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Abstract

Coordinating the motion of multiple mobile robots is one
of the fundamental problems in robotics. The predomi-
nant algorithms for coordinating teams of robots are de-
coupled and prioritized, thereby avoiding combinatorially
hard planning problems typically faced by centralized ap-
proaches. In this paper we present a method for finding
solvable priority schemes for such prioritized and decou-
pled planning techniques. Existing approaches apply a sin-
gle priority scheme which makes them overly prone to fail-
ure in cases where valid solutions exists. By searching
in the space of priorization schemes, our approach over-
comes this limitation. To focus the search, our algorithm
is guided by constraints generated from the task specifi-
cation. To illustrate the appropriateness of this approach,
this paper discusses experimental results obtained with real
robots and through systematic robot simulation. The exper-
imental results demonstrate that our approach successfully
solves many more coordination problems than previous de-
coupled and prioritized techniques.

1 Introduction

Path planning is one of the fundamental problems in mobile
robotics. As mentioned by Latombe [10], the capability
of effectively planning its motions is “eminently necessary
since, by definition, a robot accomplishes tasks by moving
in the real world.”

In this paper we consider the problem of motion planning
for multiple mobile robots. The goal is to compute tra-
jectories for the individual robots such that collisions be-
tween the robots are avoided. Especially in the context of
multi-robot systems different undesirable situations can oc-
cur like congestions or even deadlocks. Since the size of
the joint state space of the robots grows exponentially in
the number of robots, planning paths for teams of mobile
robots is significantly harder than the path planning prob-
lem for single robot systems. Therefore, the existing ap-
proaches for single robot systems cannot directly be trans-
ferred to multi-robot systems.

The existing methods for solving the problem of motion
planning for multiple robots can be divided into two cate-
gories [10]. In the centralized approach [3, 13, 17] the con-
figuration spaces of the individual robots are combined into
one composite configuration space which is then searched
for a path for the whole composite system. In contrast, the
decoupled approach [6, 8, 12, 15] first computes separate
paths for the individual robots and then resolves possible
conflicts of the generated paths.

While centralized approaches (at least theoretically) are
able to find the optimal solution to any planning problem
for which a solution exists, their time complexity is ex-
ponential in the dimension of the composite configuration
space. In practice one is therefore forced to use heuristics
for the exploration of the huge joint state space.

Many methods use potential field techniques [2, 3, 18] to
guide the search. These techniques apply different ap-
proaches to deal with the problem of local minima in the
potential function. Other methods restrict the motions of
the robots to reduce the size of the search space. For exam-
ple, [9, 11, 17] restrict the trajectories of the robots to lie
on independent roadmaps. The coordination is achieved by
searching the Cartesian product of the separate roadmaps.

Decoupled planners determine the paths of the individual
robots independently and then employ different strategies
to resolve possible conflicts. According to that, decoupled
techniques are incomplete, i.e. they may fail to find a solu-
tion even if there is one. A popular decoupled approach is
planning in the configuration time-space [6] which can be
constructed for each robot given the positions and orienta-
tions of all other robots at every point in time. Techniques
of this type assign priorities to the individual robots and
compute the paths of the robots based on the order implied
by these priorities. The method presented in [19] uses a
fixed order and applies potential field techniques in the con-
figuration time-space to avoid collisions. The approach de-
scribed in [7] also uses a fixed priority scheme and chooses
random detours for the robots with lower priority.

Another approach to decoupled planning is the path coor-
dination method which was first introduced in [15]. The
key idea of this technique is to keep the robots on their
individual paths and let the robots stop, move forward, or
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Figure 1: Situation in which no solution can be found if robot 3
has higher priority than robot 1.

even move backward on their trajectories in order to avoid
collisions (see also [4]). To reduce the complexity in the
case of huge teams of robots [12] recently presented a tech-
nique to separate the overall coordination problem into sub-
problems. This approach, however, assumes that the over-
all problem can be divided into very small sub-problems,
a serious assumption which, as various examples described
below demonstrate, is often not justified. In general, there-
fore, a prioritized variant has to be applied.

