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Autonomous robots have operated reliably and safely in unstructured environ-

ments: they have been museum tour guides,1 performed simple delivery tasks,2

and explored dangerous environments.3 These tasks were carefully chosen: they made

great demands on the robots´ navigation skills and on safe and reliable operation in

unstructured, dynamic environments but their struc-
ture was kept deliberately simple. Creating an
autonomous robot capable of accomplishing pro-
longed, complex, and dynamically changing tasks
in the real world is a key challenge for the next gen-
eration of autonomous robots.

To perform complex activities effectively, robots
must possess rich perceptual capabilities to recog-
nize objects and places and interactively commu-
nicate with people. Robots must also reason about
and manage concurrent tasks and subtasks while
executing them. Moreover, for prolonged success,
robots must improve their control routines based
on experiences to adapt to environment and task
changes.

Our research investigates the computational prin-
ciples enabling autonomous-robot control systems
to accomplish complex and diverse tasks in the real
world. Our work focuses on developing advanced
perceptual, learning, and adaptation capabilities as
well as planning mechanisms for robotic agents. This
article describes how we added these capabilities to
Rhino, an RWI B21 mobile robot (see Figure 1).

Design principles
We developed a unique control system for Rhino.

The sidebar “Rhino at Work as an Office Courier”

illustrates how we implemented the following key
design principles in a specific application.

Dynamic-system perspective
Robots must be flexible and responsive to chang-

ing situations. Therefore, we used dynamic systems
as the primary abstract model for programming the
integrated, plan-based controller (see Figure 2). In
this model, the state of the world evolves through the
interaction of two processes: the controlling process
(the robot’s control system) and the controlled
process (events in the environment, the robot’s phys-
ical movements, and sensing operations). For com-
plex dynamic systems, we further decompose the
controlled process into an environment process,
which changes the world state, and a sensing process,
which maps the world state into the sensor data the
robot receives. We similarly decompose the control-
ling process into state estimation and action gener-
ation processes. The state estimation process com-
putes the robot’s beliefs about the controlled system’s
state. An action generation process specifies the con-
trol signals supplied to the controlled process as a
response to the estimated system state. Auxiliary
monitoring processes signal system states that the
controlling process is waiting for.

The main consequence of this model is that robots
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must control concurrent and continuous
processes both flexibly and reliably. Rhino
does this through control routines that spec-
ify and synchronize concurrent percept-dri-
ven behavior. We implemented the routines
using the reactive plan language (RPL),4 a
control language providing traditional control
abstractions and high-level constructs (inter-
rupts, monitors) that synchronize actions. RPL
also allows specification of interactive behav-
ior, concurrent control processes, failure
recovery methods, and temporal coordination
of processes. We use these features to make
plans reactive and robust by incorporating
sensing and monitoring actions as well as
reactions triggered by observed events.

Plan-based high-level control
To be reliable and efficient, our robot courier

must flexibly interleave tasks, exploit oppor-

tunities, quickly plan a course of action, and,
if necessary, revise its intended activities.
Recomputing the best possible course of action
whenever a situational detail changes is typi-
cally not feasible, but can often be made fea-
sible by explicitly managing the robot’s
respective beliefs, goals, and intended plans.

In Rhino, plans are symbolic representa-
tions of future activity and have two roles:
executable prescriptions the robot interprets
to accomplish its jobs, and syntactic objects
the robot synthesizes and revises to meet its
specific success criteria. RPL has tools that
support plan formation and adaptation. This
enables planning processes to

• project what might happen when a robot
controller executes a plan,

• return the result as an execution scenario,5

• infer what might be wrong with a robot
controller given an execution scenario,6

and
• perform complex revisions on robot con-

trollers.6

Probabilistic state estimation
The plan-based, high-level control of the

robot operates from abstract perceptions of
the current state of objects, the robot, and the
environment. To derive robust abstract per-

ceptions from its local and inaccurate sen-
sors, the Rhino system uses probabilistic
state estimation techniques.7 The state esti-
mators maintain the probability densities for
the states of objects over time. Whenever the
planning component requests state informa-
tion, the state estimators provide the object’s
most likely state. An object’s probability den-
sity at that moment contains all the informa-
tion available. Based on this density, we can
determine the object’s state and derive even
more meaningful statistics (for example,
variance and entropy of the current estimate).
In this way, the high-level system can reason
about an estimate’s reliability.

