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Abstract

The ability of mobile service robots to efficiently search for a person is needed

in a vast domain of applications. The search problem is especially challenging

when the user is freely moving across the environment, the robot has only a

constrained field of view, and visibility constraints arise from the environment.

We propose in this article a novel approach that simulates the user’s presence at

different locations in the environment based on a hidden Markov model (HMM).

The HMM predicts the user’s motion and computes the observability likelihood

at the different locations given the predictions. Our approach then selects ef-

fective search locations that maximize the user’s expected observability. The

selection criterion hereby considers the visibility constraints along the robot’s

path as well as the robot’s travel time to reach the search location. We per-

formed both real-world and extensive simulated experiments to evaluate our

method. In comparison to a greedy maximum coverage approach as well as to a

greedy strategy that uses background information, we show that our framework

leads to a significant reduction of the time needed to find the user.
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Figure 1: Top: The robot needs to interact with the user, however, the user’s current location

is unknown. Furthermore, the user may not stay at their current location, instead, they may

move between a set of predefined destinations. Bottom: The robot needs to select an effective

search location that minimizes the search time of finding the user. Our approach selects a

good search location that maximizes the likelihood of observing the user via covering most of

the user’s expected paths at the time the user is expected to reach them.

1. Introduction

Finding a person is essential for mobile service robots in several applications,

e.g., office delivery, household assistance, ... etc. In such scenarios, the robot

often has to assist the user with tasks that involve direct interactions as well as

free moves across the environment. Typically, users do not permanently stay

at fixed locations, instead, they frequently move along common paths between

designated locations, e.g., to grab a coffee, use the printer, or talk to colleagues.

Therefore, a good search strategy is needed to enable the robot to quickly find

the user in such situations if necessary.

In this article, we introduce a novel approach for selecting search locations
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by performing simulations based on a hidden Markov model (HMM) to pre-

dict possible behaviors of the user. Our method simulates the user’s motion

and computes the predicted belief about the user’s presence at the possible

locations for future time steps. We then use the predicted belief, while also

considering the visibility characteristics of the environment to iteratively select

good search locations with a high likelihood of observing the user. Thereby, our

approach takes into account the time needed by the robot to reach a certain

search location, which is essential for the robustness of the prediction. Figure 1

highlights the strength of our approach. As illustrated, our proposed approach

selects an efficient search location with a high probability of observing the user.

As we show in extensive simulated experiments in various environments,

our approach enables a robot to select good search locations, which leads to

a significantly reduced search time compared to a greedy maximum coverage

approach and another greedy method that uses background information. The

greedy maximum coverage approach chooses search locations that maximize

coverage of so far unobserved areas, however, the other greedy method uses

background information about the destinations at which the user frequently

stays. For a realistic setting, we model noisy observations and dynamic obstacles

and show the robustness of our approach.

In contrast to our previous work [1], we apply a HMM for the motion predic-

tion instead of a particle filter to achieve a more robust performance, because

the particle filter depends on the random initialization and propagation of par-

ticles. We found throughout our experiments that re-running the experiments

of the particle filter approach multiple times sometimes leads to varying results

due to the randomness. This variance in the performance decreases as the num-

ber of particles increase. Accordingly, using an infinite number of particles will

rule out this variance which is equivalent to using HMM. Additionally, we com-

pute the user’s observability likelihood along the robot’s path to the potential

search locations in order to have a more accurate estimate of the probability

to encounter the user for every search location. Moreover, we determine key

locations along the robot’s path to the selected search location at which per-
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forming observation actions will increase its chances of encountering the user,

e.g., hall way intersections, office entrances, etc. Furthermore, we carried out a

real-world experiment to demonstrate the practical applicability of our search

strategy.

2. Related Work

The problem of finding a moving person in an environment was early studied

as a coverage problem based on the robot’s visibility polygon. One possible

solution to solve this problem is to apply techniques that aim at maximally

covering the visible area of the environment, e.g., Suzuki and Yamashita [2], as

well as Guibas et al. [3] tackle the problem of finding users by a surveillance

robot. They make use of the geometrical properties of the robot’s visibility

polygon in order to find a directed graph on which the robot takes a tour to

clear the environment from unpredictable dynamic user. The authors use the

geometric properties of the visibility polygon in order to minimize the visited

points through the environment. However, they do not predict motion of the

user and thus do not estimate the user’s pose. On the other hand, Lee et al. [4]

consider a one-room version of the visibility polygon problem, where the robot

with a limited field of view is located in only one room and the user may be

present in the room or may walk outside. The robot has to cover all the area of

room using its limited field of view to find the user. Additionally, Isler et al. [5]

apply a randomized coverage approach to find a dynamic user by representing

the environment as a tree using triangulation and determining which leaf to visit

via guessing. The authors show that their approach outperforms deterministic

maximum coverage. Furthermore, a survey about different coverage approaches

is presented by Choset [6].

