
Planning, Scheduling, and Plan Execution
for Autonomous Robot Office Couriers

Michael Beetz and Maren Bennewitz
University of Bonn, Dept. of Computer Science III,

Roemerstr. 164, D-53117 Bonn, Germany,
email:

�
beetz, maren � @cs.uni-bonn.de

Abstract

Scheduling the tasks of an autonomous robot office
courier and carrying out the scheduled tasks reliably and
efficiently pose challenging problems for autonomous
robot control. The controller has to accomplish long-
term efficiency rather than optimize problem-solving
episodes. It also has to exploit opportunities and avoid
problems flexibly because often the robot is forced to
generate schedules based on partial information.

We propose to implement the controller for scheduled
activity by employing concurrent reactive plans that
reschedule the course of action whenever necessary and
while performing their actions. The plans are repre-
sented modularly and transparently to allow for easy
transformation. Scheduling and schedule repair meth-
ods are implemented as plan transformation rules.

Introduction
To carry out their jobs reliably and efficiently many au-
tonomous mobile service robots acting in human work-
ing environments have to view their jobs as everyday
activity. We consider a particular instance of everyday
activity: performing office courier service. Schedul-
ing everyday activity differs in important aspects from
many other scheduling tasks such as job shob schedul-
ing (FS84), space shuttle scheduling (DSB94), or trans-
portation scheduling in the following aspects:

� Long-term efficiency. The goal of scheduling ev-
eryday activity is the optimization of long-term effi-
ciency rather than problem-solving episodes. There-
fore, a competent office courier distributes for in-
stance empty envelopes according to an expected
consumption profile while performing its delivery
jobs. Distributing the envelopes beforehand de-
creases the chances that the robot must search
for empty envelopes before delivering a letter and
thereby miss a deadline. Such preparation actions
make the performance of individual jobs slower but
they can be expected to improve the overall perfor-
mance significantly.

� Flexibility and Robustness. Schedules are to be gen-
erated based on partial information about the envi-
ronment and the tasks. For instance, incomplete task
specifications like “pick up the letter from Wolfram
and deliver it,” lack proper descriptions of envelope
as well as the destination of the letter. Acting ap-
propriately based on partial information requires the
robot courier to watch out for opportunities and ex-
ploit them as well as detect and avoid problems while
executing scheduled activity.

� Experience. Information acquired through extended
experience is exploited to compute more appropriate
schedules. For instance, the time it takes for different
people to load or unload at different places.

It is important that the scheduler of an autonomous
robot office courier is able to interleave delivery jobs,
reschedule when problems are detected, and exploit op-
portunities. The scheduler also has to be able to predict
whether exploiting an opportunity that has just been de-
tected might cause failures in other activity threads such
as missing deadlines (BG98). What seems less impor-
tant is the computation of schedules that guarantee min-
imal path length because loading and unloading takes
significant amount of time.

Fig. 1: RHINO

Our research on schedul-
ing everyday activity is
carried out in the context
of FAXBOT, a structured
reactive controller (SRC)
(Bee98) that is designed
for robust and efficient
execution of delivery plans
on the autonomous mobile
robot RHINO (see Fig. 1), an
RWI B21 robot. RHINO is equipped with three PCs
connected to the university-wide computer network via
a tether-less radio link. Its sensor system contains 24
ultra-sonic proximity sensors, two laser range finders,
and a CCD stereo color camera system.

FAXBOT operates in a part of an office building con-
taining a large hallway, several offices, a library, and a
classroom (see Figure 2). FAXBOT uses a symbolically
annotated 3D world model of its environment that con-
tains floor plan information for walls, doorways, and
rooms and static pieces of furniture. The world model
provides all the information required by the RHINO nav-
igation system to exhibit fast and collision free nav-
igation and accurate robot localization (TBB � 98). It
also contains detailed geometric models of the furniture
items that can be used for their recognition. Finally, the
world model stores symbolic information that is used
to interpret natural language commands and as domain
knowledge for mission planning.