The methods described above leave open how to assign
the priorities to the individual robots. In the past, differ-
ent techniques for selecting priorities have been used. [5]
applied a heuristic which assigns higher priority to robots
which can move on a straight line from the starting point
to their target location. In [1] all possible assignments are
considered. Due to its complexity this approach has only
been applied to groups of up to three robots.

For decoupled and prioritized methods the order in which
the paths are planned has a serious influence on whether
at all a solution can be found. Figure 1 shows a situation
in which no solution can be found if robot 3 has a higher
priority than robot 1. Since the path of robot 3 is planned
without considering robot 1, it enters the corridor contain-
ing its target location marked G5 before robot 1 has left this
corridor. Because the corridors are too narrow to allow two
robots to pass by, robot 3 blocks the way of robot 1 so that
it cannot reach its target point G;. However, if we change
the priorities and plan the trajectory of robot 1 before that
of robot 3, then robot 3 considers the trajectory of robot 1
during path planning and thus will wait in the hallway until
robot 1 has left the corridor.

Please note, that in order to find a solution one generally has
to consider different priority schemes. Since each change
of a scheme requires the computation of the paths for many
of the robots, it is of utmost importance to minimize the
time required to find priority schemes for which a solution
to the path planning problem can be computed.

In this paper we present a technique which interleaves the
search for an appropriate priority scheme with the planning
of the paths for the individual robots. Our approach is a ran-
domized search technique which starts with an initial pri-
ority scheme and changes this by swapping two randomly
chosen robots. Thereby it exploits constraints between the
optimal paths of the individual robots in order to focus the

search. This way the number of problems for which a solu-
tion can be found in a given amount of time is increased sig-
nificantly. Our technique has been implemented and tested
on real robots and in extensive simulation runs. In all ex-
periments it has been shown to be very effective even for
large teams of robots, for different environments, and us-
ing two different decoupled path planning techniques.

The paper is organized as follows. The following section
describes the prioritized and decoupled path planning tech-
niques we apply our algorithm presented in Section 3 to.
Section 4 contains experimental results illustrating the ca-
pabilities of our approach.

2 Prioritized A*-based Path Plan-
ning and Path Coordination

The basic algorithm to compute optimal paths for single
robots applied throughout this paper is the well-known A*
search procedure. The next section briefly describes the
variant we are using. To represent the environment of the
robots we apply occupancy grids [14] which separate the
environment into a grid of equally spaced cells and store in
each cell (z, y) the probability P(occ,,,) that it is occupied
by a static object. In the remainder of this section we then
present the key ideas of decoupled prioritized path planning
and discuss how the A* procedure can be utilized to plan
the motions of teams of robots by this approach.

2.1 A*-based Path Planning

The A* procedure simultaneously takes into account the
accumulated cost of reaching a certain location (z, y) from
the starting position as well as the estimated cost of reach-
ing the target location (z*,y*) from (z,y). In our case,
the cost for traversing a cell (x,y) is proportional to its
occupancy probability P(occ,,,). Furthermore, the esti-
mated cost for reaching the target location is approximated
by ¢ - ||{z,y) — (z*,y*)|| where ¢ > 0 is chosen as the
minimum occupancy probability P(occ,,,) in the map and
[{z,y) — (z*,y*)|| is the straight-line distance between
(z,y) and (z*,y*). Since this heuristic is admissible, A*
determines the cost-optimal path from the starting position
to the target location.

2.2 Decoupled Path Planning for Teams of
Robots

In this paper we consider decoupled and prioritized path
planning approaches which plan the paths in the configura-
tion time-space. Such approaches proceed as follows. First,
one computes for each robot the path without considering
the paths of the other robots. Then one checks for possible
conflicts in the trajectories of the robots (we regard it as a



conflict between two robots if their distance is less than §
where § = 1.2m in our current system). Conflicts between
robots are resolved by introducing a priority scheme. A pri-
ority scheme determines the order in which the paths for the
robots are re-planned. The path of a robot is then planned
in its configuration time-space computed based on the map
of the environment and the paths of the robots with higher
priority.

