑N
i=1 E[cim | θ[j], d]xt

i∑N
i=1 E[cim | θ[j], d]

(8)

2.3 Estimating the Number of Model Components

Since in general the correct number of motion patterns is
not known in advance, we need to determine this quan-
tity during the learning phase. If the number of motion
patterns is wrong, we can distinguish two different situ-
ations. First, if there are too few motion patterns, then
there must be trajectories, that are not explained well by
any of the current motion patterns. On the other hand, if
there are too many motion patterns then there must be tra-
jectories that are explained well by different model com-
ponents. Thus, whenever the EM algorithm appears to

have converged, we check whether the overall data like-
lihood can be improved by increasing or decreasing the
number of model components. During the search, we
therefore continuously monitor two types of occurrences:

1. Low data likelihood: If a trajectorydi has low likeli-
hood under the modelθ, this is an indication that no
appropriate motion pattern fordi has yet been iden-
tified.

2. Low motion pattern utility: If we can remove a
model componentθm without reducing the overall
data likelihood, this indicates thatθ contains a sim-
ilar motion pattern and thatθm is a duplicate. To
detect such a redundant model componentθm, we
calculate the data log likelihood with and without
θm. Technically, this involves executing the E step
twice, once with and once withoutθm.

Whenever the EM has converged to a local maximum,
our approach extracts those two statistics and consid-
ers deleting individual model components or introducing
new ones. In particular, if a low data likelihood trajec-
tory is found, a new model component is introduced that
is initialized using this very trajectory. Conversely, if a
motion pattern with low utility is found, it is eliminated
from the model.

To limit the model complexity we use a penalty term
M [j]α, whereM [j] is the number of components of the
modelθ[j] andα is an adjustable parameter that was set
to 1.7 in all our experiments. This term ensures that we
do not end up with a model that over-fits the data, which
in the worst case is one with an individual motion pattern
for every trajectory. Particularly, we compute

(Ec[ln p(d, c | θ[j]) | θ[j], d] − M [j]α)−
(Ec[ln p(d, c | θ[j+1]) | θ[j+1], d] − M [j+1]α)

whereEc[ln p(d, c | θ[i] | θ[i], d] (see Equation 3) is
the total expected data log likelihood. According to this
difference we increase or decrease the number of model
components.

Additionally, we store the model with the highest overall
evaluationEc[ln p(d, c | θ[i]) | θ[i], d] − M [i]α encoun-
tered before the learning phase. If the maximum number
of iterations is reached or if the overall evaluation cannot
be improved after increasing and decreasing the model
complexity our algorithms stops and returns the model
with the best value.

In most of the experiments carried out with different data
sets our approach correctly clustered the trajectories into
the corresponding categories (see also the experiments
section). Without this mechanism, however, EM fre-
quently got stuck in local maxima and generated models
that were significantly less predictive of human behavior.



Figure 1: Typical data sets obtained with three robots tracking a person in a home environment.

Figure 2: A single trajectory extracted from the laser
data (left image) and trajectories of two different classes
of motion behaviors (right image).

3 Laser-based Implementation

The EM-based learning procedure has been implemented
for data acquired with laser-range finders. To acquire the
data we used three Pioneer I robots which we installed in
the environments. The robots were aligned so that they
covered almost the whole environment. Typical range
data obtained during the data acquisition phase are de-
picted in Figure 1.

To determine the trajectories that are the input to our al-
gorithm we first extract the position of the person in the
range scans. We locate changes in consecutive laser-
range scans and use local minima in the distance his-
tograms of the range scans. In a second step we identify
resting places and perform a segmentation of the data into
different slices in which the person moves. Furthermore,
we smooth the data to filter out measurement noise. Fi-
nally, we compute the trajectories, i.e. the sequence of po-
sitions covered by the person during that motion. When
computing these trajectories, we ignore positions which
lie closer than 15 cm to each other. A typical result of this
process is shown in the left image of Figure 2.

4 Experimental Results

To evaluate the capabilities of our approach, we per-
formed extensive experiments. The first set of experi-
ments described here demonstrates the ability of our ap-
proach to learn different motion patterns from a set of
trajectories. Then we analyze the classification perfor-
mance of learned models. In all experiments we set the
parameterβ to 5 which we experimentally found out to
yield good results regarding the success rate of learning
correct models.

A:

B:

C:

D:

E:

F:

G:

Figure 3: ExpectationsE[cim|θ[j], d] computed in the differ-
ent iterations of the EM-algorithm.

4.1 Application of EM

In the first experiment, we applied our approach to learn
a motion model for 42 trajectories recorded in a home
environment (see Figure 1). We started our algorithm
with a model size ofM = 10. Figure 3 shows for
different rounds of the EM the resulting expectations
E[ci1 | θ[j], d], . . . , E[ciM [j] | θ[j], d] for every trajec-
tory di under the current modelθ[j] (the darker the more
likely). The x-axis of each plot contains the trajectories
d1, . . . , dN and the y-axis contains the different model
componentsθ[j]

i , for i = 1, . . . ,M [j].

To enhance the readability we grouped the trajectories be-
longing to the same motion pattern. Please note that there
are exactly three trajectories for each motion pattern in
this particular data set.
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Figure 4: Evolution of the number of model components and
the overall evaluation of the model for the home (left) and the
office environment (right).