FAXBOT operates over extended periods of time and
carries out a schedule of multiple jobs, which can be
changed at any time. Jobs are issued via electronic mail
using strongly restricted natural language.

A-112

A-113

A-111

Library
A-110

Classroom

A-121
A-120

A-119

A-118

A-117

A-114

Hallway

Fig. 2: Environment of the office courier
To accomplish its commands FAXBOT uses a library

of routine plans. The routine plan for deliveries speci-
fies that RHINO is to navigate to the pickup place, wait
until letter is loaded, navigate to the destination of the
delivery, and wait for the letter to be unloaded.

The main contributions of this paper are that we
show (1) the installation of modular and transparent
schedules in complex concurrent and reactive robot
control programs; (2) explain the design of schedules
and controllers that allow for the opportunistic and ro-
bust execution of scheduled activity; and (3) describe
novel plan transformation techniques for scheduling
and rescheduling everyday activity.

The remainder of this paper is organized as follows.
The section 2 presents an example in which FAXBOT

schedules its delivery jobs based on partial information
and reschedules its activities to avoid task failures and
exploit opportunities. The section 3 gives a glimpse of
the plan representation used by FAXBOT and presents
the control structures used for the implementation and
revision of activity schedules. Section 4 presents tech-
nical details of FAXBOT’s activity scheduler and shows
how scheduling methods are implemented as declara-
tive plan transformation rules. Section 5 describes how
the FAXBOT controller accomplishes the behavior of the
robot that is described in Section 2.

An Extended Example
Consider the following experiment that is carried out
by RHINO using FAXBOT’s scheduling capabilities.
RHINO receives two commands: “put the red letter on
the meeting table in room A-111 on the desk in room
A-120” and “deliver the green book from the librarian’s
desk in room A-110 to the desk in room A-114.”

Whenever the jobs change FAXBOT computes an ap-
propriate schedule very fast. FAXBOT’s initial schedule
is to pick up the red letter first, then pick up the green
book, then deliver the red letter, and the green book af-
terwards. If the second job involved also a red letter to
be delivered, then the scheduler would first carry out the
first job completely and then carry out the second job.
This is done to avoid carrying two red letters at the same
time and thereby yield possible confusions.

3

2 1 4

2

3 1 4

Fig. 3. Default
schedule.

Fig. 4. Schedule that
avoids carrying two

red letters.
Proposing a schedule also implies making assump-

tions about whether and when doors are open or closed.
Thus when adopting the schedule FAXBOT assumes that
the doors of the rooms A-110, A-111, A-114, and A-
120 are open. To perform the necessary adaptations
flexibly, FAXBOT monitors the assumptions underlying
its schedule while performing its deliveries: whenever
it passes a door it estimates the opening angle of that
door and revises the schedule if necessary.

1
5

6

7

2

4

3

Fig. 5: Complete trajectory for the two deliveries

Figure 5 pictures RHINO’s trajectory during the ac-
complishment of the two delivery jobs. Initially, all
doors in the environment are open. FAXBOT starts with
the delivery of the red letter and heads to the meeting
table in A-111 where the letter is loaded (step 2). At
this moment the door of A-120 is closed. Thus, when
FAXBOT enters the hallway to deliver the red letter at
Michael’s desk, it estimates the opening angle of the

door of room A-120. At this moment FAXBOT detects
that the door has been closed and that it cannot complete
the delivery (step 3). A failure is signalled.