Our system applies the A* procedure to compute the cost-
optimal paths for the individual robots, in the remainder
denoted as the independently planned optimal paths for the
individual robots. We also apply A* search to plan the mo-
tions of the robots in the configuration time-space. In this
case the cost of traversing a location (x, y) at time ¢ is de-
termined by the occupancy probability P(occ, ) plus the
probability that one of the other robots with higher priority
covers (z,y) at that time.

In this paper we consider two different strategies. The
first method is the general A*-based planning in the con-
figuration time-space. The second method is a restricted
version of this approach denoted as the path coordination
technique [12]. It differs from the general approach in
that it only explores a subset of the configuration time-
space given by those states which lie on the initially op-
timal paths for the individual robots. The path coordina-
tion technique thus forces the robots to stay on their initial
trajectories. The overall complexity of both approaches is
O(n - m - log(m)) where n is the number of robots and m
is the maximum number of states expanded by A* during
planning in the configuration time-space (i.e. the maximum
length of the OPEN-Iist).

Due to the restriction during the search, the path coordina-
tion method is more efficient than the general A* search.
Its major disadvantage, however, lies in the fact that it fails
more often.

3 Searching for Solvable Priority
Schemes

As already mentioned above, prioritized and decoupled
approaches to multi-robot path planning are incomplete.
However, as the example given in Figure 1 illustrates, the
order in which the paths are planned has a significant influ-
ence on whether a solution can be found. This raises the
question of how to find a solvable priority scheme, i.e. an
order for which collision-free paths can be computed using
a decoupled approach.

3.1 The Randomized Search Technique

Recently, randomized search techniques have been used
with great success to solve constraint satisfaction prob-
lems or to solve satisfiability problems [16]. Our algorithm

presented here is a variant which performs a randomized
search in order to find a solvable planning order for de-
coupled and prioritized path planning techniques. Thereby
it interleaves the search for collision-free paths with the
search for a solvable priority scheme. It starts with an arbi-
trary initial priority scheme II and randomly exchanges the
priorities of two robots in this scheme. If we get a scheme
IT for which collision-free paths can be found, we return
this order. In order to escape from possible dead-ends in
the search space, we perform random restarts with differ-
ent initial orders of the robots. The complete algorithm is
listed in Table 1.

Table 1: The algorithm to fi nd solvable priority schemes.

FOR tries := 1 TO maxTries BEA N
sel ect random order II
FOR flips := 1 TO maxFl i ps BEG N
choose randomi, j with i<j
I := swap(i, j, I
i f sol vabl e(1I)
return II
END FOR
END FOR
return "No solution found"

3.2 Exploiting Constraints to Focus the
Search

Whereas the plain randomized search technique produces
good results, it has the major disadvantage that often a lot
of iterations are necessary to come up with a solution. For
example, we found that for ten robots more than 20 itera-
tions on average were necessary to find a solvable priority
scheme. In this section we therefore present a technique
to focus the search. As an example again consider the sit-
uation depicted in Figure 1. As already mentioned, it is
impossible to find a path for robot 1 if the path of robot 3
is planned first, because the target location of robot 3 is too
close to the optimal trajectory for robot 1. The key idea of
our approach is to introduce a constraint p; > p; between
the priorities of two robots 7 and 5, whenever the target po-
sition of robot j is too close to the initially optimal path
of robot ¢. In our example we thus obtain the constraint
p1 > ps between the robots 1 and 3. Additionally, we get
the constraint p, > py, since the target location of robot 1
lies too close to the trajectory of robot 2.

Although the satisfaction of the constraints does not guar-
antee that collision-free paths can be found for a priority
scheme, orders satisfying the constraints more often have
a solution than priority schemes violating constraints. Un-
fortunately, depending on the environment and the number
of the robots it is possible that there is no order satisfying
all constraints. In such a case the constraints produce a
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Figure 2: Independently planned paths for ten robots.