Plan transformation
Because the robot is uncertain about the

state of its dynamic environment, it must also
quickly form and adapt its plans. Plan trans-
formation enables Rhino to adapt during exe-
cution and to learn canned plans based on
experience.8

A plan library provides a collection of
canned plans for achieving standard tasks in
standard situations. However, canned plans
do not always execute optimally. If an unex-
pected opportunity presents itself while the
robot is executing its tasks, for example, a
canned plan will have trouble testing for sub-
tle consequences. The decision criteria to

Figure 1. Rhino, an RWI B21 mobile robot,
has a unique control system enabling suc-
cessful operation in increasingly complex
environments.
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Figure 2. Block diagram of our dynamic system model for autonomous robot control.
Boxes depict processes; arrows depict interactions.

SEPTEMBER/OCTOBER 2001 computer.org/intelligent 3



take or ignore such opportunities must typi-
cally be hardwired into the canned plans
when the plan library is built.

An alternative is to equip a robot with self-
adapting plans. Whenever a specific belief of
the robot changes, self-adapting plans trigger
a runtime plan adaptation process. When trig-
gered, the adaptors decide, possibly based on
predictions, whether plan revisions are nec-

essary and, if so, perform them. Plan adapta-
tion processes are specified explicitly, modu-
larly, and transparently and are implemented
using declarative plan transformation rules.

Context- and resource-adaptive
operation

To make its control decisions in a timely
manner, the plan-based controller applies

various resource-adaptive inference meth-
ods. Sampling-based inference methods per-
form probabilistic state estimation, for
example.7 These enable the controller to
trade off accuracy and the risk of making
wrong decisions against the computational
resources consumed to make those decisions.
Moreover, the results of resource-adaptive
reasoning enable execution modes to change
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The key to Rhino’s self-adapting, plan-based control is its
structured reactive controller.3 The SRC manages activity and
enables the robot to reliably and efficiently carry out schedules
of multiple jobs. It consists of a collection of concurrent control
routines that specify routine activities and adapt to nonstandard
situations. The SRC employs three kinds of control processes:

• routine processes handle standard jobs in standard situations,
• monitoring processes detect nonstandard situations, and
• planning processes adapt standard routines to nonstandard

situations.

Consider a problem-solving episode: Rhino, working as an
autonomous office courier, receives two commands (see Figure A):

1. “Put the red letter on the meeting table in room A-111 on
Michael’s desk in A-120.”

2. “Deliver the green book from the librarian’s desk in room
A-110 to the desk in A-113.”

To accomplish its commands, Rhino uses a library of routine
plans. The routine delivery plan specifies that Rhino is to
navigate to the pickup point, ask somebody to load the letter,
wait until it is loaded, navigate to the destination, ask
somebody to unload the letter, and wait for it to be unloaded.

Whenever Rhino is to carry out a set of delivery jobs, it quickly
computes an appropriate schedule. Rhino’s initial schedule is to
deliver the red letter first and the green book afterwards.
Proposing a schedule implies making assumptions about
whether doors are open and closed. In our experiment, Rhino
assumes that the rooms A-110, A-111, A-113, and A-120 are
open. To adapt its schedule flexibly, Rhino monitors the schedul-

ing assumptions while performing its deliveries: whenever it
passes a door, it estimates the opening angle of that door and
revises the schedule if necessary.

Here’s how the SRC produces the event trace depicted in Figure
B. Initially, all doors in the environment are open. Rhino starts
with the delivery of the red letter and heads to the meeting table
in A-111, where someone loads the letter (step 1). Then someone
closes A-120’s door (step 2). Thus, when Rhino enters the hallway
to deliver the red letter to Michael’s desk, it estimates the open-
ing angle of A-120’s door and detects that the door has been
closed (step 3). The delivery plan signals a failure that informs the
SRC that the delivery cannot be completed at this time.