Since FAXBOT does not know when room A-120 will
be open again, it revises the schedule such that it de-
livers the green book first and accomplishes the failed
delivery as an opportunity. Thus FAXBOT navigates to
the librarian’s desk in A-110 to pick up the green book
to room A-114 (step 4). At this moment room A-120 is
opened again. As FAXBOT heads towards A-114 to de-
liver the green book it passes room A-120 (step 5). At
this point the door estimation process signals an oppor-
tunity: A-120 is open! Therefore, FAXBOT interrupts
its current delivery to complete the delivery of the red
letter. After the delivery of the red letter is completed
(step 6), FAXBOT continues the delivery of the green
book (step 7). The behavior generated by FAXBOT if all
doors stay open is shown in Fig. 6 and the one if A-120
is closed but not opened again in Fig. 7.

1

2

3

4
5

1

2

3
4

Fig. 6. Trajectory if
A-120 stays open.

Fig. 7. Trajectory if
A-120 is closed

again.

The behavior exhibited by FAXBOT demonstrates the
following capabilities of FAXBOT’s scheduler and its in-
tegration into the overall controller: interleaving deliv-
ery tasks, revising schedules while they are executed,
and exploiting opportunities.

The FAXBOT Controller
FAXBOT’s delivery routines are implemented in RPL

(Reactive Plan Language) (McD91). RPL provides con-
ditionals, loops, program variables, processes, and sub-
routines. RPL also places high-level constructs (inter-
rupts, monitors) to synchronize parallel physical ac-
tions and make plans reactive and robust by incorporat-
ing sensing and monitoring actions, and reactions trig-
gered by observed events at the programmer’s disposal.
The RPL constructs used to specify scheduled activity
are the PLAN-, WITH-POLICY-, WHENEVER-, and WAIT-FOR-
statements; but see (McD91) for a complete description.

The PLAN-statement has the form (PLAN STEPS CON-

STRAINTS). STEPs have the form (:TAG NAME SUBPLAN) and
tag SUBPLAN with the name NAME. constraints have
the form (:ORDER �������) where

���
s are name tags of the

plan steps. Steps are executed in parallel except when
they are constrained otherwise. The :ORDER constraints

make sure that a subsequent step is started only if all
steps computing the inputs have been completed. The
TOP-LEVEL command indicates declares its subtasks as
user commands and causes the generation of failure and
success reports upon their termination.

WITH-POLICY P B, another control structure, means “ex-
ecute the primary activity B such that the execution sat-
isfies the policy P.” Policies are concurrent processes
that run while the primary activity is active and inter-
rupt the primary if necessary.

Events that require RHINO to perform actions such as
“passing a door” are handled through fluents, program
variables that signal changes of their values and thereby
enable control threads to react to asynchronous events.
The RPL statement WHENEVER F B is an endless loop that
executes B whenever the fluent F gets the value “true.”
WAIT-FOR F, another control abstraction, blocks a thread
of control until the fluent F becomes true.

Primary Activities and Policies

The FAXBOT controller carries out two kinds of sub-
plans: primary activities, actions taken to accomplish
the robot’s mission and policies, which monitor and
maintain the conditions necessary for the successful and
efficient execution of the primary activities.

Primary activities include for example the navigation
to places where objects are to be picked up and deliv-
ered. A policy might, for instance, monitor the doors
the robot is passing to detect whether they are open
or closed. Another policy might monitor how well the
robot knows its position and invoke active localization
whenever necessary. Primary activities must handle in-
terrupts and, due to the possible side-effects of policies,
these activities have to make suitable preparations for
their successful continuation after reactivation.

Policies are best viewed as constraints on the execu-
tion of primary activities. Constraints such as “when-
ever you pass a door estimate the opening angle of the
door using its laser range finders” and opportunities
such as “complete the delivery to room A-120 as soon
as you learn the office is open,” which are both nec-
essary for carrying out the jobs opportunistically, are
specified using the RPL construct WITH-POLICY. Events
that require FAXBOT to perform actions such as “pass-
ing a door” are handled through fluents that trigger ac-
tions like estimating the door angle. When a delivery
gets interrupted because FAXBOT has detected that the
door to A-120 is open, that opportunity has the side
effect of moving the robot into the office A-120. The
interrupted delivery plan has therefore to be replanned
before it can be continued.