Since a uniform distribution ofE[cim | θ, d] repre-
sents a local maximum in the log likelihood space, the
EM-algorithm immediately would get stuck if we ini-
tialize the expectations uniformly. To avoid this we ini-
tially use a unimodal distribution of the expectations for
each trajectory, i.e., for eachdi the expectationsE[ci1 |
θ[0], d], . . . , E[ciM | θ[0], d] form a distribution with a
unique peak. The location of the mode, however, is cho-
sen randomly.

The topmost image of Figure 3 labeled A shows the ini-
tialization of the expectations. The second image (plot
B) shows the expectations after one iteration. In the situ-
ation corresponding to C the EM has converged to a local
maximum in the log likelihood space given 10 different
motion patterns. As can be seen from the figure, there are
four model components that explain two different motion
patterns. In the next step (image D) our algorithm there-
fore tries to improve the data likelihood by introducing
a new model component to which it assigns the highest
probability for trajectory25 which has the lowest likeli-
hood given the current model. The situation after the EM
has again converged to a local maximum is shown in E.
As before, another motion pattern is introduced. We omit
the corresponding images for the sake of brevity. The
correct classification is found after our algorithm has in-
troduced four additional model components (plot F). As
can be seen from the figure, the system has determined a
model in which all trajectories are correctly clustered into
motion patterns. Nevertheless, our algorithm still tries
to further improve this model by removing and adding a
model component. However, since none of these opera-
tions increases the overall evaluation, our algorithm ter-
minates and outputs the model corresponding to F. Plot G
shows the expectations for a model with 15 components.
As can be seen from the histogram, three trajectories are
assigned to two different model components. Because
of the penalty term our algorithm prefers the lower com-
plexity model corresponding to histogram F.

Figure 2 (right) shows the corresponding trajectories of
two different motion behaviors after the convergence of
the EM. Obviously, the trajectories are correctly clus-
tered.

Figure 4 (left) shows for the same data set but for a differ-
ent initialization of the expectations the evolution of the

overall evaluationEc[ln p(d, c | θ[i]) | θ, d[i]] − M [i]α
as well as the number of model components. As can be
seen from the figure, our algorithm first tries to reduce
the model complexity. This is because the model con-
tains components with very low utilities.

We additionally applied our algorithm to data recorded in
our office environment (the map is depicted in Figure 5
(left)). Figure 4 (right) shows the model complexity and
model evaluation for one run in which we started with 30
different motion patterns. As can bee seen from the fig-
ure, the algorithm decreases the model complexity until
only 16 (non-redundant) components remain. Afterwards
it increases this number to improve the model evaluation.
Finally, it terminates with the model correctly represent-
ing 25 different motion patterns.

To evaluate the performance of our approach we carried
out 100 experiments for each data set. In every experi-
ment we chose a random set of trajectories and counted
the number of correct classifications. It turned out that
our algorithm was able to learn the correct model in 100%
of the cases using the data recorded in the home environ-
ment and in 91% of the cases using the data recorded in
the office environment. The left image of Figure 5 shows
two trajectories that our algorithm falsely classified in all
situations in which it failed. As can be seen from the fig-
ure, both trajectories are extremely similar although they
actually belong to different motion behaviors.

4.2 Predicting Trajectories

To evaluate the capability of our learned models to predict
human motions we performed a series of experiments. In
each experiment we randomly chose fractions of test tra-
jectories and computed the likelihood of the correct mo-
tion pattern. Figure 5 (right) shows the average likelihood
of the correct motion behavior depending on the length
of the observed fraction. As can be seen from the figure,
the classification results are quite good and our approach
yields models allowing a mobile robot to reliably identify
the correct motion pattern. For example, if the robot ob-
serves 50% of a trajectory, then the probability of the cor-
rect motion behavior is about 0.6 in both environments.

Figure 5 (center) illustrates for one trajectory of the per-
son in the office environment the evolution of the set of
possible motion behaviors. Shown in grey are the means
of four different motion patterns. The black line corre-
sponds to the trajectory of the person which was observed
for the first time at the position labeled S. In the beginning
there are four possible motion behaviors (W, B, D, M) to
which the trajectory might belong. When location 1 is
reached the motion behavior W can be eliminated from
the set of hypotheses because the corresponding likeli-
hood gets too low. Thus, even if the system is not able to
uniquely determine the intended goal location, it can al-
ready predict that the person will follow the corridor dur-
ing the next steps. When the person reaches location 2
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Figure 5: The two classes of trajectories which sometimes are classified into the same motion behavior (left), an example of motion
prediction (center) and the average likelihood of the correct motion behavior after observing fractions of trajectories (right).

the system can also exclude the motion behavior B. Fi-
nally, when the person reaches position 3, C becomes un-
likely and D becomes the most probable motion behavior.
This illustrates, that the results of the prediction are use-
ful even in situations in which there are ambiguities about
the actual intention of the person.

5 Conclusions

In this paper we presented a method for learning motion
behaviors of persons in indoor environments. Our ap-
proach applies the popular EM-algorithm to cluster sim-
ilar behaviors into single patterns. Thereby it is able to
estimate the number of motion patterns. Additionally, it
can deal with trajectories of different length. The output
of our algorithm is a collection of motion patterns, each
corresponding to a principle motion behavior of a person.
Using the resulting motion patterns our system can pre-
dict the motions of persons based on observations made
by the robot.

Our approach has been implemented and applied to range
data recorded with mobile robots equipped with laser-
range sensors. In practical experiments we demonstrated
that our method is able to reliably learn typical motion be-
haviors of a person in a domestic residence as well as in
an office building. We furthermore described how to use
the resulting models to predict the motions of persons in
the vicinity of the robot.
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