Because Rhino does not know when room A-120 will be open
again, it revises the schedule so that it now delivers the green
book first and suspends the delivery that could not be
completed until the office is open again. Thus, Rhino navigates
to the librarian’s desk in A-110 to pick up the green book and
deliver it to room A-113 (step 4). At this moment, room A-120 is
opened again (step 5). As Rhino heads towards A-113 to deliver
the green book, it passes room A-120 (step 6). At this point, the
door estimation process signals an opportunity: A-120 is open.
Therefore, Rhino interrupts its current delivery to complete the
delivery of the red letter. After delivering the red letter (step 7),
Rhino delivers the green book (step 8). Figure C shows the
behavior generated by the same SRC (C1) if all doors stay open
and (C2) if A-120 is closed but not opened again.

The self-adapting plan consists of the primary activities that
specify the course of action for satisfying the user requests-the
delivery tour. The plan also contains two plan adaptors. The
first one makes sure that the intended course of action
contains delivery tasks for every actual user request and no
unnecessary delivery tasks. Thus, whenever the systems adds,

Rhino at Work as an Office Courier

Figure A. Rhino’s operating environment-a small hallway with
adjacent offices, a library, and a classroom-and two delivery
requests.

Figure B. Complete trajectory and event trace for the two
deliveries if A-120 is closed while the robot is in A-111 and
opened again while it is in A-110.
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in response to the robot’s context.9

As an example, consider the case described
in the “Rhino at Work” sidebar, where the
robot is required to find a letter on a desk for
future delivery. The robot must visually sense
the letter but the postprocessing of this sens-
ing will depend heavily on the current con-
text. The controlling process is aware of inter-
nal and external factors such as lighting,

distance to object, object color, visual clutter,
and current processing load and employs them
to alter the way it detects the envelopes.

Control system architecture
Figure 3 depicts Rhino’s current control sys-

tem software architecture. The perceptual sub-
system is shown on the right and the action sub-
system on the left; both are part of the low-level

control system (LLCS). The central box is the
high-level controller, which we call a structured
reactive controller (SRC). The interface
between the low-level and high-level control
systems is the high-level interface (HLI).

The low-level control system
The LLCS consists of approximately 20

distributed modules, each designed to moni-
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deletes, or revises a user request, the plan adaptor performs
the necessary changes on the intended primary activities. The
second plan adaptor orders the collection and delivery steps of
the tour. This eliminates any unwanted interactions between
steps and ensures quick completion of the tour.

During the course of the episode, the SRC modifies itself. Rhino
initially performs no primary activities. Its plan adaptors ensure
that the robot receives and processes new commands. When it
receives the two jobs (event “start” in Figure B), the plan adaptor
P-1 puts plans for accomplishing them into the primary activities.
Inserting the commands triggers plan adaptor P-2’s scheduler. The
plan adaptor for rescheduling also adds an additional plan adap-
tor P-3 that monitors the assumptions underlying the schedule-
that is, that the rooms A-110, A-111, A-113, and A-120 are open.
Figure D shows the SRC after this revision.

After Rhino picks up the red letter and leaves room A-111, it

notices that room A-120 has closed in the meantime (event 3 in
Figure B). Because Rhino cannot finish delivering the red letter,
the corresponding command fails, signaling an incompleteable
delivery. This failure triggers the replanning plan adaptor P-2,
which transforms the completion of the delivery into a subplan
that is suspended until the office is open again (see Figure E).
Thus, as soon as Rhino notices that room A-120 is open (event
6), it interrupts its current mission, finishes delivering the red
letter (event 7), and continues with the remaining jobs.

Reference

1. M. Beetz, “Structured Reactive Controllers-a Computational Model
of Everyday Activity,” Proc.3rd Int’l Conf. Autonomous Agents, ACM
Press, New York, 1999, pp. 228–235.
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Figure D. The top-level structure of the SRC after inserting the
plans for the two delivery requests. The SRC also contains a plan
adaptor that triggers a rescheduling process when a door closes.
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Figure E. Structure of the SRC after it detects A-120 is closed.
Rhino transforms completion of the delivery for room A-120
into an opportunity. As soon as Rhino learns that A-120 is
open, it inserts the delivery request in the actual schedule.