The Structure of the FAXBOT Controller

The FAXBOT controller is structured in a modular and
transparent way such that automatic plan transforma-
tion techniques can retrieve parts of the plan easily and
modify the plan without making it opaque for subse-
quent plan revision processes.

WITH-POLICY Global Policy �
...

WITH-POLICY Global Policy �
:TAG PRIMARY-ACTIVITIES

WITH-POLICY :TAG OPPORTUNISTIC-PRIMARIES

TOP-LEVEL
Opp-Pri �
...
Opp-Pri �

:TAG ACTIVE-PRIMARIES
PLAN

TOP-LEVEL
:TAG CMD � Act-Pri �
...
:TAG CMD � Act-Pri �

:ORDER

Order Constraints

The overall plan of the FAXBOT controller consists
of the plan body tagged PRIMARY-ACTIVITIES that contains
the plans for accomplishing the user commands and the
surrounding policies that specify the constraints on the
execution of the primary activities. The primary activ-
ities are separated into the opportunistic primaries and
the active primaries. The active primaries are the ones
that the robot is able to accomplish without help. The
order in which the subplans of the active primaries are
executed is given by the order constraints that specify a
(partial) order on the navigation tasks contained in the
active primary tasks. The opportunistic primaries are
the ones that robot cannot accomplish autonomously.
To complete them it has to wait for enabling conditions.
For example, because FAXBOT has no action for open-
ing doors it might have to wait for doors to open in order
to complete its deliveries. The open door might be an
opportunity to complete a user command.

The FAXBOT Scheduler
The scheduling method takes constraints, ressources,
and deadlines into accound and tries to minimize the
number of interruptions for people. The method carries
out a sequence of steps: (1) the scheduler extracts all
navigation tasks from the structured reactive plan; (2) it
combutes an efficient total order on the navigation tasks
that (if possible) meets all given deadlines avoids over-
loading the robot; (3) it installs the schedule into the
structured reactive plan; and (4) installs a monitoring
process that monitors all the assumptions made by the
scheduler and triggers a rescheduling process whenever
an assumption is detected to be violated.

The extraction step is simple because all navigation
tasks are required to have the form (ACHIEVE (LOC RHINO

loc)) (BM92). In the extraction step every navigation task
is tagged with a unique name that can be later used to
specify the order on the navigation tasks. A more diffi-
cult issue in the extraction step is guessing the destina-
tions of navigation tasks that are not completely speci-
fied. (McD92) describes a technique for guessing desti-
nations of navigation tasks based on Monte Carlo sim-
ulations of the plan.

The algorithm for ordering the navigation tasks is
also simple. Essentially, it sorts the destination north
of the hallway in ascending and south of the hallway in
descending order (the environment is pictured in Fig-
ure 2). After this initial sort the scheduler iteratively re-
solves problems such as missed deadlines or confusions
caused by carrying objects that look identical.

SCHEDULE-DELIVERIES
���	��
�������

1 for each ����� in � ��
�����
2 do if North-of?

� �����������
�
�� �	 �
3 then !���"�#%$'&(!���"�#%$*) � ����� �
4 else

� ��+,#%$-& � ��+,#%$.) � ����� �
5 !���"�#%$'& � ��"�# � !/��"�#%$0��1 �
6

� ��+	#%$2& � ��"�# � � ��+	#%$3��4 �
7 for each ����� in !���"�#%$
8 do if East-of?

� ��������56��78��# �
9 then 9*� � #:&(9*� � #;) � ����� �

10 else < �=� #:&>< �=� #;) � ����� �
11

� �8$ ��� +
�� &@?BA�A ��CD�E� < ��� #=� � ��+	#%$3��9*� � # �
12 while F Conflict-free

� � �8$ �=� +
����
13 do

� ��$ ��� +
�� & Remove-a-Conflict(Schedule)
14 return

� �8$ �=� +
��

Because of the hierarchical structure of office envi-
ronments this simple heuristic algorithm for computing
schedules works surprisingly well. The optimal sched-
ule asks the robot to visit every office with the order of
the offices being clockwise (or anti-clockwise) starting
at the office closest to the robot. The Voronoi diagrams
of offices have often almost tree structure (with few cy-
cles) so that the desks can be easily reached from the
door and the center of the room.