Figure 3: Constraints generated according to the paths shown in
Figure 2.

cyclic dependency. The key idea of our approach is to re-
order only those robots that are involved in such a cycle in
the constraint graph. Thus, we separate all robots into two
sets. The first group Ry contains all robots that, according
to the constraints, do not lie on a cycle and have a higher
priority than all robots which lie on a cycle. This set of
robots is ordered according to the constraints and this order
is not changed during the search. The second set, denoted
as R contains all other robots.

Figure 2 shows a simulated situation with ten robots.
Whereas the starting positions are marked by So, ..., Sy
the corresponding goal positions are marked by
Go,...,Gg. The independently planned optimal tra-
jectories are indicated by solid lines. Given these paths we
obtain the constraints depicted in Figure 3. According to
the constraints, six robots belong to the group of robots
whose order remains unchanged during the search process.
The robots in their order of priorities are 3, 6, 7, 2, 4, 9.
Only the other four robots are considered during the search
for a solvable priority scheme. Our approach starts with
the order O, 1, 5, and 8 for the remaining robots for which
our system immediately can determine the collision-free
paths shown in Figure 4. Thus, the constraints immediately
lead to a solvable priority scheme.
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Figure 4: Resulting collision-free paths.
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Figure 5: Cyclic corridor environment used for the simulation
runs.

4 Experimental Results

The algorithm described above has been tested thoroughly
on real robots and in extensive simulation runs. In all exper-
iments we never observed that the constrained search failed
more often than the unconstrained search. Furthermore,
there was no significant difference between the lengths of
the generated paths. All experiments were carried out using
different environments. To evaluate the general applicabil-
ity, we applied our method to the two decoupled and prior-
itized path planning techniques described above. The cur-
rent implementation is highly efficient. It requires less than
0.1 seconds on a 1000 MHz Pentium 111 to plan a collision-
free path for one robot in all environments described be-
low. The whole search procedure for 10 robots with 10
restarts and 10 iterations per restart requires approximately
one minute.

4.1 Simulation Experiments

This set of experiments is designed to illustrate that the
overall number of failures can be reduced significantly us-
ing our randomized search technique and even more sig-
nificantly by taking into account the generated constraints
during the search.
For each number of robots considered, we performed 100
experiments. In each experiment we randomly chose the
starting and target locations of the robots. We applied four
different strategies to find solvable priority schemes:
1. Arandomly chosen order for the robots.
2. A single order which satisfies the constraints for the
robots in Ry and consists of a randomly chosen order
for the robots in R,.
3. Randomized search starting with a random order and
without considering the constraints.
4. Constrained randomized search starting with an order
computed in the same way as strategy 2).
Please note that in this experiment we chose a small hum-
ber of iterations for the last two strategies in order to as-
sess the advantages of the constrained search under serious
time constraints. Particularly, we chose a value of 3 for the
parameters maxFl i ps and maxTri es. For each tech-
nique, we performed A*-based planning in the configura-
tion time-space and counted the number of solved planning
problems.
Figure 6 summarizes the results we obtained for the cyclic
corridor environment depicted in Figure 5. Whereas the
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Figure 6: Solved planning problemsfor different strategies using
A*-based planning in the confi guration time-space in the cyclic
corridor environment depicted in Figure 5.

0

x-axis represents the number of robots, the y-axis con-
tains the number of solved problems in percent. As this
figure shows, our constrained search technique is signifi-
cantly more often able to find a solution compared to all
other strategies. Interestingly, the second strategy, which
exploits the constraints but considers only one scheme in
each experiment, shows a similar performance than the un-
constrained randomized search.
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Figure 7: Number of solved planning problems in the noncyclic
corridor environment shown in Figure 4 for the different strategies

using A*-based planning in the confi guration time-space.

Additionally, we performed a similar series of experiments
for the noncyclic corridor environment depicted in Fig-
ure 4. The results are shown in Figure 7. Again, our
constrained-based search outperforms all other strategies.