Figure C. Complete trajectory and event trace for the two deliveries if (a) all doors are open, and (b) if A-120 is closed and not
opened again.
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tor or control a dedicated aspect of the robot
and provide information to other modules.
The modules communicate using an asyn-
chronous message-passing library. The LLCS
contains various server modules that interface
directly with the robot’s sensors and effectors
(lasers, cameras, motors, sonar, a pan and tilt
unit, a speech unit, buttons, or touch-sensi-
tive displays, for example). It also contains
various navigation modules for mapping, path
planning, localization, collision avoidance,
and other functions. The LLCS modules share
important design characteristics. Many of
them solve computational problems that can
be compactly described in mathematical
terms. The localization module, for example,
computes the probability distribution over the
robot’s position, and the path planner com-
putes the shortest paths from all locations to
a given destination. The LLCS modules use
iterative algorithms with simple update rules
and can therefore run many iterations per sec-
ond. Such fast iterative algorithms are partic-
ularly well suited to the LLCS. They can react
almost immediately and promptly accom-
modate asynchronously arriving information.
Some of these iterative algorithms are any-
time algorithms: they produce initial results
quickly and can improve these results given
more computation time.

Perceptual subsystem. We enhanced
Rhino’s first generation components.10 First,
we added two additional probabilistic state
estimators beside the localization and map-
ping modules.11 The first one handles objects
such as doors, chairs, and wastebaskets-per-
manent parts of the dynamic world model
subject to infrequent state changes.7 A tem-
plate-matching approach estimates the

objects’state density, comparing the real sen-
sor measurements against ideal measure-
ments obtained by simulating each sensor in
a 3D world model. The second estimates the
trajectory of other robots or of people walk-
ing by. In contrast to the static objects han-
dled by the first estimator, these objects are
not permanent parts of the environment; they
can enter and leave the scene frequently.
Therefore, the state estimation method for
these objects is based on detecting and track-
ing dedicated features indicating their pres-
ence. For instance, the robot must often track
several people simultaneously. If their paths
cross, the robot must still keep the people
separate to function properly. The estimator
relies on a probabilistic data association algo-
rithm for this purpose.

A second component is an image-pro-
cessing subsystem. Successfully integrating
image processing in the Rhino system
requires making it dynamically configurable
and runtime controlled. Programmers devel-
oped Rhino’s visual and image-processing
components using a programming frame-
work called Recipe (reconfigurable, exten-
sible, capture and image processing envi-
ronment).12 Recipe provides a standardized,
multithreaded environment that loads mod-
ules-for image processing or other tasks-at
runtime to take advantage of the robot’s con-
text. The framework provides standardized
facilities for managing resources and cap-
turing images while improving system
robustness and promoting code reuse. Recipe
modules, as well as being runtime loadable,
are scriptable, active entities well able to mir-
ror the SRC’s requirements. The SRC can
reason about its image-processing plans in
the same way as any other plans. The SRC

calculates contextual modifications and del-
egates operations to the Recipe image-pro-
cessing server. Creating Recipe modules is
simple, and the their content is not restricted
in any way. So far, we’ve created Recipe
modules for object recognition, gesture
recognition, image segmentation, motion-
based object recognition, and encapsulation
of standard image-processing operations.

Another component deals with commu-
nication. Natural language conversation sig-
nificantly enhances robot capabilities. It aug-
ments their ability to both perceive and
change their environment. For instance, a
robot can ask a person to open a door it can-
not open by itself. Natural language com-
munication also enables robots to receive a
wider range of job specifications and to
acquire information they cannot perceive
using sensors. We extended the Rhino con-
trol system by adding a module to send and
receive electronic mail written in a con-
strained subset of English. A simple definite-
clause grammar parses incoming electronic
mail, transforming it into an internal speech
act representation (see Figure 4). Object
descriptions, such as “the right desk in room
A-120,” are then interpreted using Rhino’s
symbolic world model, which makes task
specifications such as “pick up the red letter
from the right desk in room A-120” effective.
The computational processes for communi-
cation, including parsing, interpretation, and
sentence construction, are then integrated
into the RPL plan language. This lets the
robot control conversational actions. Using
these plan language extensions, we were able
to concisely specify a wide spectrum of com-
munication behaviors.