There are various cases for which this algorithm pro-
duces suboptimal schedules. For instance, you can
place

C
destinations on a circle (equally spaced). In this

setting, the algorithm asks the robot to go back and forth
on the circle and take a route that is longer than neces-
sary. The algorithm can be extended easily so that it
computes with a high probability nearly optimal sched-
ules fast. The question is whether having nearly optimal
schedules causes the robot to accomplish its tasks more
efficiently. Often tighter schedules fail more often. In
our opinion it is more promising to learn scheduling

1.) ?PRIM-ACTIVITIES
AT PRIMARY-ACTIVITIES

2.) ?ACTIVE-PRIMARIES
AT ACTIVE-PRIMARIES
== (PLAN ?CMDS ?CONSTRAINTS)�

1.) WITH-POLICY WHENEVER (NOT (AND !?SCHED-ASSMTS))
SIGNAL(UNSCHEDULED-PLAN-BUG

(?ROOT-TASK ?ACTIVE-PRIMARIES))
?PRIM-ACTIVITIES

2.) PLAN ?CMDS !?CONSTRAINTS !?SCHED-CONSTRAINTS

������������
UNSCHEDULED-PLAN-BUG (a)

(?ROOT-TASK ?ACTIVE-PRIMARIES)�
NAVIGATION-TASKS (b)

(?ACTIVE-PRIMARIES ?NAV-TASKS)�
SCHEDULE ?NAV-TASKS(?SCHED-CONSTRAINTS) (c)�
SCHEDULING-ASSUMPTIONS (d)

(?NAV-TASKS ?SCHED-ASSMTS))

Figure 8: Plan revision rule for the the installation of task schedules.

heuristics from experience. Information relevant for
scheduling that can be learned from experience include
the expected duration of loading and unloading, when
people are usually in their offices, when doors are open
or closed, and so on.

The scheduling routine is implemented as a plan
transformation rule that can be applied to FAXBOT’s
overall plan while the plan is executed (BM97; BM94).
We will diagram plan-transformation rules

(pl AT cp == pat)�
pl �

�
cond

where cond is the applicability condition, (pl AT cp == pat)

the input plan schema and pl’ the output plan schema
of the rule. The applicability condition is a conjunc-
tion of literals. The input plan schema consists of a
pattern variable to which the subplan with code path
cp is bound and an optional pattern pat that is matched
against the subplan pl. The rule is applicable if the ap-
plication condition holds and the plan pl with code path
cp matches the pattern pat. The resulting plan fragment
pl’ replaces the input fragment in the revised plan.

Figure 8 shows the formalization of the transforma-
tion rule that schedules office delivery tasks. The trans-
formation rule revises the primary activities by adding
another global policy that generates an unscheduled
plan bug whenever an assumption underlying the cur-
rent schedule is detected as violated. The rule also re-
vises the active primaries by adding the ordering con-
traints of the schedule to the constraints of the pri-
mary activities. The scheduling rule is applicable un-
der a set of conditions specifying that (a) There is
a bug of the category “unscheduled plan;” (b) The
navigation tasks contained in the active primaries are
?NAV-TASKS; (c) ?SCHED-CONSTRAINTS are ordering con-
straints on ?NAV-TASKS such that any order which satis-
fies ?SCHED-CONSTRAINTS will accomplish the active pri-
mary tasks fast and avoid deadline violations and over-
loading problems; (d) ?NAV-TASKS can be accomplished
if ?SCHED-ASSTS are satisfied. The rule is applied when-
ever the set of user commands changes.