Furthermore, we analyzed all four strategies to find solu-
tions for the path coordination method. Throughout these
experiments we used a variant of the environment depicted
in Figure 4 with five corridors on both sides. Since the path
coordination method restricts the robots to stay on their
independently planned optimal trajectories, the number of
unsolvable problems is much higher compared to the A*-
based planning in the configuration time-space. As can be
seen from Figure 8 our constrained search again leads to a
much higher success rate.

4.2 Real Robot Experiment

Figure 9 (center) illustrates a typical application example
carried out in our office environment with our robots Al-
bert and Ludwig. The robots are shown in Figure 9 (left
and right). In this example, we used the general A* pro-
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Figure 8: Solved planning problems for all four strategies using
the path coordination method.

Figure 9: The mobile robots Albert (left) and Ludwig (right) and
area world application of A*-based planning in the confi guration
time-space (center).

cedure in the configuration time-space for local path plan-
ning. While Albert starts at the right end of the corridor
of our lab and has to move to the left end, Ludwig has to
traverse the corridor in the opposite direction. Notice that
no path for Albert can be found if the path of Ludwig is
planned first, since Albert cannot reach its target point if
Ludwig stays on its optimal trajectory. Because of that, the
system alters the order of the two robots. Given the opti-
mal path for Albert, our system plans a path for Ludwig
which first leads it into a doorway in order to let Albert
pass by. The resulting trajectories are shown in Figure 9
(center). Notice that at some point, the robot Ludwig waits
to let the robot Albert pass by. In comparison, no solution
can be found in this situation if the path coordination [12]
technique is used.

In various other tests operating our two robots in our nar-
row hallways, we frequently observed the emergence of so-
lutions where robots sensibly coordinated their behavior,
e.g., by waiting for each other. However, we also noticed
that with only two robots, these experiments do not evaluate
the utility of our search algorithm in priority scheme space,
since there exist only two such schemes. Unfortunately, we
currently have only two physical robots available in our lab,
so that the experiment could not be carried out with larger
groups of robots.

4.3 Influence on the Overall Path Length

A further important question in the context of path plan-
ning is the minimization of the overall move costs. We also
applied the randomized search technique described in this



Figure 10: Independently planned optimal paths for 30 robots
(Ieft) and the resulting paths after priority optimization (right).
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Figure 11: Summed move costs plotted over time.

paper to minimize the length of the trajectories for a team of
robots. In this case, the randomized search was combined
with a hill-climbing strategy. If additional time is available,
the system performs several restarts and always keeps the
best solution found so far. Figure 10 (left) shows the in-
dependently planned optimal paths for a team of 30 robots
in an unstructured environment. After 100 iterations of our
optimization algorithm, we obtain the solution illustrated
in Figure 10 (right). Figure 11 plots the evolution of the
summed move costs of the best solution found so far over
time and demonstrates the capabilities of this approach to
reduce the overall path length.

5 Conclusions

In this paper we presented an approach to find solvable
priority schemes for decoupled path planning methods for
groups of mobile robots. Our approach is a randomized
method which repeatedly reorders the robots to find a se-
quence for which a plan can be computed. To reduce the
computation time necessary to find a solution certain con-
straints between the robots are extracted and exploited to
focus the search. The approach has been implemented and
tested on real robots as well as in extensive simulation runs
for two different decoupled path planning techniques. The
experiments demonstrate that our technique significantly
decreases the number of failures in which no solution is
found for a given planning problem. Furthermore, our ran-
domized search method can also be used to minimize the
overall path length.

It should be noted that our algorithm is not limited to the
two different baseline path-planning techniques considered
here. In contrast, it can be used to find and optimize paths
generated with arbitrary prioritized path-planning methods.

This also includes planning techniques without the assump-
tions of the methods considered in this paper, like accurate
global models of the environment and like deterministic ex-
ecution of the planned movements. Furthermore, our ap-
proach can easily be extended to situations in which the
robots have to meet certain deadlines. Finally, we would
like to mention that our method is equally suited to more
complex coordination problems, in which the robots have
large degrees of freedom.
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