Navigation system. Here, we briefly review
the operation of Rhino’s navigation system,
a component of the action subsystem, to pro-
vide the necessary background for later
explaining how Rhino learns symbolic nav-
igation plans (see Burgard10 for a detailed
description). To solve a navigation problem,
Rhino first transforms a pair of locations, s
and d (where s is the start location and d the
destination), into a Markov decision prob-
lem (MDP). Then, a path planner solves the
MDP using a value iteration algorithm. The
solution is a mapping from every possible
location to the optimal heading to reach the
target. The reactive collision avoidance mod-
ule gets this mapping and, taking the robot’s
actual sensor readings and the dynamics into
account, uses it to reach the target.
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the low-level control system have been omitted.



High-level interface
Although the LLCS provides the robot’s

basic functionality, activating and deactivat-
ing continuous control processes, it does not
effectively combine the processes into coher-
ent task-directed behavior. Without additional
functionality, specifying robust and efficient
control programs would be tedious and error-
prone. Thus, the Rhino software architecture
includes a high-level interface to the LLCS.13

From the LLCS point of view, the HLI mod-
ule supports the reliable, effective, and effi-
cient execution of nontrivial tasks. It does so
by synchronizing the operations at the LLCS
level in task-specific ways and by recovering
from local execution failures.

From the SRC point of view, HLI provides
tasks as a convenient programming abstrac-
tion for the low-level control processes and as
a reliable execution component. Using HLI,
the SRC can start and terminate tasks and wait
for their completion. In addition, HLI main-
tains the robot’s current operational status as
well as relevant feedback from the control
processes-such as task completion signals and
so on-for the SRC’s immediate access.

Structured reactive controllers
Given a set of jobs, an SRC concurrently

executes the default routines for each indi-
vidual job. These general, flexible routines
work well in standard situations. They cope
well with partly unknown and changing envi-
ronments, run concurrently, handle interrupts,
and control robots without assistance over
extended periods. While it executes routine
activities, the SRC also tries to determine
whether its routines might interfere with each
other and monitors robot operation for non-
standard situations. If it finds one, the robot
will try to anticipate behavior flaws by pre-
dicting how its routine activities might work
in this nonstandard situation. If necessary, it
revises its routines to make them more robust.
Finally, it integrates the proposed revisions
smoothly into the stream of its actions.

Prediction in structured reactive con-
trollers. Temporal projection, the process of
predicting what will happen when a plan is
executed, is essential for autonomous robots
to successfully plan their missions. To pro-
ject their plans, robots must have causal mod-
els that represent the effects of their actions.
Rhino uses causal models for predicting the
behavior generated by modern autonomous-
robot controllers accurately enough to fore-
see a wide range of realistic execution prob-

lems. This is possible because Rhino’s action
models reflect that

• physical robot actions cause continuous
change;

• controllers are reactive systems;
• the robot is executing multiple physical

and sensing actions; and
• the robot is uncertain about the effects of

its actions and the state of the environment.

The problem of using such realistic action
models is obvious. Nontrivial concurrent plans
for controlling robots reliably are complex.
Several control processes are usually active,
and many more are dormant, waiting for con-
ditions that trigger their execution. The branch-
ing factors for possible future states-not to
mention the distribution of execution scenarios
that they might generate-are immense. The
accurate computation of this probability dis-
tribution is prohibitively expensive in terms of
computational resources.

Therefore, Rhino employs probabilistic
sampling-based temporal projection methods
that can infer information from such complex
distributions quickly and with bounded risk.11

Rhino’s temporal-projection methods solve
the following prediction problem: given a set
of possible plan failure modes and a risk that
the robot is willing to take that its prediction
is wrong, infer whether the plan is likely to
produce a failure mode with a probability
greater than a given threshold.

Transformational planning of concurrent
reactive plans. Rhino’s plan adaptors per-
form execution-time transformational plan-
ning with concurrent reactive plans.6,14 A
library of modular, efficient default plans
enables Rhino to cope with most eventuali-
ties. Using this library, plan adaptors can

compute a default plan for a set of tasks by
retrieving and instantiating plans for indi-
vidual tasks and pasting them together to
form the overall plan. Although pasting
default plans together is fast, it is prone to
producing plans that might fail under con-
tingencies. So, whenever the robot detects a
contingency, a plan adaptor will project the
this contingency’s effects on its current plan
and revise the plan to make it more robust.
Whenever a plan adaptor thinks its plan is
better than the executed one, it will replace
the current plan with the better one and
restart the new plan.