Robust and Efficient Schedules
To accomplish robust and efficient execution of sched-
ules we (1) explicitly record and monitor scheduling as-
sumptions; (2) install opportunistic delivery tasks; and
(3) reschedule the primary activities while they are ex-
ecuted whenever a broken scheduling assumption is de-
tected.

Currently, we only consider one kind of scheduling
assumptions and opportunities: the state of doors. To
monitor these assumptions, the FAXBOT controller em-
ploys a global policy: whenever the robot passes a door
it estimates the opening angle of this door. The opening
angles of each door are stored in an fluent that has two
dependent fluents: one signalling that the door is closed
and one that the door is open.

The scheduling assumptions of the active primaries
are that all rooms that are destinations of navigation
tasks are open. Scheduling assumptions are handled by
a policy of the following form:

WITH-POLICY SEQ WAIT-FOR(CLOSED(ROOM �) � ...� CLOSED(ROOM �))
SIGNAL(CLOSED-DOOR-BUG ...)

Plan Body

Thus each violated scheduling assumption triggers
the application of the scheduling transformation rule
shown in Figure 9. In order to apply scheduling trans-
formations to the primary activities while the primary
activities are executed, the primary activities have to be
restartable (BM96). Restartability means that the robot
controller can repeatedly start executing a plan, inter-
rupt the execution, and start it anew, and the resulting
behavior of the robot is very similar to the behavior of
executing the plan only once. Restartability facilitates
the smooth integration of plan revisions into ongoing
activities: a partially executed restartable plan can be re-
vised by terminating the plan and starting the new plan
that contains the revisions.

In practice, however, restartable plans work differ-
ently. Consider, for example, a plan for the delivery of
an object. To determine which parts of the plan can be
skipped, it is sufficient to know the object’s location and
some aspects of the robot’s state (like its location and

1.) ?ACT-PRIMARIES
AT ACTIVE-PRIMARIES

2.) ?OPP-PRIMARIES
AT OPPORTUNISTIC-PRIMARIES�

1.) ?REM-ACT-PRIMARIES
2.) TOP-LEVEL

:TAG ?TLC-NAME
SEQ WAIT-FOR(OPEN(?ROOM))

?TLC-PLAN
!?OPP-PRIMARIES

�������������
�

CLOSED-DOOR-BUG
(?CMD-FAILURE ?DOOR-FCT ?ROOM
(?TLC) ?FAILED-TASK)�

TLC-NAME(?TLC ?TLC-NAME)�
ROOT-TASK(?ROOT ?FAILED-TASK)�
DELETE-ACTIVE-PRIMARY-TLC-PLAN

(?ROOT ?TLC-NAME ?REMAINING-TLC-PLANS)�
TAGGED-SUBTASK(?ROOT ?TLC-NAME ?TLC-TASK)�
RPL-EXP(?TLC-TASK ?TLC-PLAN)

Figure 9: Plan revision rule for delivery tasks that cannot be completed because of closed doors.

what it carries). Because the FAXBOT controller up-
dates the object descriptions whenever it perceives and
“manipulates” the object, FAXBOT can determine the
state of execution based on the description of the object
to be delivered.

To act efficiently, FAXBOT has to exploit opportuni-
ties. A necessary precondition of exploiting opportuni-
ties is that FAXBOT is able to specify what opportunities
are. One kind of opportunity that FAXBOT can exploit
is the opportunistic completion of delivery tasks. Sup-
pose a user command cannot be completed because the
room where the object is to be delivered is closed. In
this case, the execution of the active primary plan for
accomplishing the delivery fails and the plan is installed
as an opportunistic primary.

The revision of the FAXBOT controller that is trig-
gered by closed doors is accomplished by the plan trans-
formation rule listed in Figure 9. The plan revision rule
is triggered by a “closed door” bug that causes a user
command to fail. The rule deletes the failed plan for
the user command from the active primary activities and
adds the plan to the opportunistic primary activities.

FAXBOT’s Scheduling Methods at Work
This section describes how FAXBOT accomplishes
the courier jobs described earlier. In the beginning,
FAXBOT carries out no primary activities. Its outer-
most policy ensures that new commands are received
and processed.

WITH-POLICY integrate command revisions (P-1)

WITH-POLICY replan/reschedule when necessary (P-2)

PRIMARY ACTIVITIES

Upon receiving the two commands the policy P-1
puts plans for the commands into the active primary ac-
tivities of the SRC. The insertion of the commands trig-
gers the scheduler of the policy P-2 that orders the nav-
igation tasks in the primary activities. The scheduling
policy also adds an additional policy P-3 that monitors
the assumptions underlying the schedule, that is that the
rooms A-110, A-111, A-114, and A-120 are open.

WITH-POLICY integrate command revisions (P-1)

WITH-POLICY replan/reschedule when necessary (P-2)

WITH-POLICY reschedule when A-110, A-111, A-114,
or A-120 are closed

(P-3)

PRIMARY ACTIVITIES

:TAG CMD-1 Plan for: Deliver the red letter

:TAG NAV-1 go to pick up ...

:TAG NAV-2 go to deliver ...

:TAG CMD-2 Plan for: Deliver the green book

:TAG NAV-3 go to pick up ...

:TAG NAV-4 go to deliver ...
:ORDER NAV-1 � NAV-3, NAV-3 � NAV-2, NAV-2 � NAV-4

After FAXBOT has picked up the red letter from
the meeting table and left room A-111, it notices that
room A-120 has been closed in the meantime. Because
FAXBOT cannot complete the delivery of the red letter
the corresponding command fails. This failure triggers
the replanning policy P-3. Because FAXBOT cannot
foresee when room A-120 will be open again it trans-
forms the completion of the delivery into an opportu-
nity. Thus as soon as FAXBOT notices room A-120 to
be open it interrupts its current mission, completes the
delivery of the red letter, and continues with the remain-
ing missions after the red letter has been successfully
delivered.

WITH-POLICY integrate command revisions (P-1)

WITH-POLICY replan/reschedule when necessary (P-2)

WITH-POLICY reschedule when A-110, A-111,
or A-114 are closed

(P-3)

PRIMARY ACTIVITIES

WITH-POLICY WAIT-FOR OPEN?(A-120)

:TAG CMD-1 ...

:TAG CMD-2 ...

Discussion
Our research on scheduling the activities of an au-
tonomous robot office courier are still in an early stage.
So far we have only performed some simple experi-
ments to validate that the FAXBOT controller and its
scheduler work; that is that it can reliably monitor
scheduling assumptions and schedule delivery jobs dur-
ing their execution (see our example in the second sec-
tion). In the future we plan to compare the behavior
generated by the FAXBOT controller with alternative
controllers that apply different (re)scheduling strate-
gies. We also need to examine more carefully the lit-
erature on robust scheduling, in particular (ZF94).

In this paper we have mainly focussed on the appli-
cation of scheduling techniques to plans that control an
autonomous mobile service robot. As such the contri-
butions of this paper lie mainly in the representation
of complex concurrent and reactive plans that facilitate
scheduling operations, the specification of plan revision
methods in the form of plan transformation rules, and
the application of these scheduling methods while the
robot carries out the scheduled activity.

FAXBOT accomplishes its jobs successfully because
its subplans are made interruptable and restartable using
high-level control structures that specify synchronized
concurrent reactive behavior. FAXBOT achieves adap-
tivity through plan revision and scheduling processes,
implemented as policies, that detect opportunities, con-
tingent situations, and invalid assumptions. Plan revi-
sion techniques are able to perform the required adap-
tations because of the modular and transparent speci-
fication of concurrent and reactive behavior. In par-
ticular the distinction of policies and primary activi-
ties increases the modularity significantly. Policies en-
able FAXBOT to specify opportunistic behavior and to
achieve reliable operation while making simplifying as-
sumptions.