Planning is implemented as a search in
plan space. A node in the space is a proposed
plan; the initial node is the default plan cre-
ated using the plan library. A step in the space
requires three phases. First, a plan adaptor
projects a plan to generate sample execution
scenarios for it. Then, in the criticism phase,
a plan adaptor examines these execution sce-
narios to estimate how good the plan is and
to predict possible plan failures. It diagnoses
the projected plan failures by classifying
them in a taxonomy of failure models. The
failure models serve as indices into a set of
transformation rules that are applied in the
third phase, revision, to produce new versions
of the plan that are, one hopes, improve-
ments.

Learning symbolic robot plans. We have
already stressed the importance of explicitly
representing the plans that the robot has com-
mitted to execute so that the robot can use its
limited computational resources for flexible
task execution and effective action planning.
However, this raises the question of how such
plans can be obtained. Rhino’s navigation
system,10 for example, considers navigation a
Markov decision problem. It models naviga-
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From: peters@cs.uni-bonn.de
Date: Fri, 24 Oct 1997 12:03:57
To: rhino+tcx@cs.uni-bonn.de
Subject: Command

Could you please bring
the yellow book on the desk
in room a-120
to the library before 12:30

(Request
   :SENDER (THE PERSON (FIRST-NAME Hanno)
                                           (LAST-NAME Peters))
   :RECEIVER (THE ROBOT (NAME RHINO))
   :TIME (THE TIME-INSTANT 10:24:12:03)
   :REPLY-WITH (YOUR COMMAND FROM 12:03)
   :CONTENT (ACHIEVE 
                         (LOC (THE BOOK
                                           (COLOR YELLOW)
                                           (ON (THE DESK
                                                        (IN (THE ROOM A-120 )))))
                                 (THE LOC (IN (THE ROOM LIBRARY))))
   :DEADLINE (A TIME-INSTANT (BEFORE (DATE 12.30 ))))

(a) (b)

Figure 4. (a) Electronic mail sent to Rhino’s computer account, and (b) its translation
into the internal speech act representation.



tion behavior as a finite-state automaton in
which navigation actions cause stochastic
state transitions. The robot is rewarded for
reaching its destination quickly and reliably.
he reward is mentally within the controller. A
subsystem assigns rewards to execution sce-
narios. For example, the mental reward for a
navigation task is higher if the task executes
faster. This enables the control system to learn
faster plans and forestall unnecessary delays
that might be caused by closed doors. A solu-
tion for such problems is a mapping from
states to actions that maximizes the accumu-
lated reward. Such state-action mappings,
necessary for adapting quickly to changing
circumstances and quickly responding to
exceptional situations, are inappropriate for
high-level plan management.

We developed XFRMLEARN,8 a learning
component that builds up explicit symbolic
navigation plans automatically. Given a nav-
igation task, XFRMLEARN learns to struc-
ture continuous navigation behavior and rep-
resents the learned structure as compact and
transparent plans. It obtains the structured

plans by starting with monolithic default
plans that are optimized for average perfor-
mance and adding subplans to improve the
given task’s navigation performance.

XFRMLEARN’s learning algorithm starts
with a default plan that transforms a naviga-
tion problem into an MDP and then passes
the MDP to Rhino’s navigation system. After

Rhino’s path planner has determined the nav-
igation policy, the navigation system acti-
vates the collision avoidance module.
XFRMLEARN records the resulting navi-
gation behavior and looks for stretches of
behavior to improve. XFRMLEARN then
tries to explain the improvable behavior
stretches using causal knowledge and its
knowledge about the environment. These
explanations are used to index promising
plan revision methods that introduce and
modify subplans. The revisions are subse-
quently tested in a series of experiments to
decide whether they are likely to improve
navigation. The symbolic plan incorporates
successful subplans. Figure 5 illustrates a
sample learning session.