There are many open issues that we would like to
investigate more carefully in the near future. These
issues include the development of more sophisticated
scheduling methods (ZF94), the application of learn-
ing techniques to acquire useful information that can
be exploited by heuristic scheduling methods (HC92b;
HV98a; HV98b; ZDD � 92), and a thorough experimen-
tal investigation on the effects of different scheduling
techniques on the behavior exhibited by autonomous
service robots (HC92a).

References
M. Beetz. Structured reactive controllers. In submitted for
publication, 1998.

M. Beetz and H. Grosskreutz. Causal models of mobile
service robot behavior. In R. Simmons, M. Veloso, and

S. Smith, editors, to appear in Fourth International Confer-
ence on AI Planning Systems, Morgan Kaufmann, 1998.

M. Beetz and D. McDermott. Declarative goals in reactive
plans. In J. Hendler, editor, First International Conference
on AI Planning Systems, pages 3–12, Morgan Kaufmann,
1992.

M. Beetz and D. McDermott. Improving robot plans dur-
ing their execution. In Kris Hammond, editor, Second Inter-
national Conference on AI Planning Systems, pages 3–12,
Morgan Kaufmann, 1994.

M. Beetz and D. McDermott. Local planning of ongoing
behavior. In Brian Drabble, editor, Third International Con-
ference on AI Planning Systems, pages 3–12, Morgan Kauf-
mann, 1996.

M. Beetz and D. McDermott. Expressing transformations
of structured reactive plans. In Recent Advances in AI
Planning. Proceedings of the 1997 European Conference on
Planning, pages 64–76. Springer Publishers, 1997.

M. Drummond, K. Swanson, and J. Bresina. Scheduling
and execution for automatic telescopes. In M. Zweben
and M. Fox, editors, Intelligent Scheduling, pages 341–369.
Morgan Kaufmann Publishers, 1994.

M. S. Fox and S. Smith. Isis - a knowledge-based system for
factory scheduling. Expert systems, 1(1):25–49, 1984.

D. Hart and P. Cohen. Predicting and explaining success
and task duration in the phoenix planner. In J. Hendler, ed-
itor, AIPS-92: Proc. of the First International Conference
on Artificial Intelligence Planning Systems, pages 106–115.
Kaufmann, San Mateo, CA, 1992.

A. Howe and P. Cohen. Isolating dependencies on failure
by analyzing execution traces. In J. Hendler, editor, AIPS-
92: Proc. of the First International Conference on Artificial
Intelligence Planning Systems, pages 277–278. Kaufmann,
San Mateo, CA, 1992.

K. Haigh and M. Veloso. Learning situation-dependent
costs: Improving planning from probabilistic robot execu-
tion. In To appear in Autonomous Agents 98, 1998.

K. Haigh and M. Veloso. Planning, execution and learning
in a robotic agent. In To appear in AIPS-98, 1998.

D. McDermott. A reactive plan language. Research Report
YALEU/DCS/RR-864, Yale University, 1991.

D. McDermott. Transformational planning of reactive be-
havior. Research Report YALEU/DCS/RR-941, Yale Uni-
versity, 1992.

S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus,
D. Hennig, T. Hofmann, M. Krell, and T. Schimdt. Map
learning and high-speed navigation in RHINO. In D. Ko-
rtenkamp, R.P. Bonasso, and R. Murphy, editors, AI-based
Mobile Robots: Case studies of successful robot systems.
MIT Press, Cambridge, MA, 1998. to appear.

M. Zweben, E. Davis, B. Daun, E. Drascher, M. Deale, and
M. Eskey. Learning to improve constraint-based scheduling.
Artificial Intelligence, 58:271–296, 1992.

M. Zweben and M. S. Fox. Intelligent Scheduling. Morgan
Kaufmann, 1994.