Using this algorithm, Rhino can auto-
nomously learn compact and well-structured
symbolic navigation plans by using MDP
navigation policies as default plans and
repeatedly inserting subplans that signifi-
cantly improve navigation performance. The
plans learned by XFRMLEARN support
action planning and opportunistic task exe-
cution. These plans provide plan-based con-
trollers with subplans such as “traverse a par-
ticular narrow passage or an open area.” More
specifically, navigation plans can generate
qualitative events from continuous behavior
(such as entering a narrow passage), support
online adaptation of navigation behavior
(drive more carefully while traversing a par-
ticular narrow passage),3 and allow compact
and realistic symbolic predictions of contin-
uous, sensor-driven behavior.5

Long-term demonstrations
The flexibility and reliability of runtime

plan management and plan transformation
have been extensively tested in the Minerva
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Figure 5. A sample learning session: (a) a behavior trace of the default plan, (b) behav-
ior stretches where the robot moves conspicuously slowly, (c) the added subplans in
the learned navigation plan, and (d) a behavior trace of the learned plan.

Figure 6. Minerva: (a) a close-up view and (b) Minerva leading a tour group at the
Smithsonian.



robot (see Figure 6). During the 13 days that
Minerva operated as a robotic tour guide in
the Smithsonian Museum,1 it was in service
for more than 94 hours, completed 620 tours,
showed 2,668 exhibits, and traveled over
more than 44 km. As its high-level controller,
Minerva used an SRC, which directed the
robot’s course of action in a feedback loop
executing more than three times a second.
Minerva used plan adaptors to install new
commands, delete completed plans, and
schedule tours. Minerva made about 3,200
execution-time plan transformations while
performing its tour guide job. Minerva’s plan-
based controller differs from Rhino’s only
with respect to its top-level plans in its plan
library and some of the plan adaptors used.

In two other experiments, we evaluated
specific capabilities of the plan-based con-
troller. In one experiment, we showed how
predictive plan transformation improves per-
formance. We did this by outperforming con-
trollers without predictive transformations in
situations that require foresight. At the same
time, Rhino remained a strong performer in

situations that require no foresight. In a sec-
ond experiment, we tested Rhino’s ability to
learn symbolic navigation plans. Over more
than 100 hours of autonomous experimenta-
tion, Rhino’s learning component signifi-
cantly and substantially improved its navi-
gation system’s performance.8

See the “Related Work” sidebar for more
discussion of projects similar to Rhino.

Our results provide promising design
principles for autonomous robot con-

trol systems. Future work will focus on
improving the robustness of the Rhino con-
trol system in the face of unknown situations
and hardware or software failures. We will
also further extend and exploit the expressive
power of the system’s probabilistic models
and context-sensitive calculation abilities.

Another important research thread is the
development of a general computational

model for plan-based control of robotic
agents. We research into this direction by
realizing autonomous controllers based on
SRCs for diverse applications including
autonomous robot soccer, autonomous con-
trol of a toy factory, autonomous robot rescue
missions, and distributed supply chain man-
agement. We believe that a thorough analy-
sis of the individual plan based controllers
for the different applications will give us a
much deeper understanding of which con-
cepts such a computational model should
provide and support.
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In recent years, a number of impressive long-term real-world
demonstrations have shown the potential impact of this tech-
nology:

• In NASA’s Deep Space program, a plan-based robot
controller called the Remote Agent1 has autonomously
controlled scientific experiments in space.

• In the Martha project,2 fleets of robots have been effectively
controlled and coordinated.

• Xavier,3 an autonomous mobile robot with a plan-based
controller, has navigated through an office environment for
more than a year, allowing people to issue navigation com-
mands and monitor their execution over the Internet.

• Chip4 is an autonomous mobile robot serving as a general-
purpose robotic assistant, providing a variety of tasks
including cleanup.

All these approaches to plan-based control differ regarding
the aspects of the control problem they focus on and the
assumptions they make. For example, Xavier employs Rogue, a
system for interleaved task planning, execution, and situation-
dependent learning.5 In Xavier, action plans are sequences of
actions and reactive behavior is generated by Xavier’s plan
execution system Rogue. In Rhino, on the other hand, reactive
behavior is specified explicitly and transparently by the plans.
As another example, a main research goal of the Chip control
system is the development of a general library of low-level and
situation-driven high-level plan sketches. In contrast to Chip’s
plans, SRCs’ plans are also designed to be reasoned about and
revised. Finally, our approach to plan-based control of robotic
agents differs from the Flakey approach6 in several ways.
Flakey dispenses with execution time deliberation7 and there-

fore cannot predict or forestall execution failures in the way
SRCs do. The emphasis in developing the remote agent is the
design of a plan-based control system that controls a complex
physical system with extreme reliability.1
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