Stiffler et al. [7] additionally considered the problem of unreliable sensors in

this context. The authors developed a visibility-based geometric formulation to

place a surveillance robot at specific environment locations that maximize the

user’s expected path through the robot’s visible region to increases the likelihood
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of observing the user. All these solutions to the coverage problem do not predict

the motion of the person and may lead to long search times with high navigation

costs as they aim at covering the whole environment.

Several approaches that use multi-robot collaboration have been presented,

e.g., Moors et al. [8] use a topometric graph representation to assign a team

of robots as guards at vital connections in the environment, i.e., doors and

corridors, to avoid recontamination of cleared areas. Gerkey et al. [9] propose

a similar way of coordination between robots of limited field of view to guard

each other in order to avoid missing the user. Moreover, Kolling and Carpin [10]

solve the graph-clearance problem in NP-complete way using multiple robots.

Hollinger et al. [11] assume that the user’s motion model is given. Therefore,

some robots make use of the given information while others perform maximum

coverage to balance between robustness and efficiency. All these coverage ap-

proaches often lead to long search times and high navigation costs as they aim at

covering the complete environment and neglect background information about

typical user behaviors.

On the other hand, several approaches that predict motions and aim at

minimizing the searching time for a mobile robot have been presented. Tipaldi

and Arras [12] proposed to learn a spatial affordance map and apply a Poisson

process to relate space, time, and occurrence probability of activity events. Af-

terwards, the spatio-temporal model can be used to generate an optimal path on

a grid map of the environment for a mobile robot to encounter specific humans.

This approach does not make use of any sensor modalities to update the belief

about the location of a user but considers just the encounter probability of grid

cells. Schwenk et al. [13] developed a schedule-based search approach that uses

a highly abstract topological representation of the environment and learns about

the abstract behaviors of users in order to estimate the likelihood of the users

current rooms. Kulich et al. [14] introduced a model that learns the temporal

likelihood of desired interactions to actively search for humans in order to in-

teract with them in public space. Krajńık et al. [15] presented a method based

on spatio-temporal models to enable the robot finding non-stationary objects

5



in an office environment. The authors represent the environment as an abstract

topological map and combine it with periodic functions in order to compute the

likelihood of presence of the objects at any node of the map with respect to the

time. All these approaches, however, ignore the visibility constraints resulting

from the environment layout.

Other approaches evaluate the frequency of user’s presence at specific loca-

tions. The idea here is to construct a probability distribution for every hour

of the day. For example, Volkhardt et al. [16] search for users at predefined

locations at which they frequently stay. Then, in the work of Volkhardt and

Gross [17], each predefined location is assigned a probability relative to the fre-

quency of observing the user there. Accordingly, the robot selects the location

with the highest probability. Mehdi and Berns [18] presented a technique that

generates a minimum set of view points that ensure a maximum coverage of

the environment with the robot’s constrained field of view. The authors pro-

posed to construct a probability distribution about the user’s observability at

these destinations during each hour of the day and take the navigation cost into

account for deciding which one of the view points to chose as search location.

These methods do not model the user’s motion and therefore cannot predict

their expected position at a certain intermediate time step.

Goldhoorn et al. [19] proposed using particle filters to estimate the most

likely location of the user at the current time step. The robot moves toward

that location for few time steps then updates its estimate about the user’s

position and recomputes the robot’s movement. As opposed to our method,

this technique does not take into account the time needed by the robot to reach

search locations from its current place. Moreover, moving the robot just for few

time steps and then selecting another search location often lead to oscillating

navigation behavior as the estimation jumps across the map as we realized in

our experiments.

In contrast to all the mentioned search methods, our system models the

human’s motion and provides a probability distribution about his/her position

at each time step. We consider the robot’s limited field of view and visibility
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constraints when computing the likelihood of observing the user at a certain

place and also take into account the time needed by the robot to reach the

search locations.

3. Problem Formulation

We consider a scenario where the robot is fully aware of the environment

structure and the static obstacles. The environment is represented as a grid map

with an overlaid topometric graph as shown in Figure 2 and Figure 3, where

each grid cell is mapped to the closest graph node in the same room. Both the

robot’s and the user’s locations are mapped to these nodes.

The robot’s goal is to minimize the search time needed to find the moving

user whose initial location and intended destination are unknown. The user

moves along common paths between a set of possible destinations, which are

known to the robot. After reaching one of those destinations, the user might

stay there for a while or start moving to another destination after some time.

The robot observes the environment with its camera, which has a constrained

field of view. During the search, occlusions can also occur due to static or

dynamic obstacles.

4. Graph-Based Person Tracking using Hidden Markov Models

We use a hidden Markov model to represent the belief about the user’s lo-

cation on the graph. Each hidden state corresponds to one of the topometric

graph nodes that represent the environment (see Figure 2 and Figure 3). In

order to generate the initial belief about the user’s location, we first compute

the user’s average occupation time for each graph node based on the typical

time the user spends at the destinations and moves between them. Further-

more, we learn the state transition probability distribution based on the user’s

common paths between the predefined destinations. For each node, we learn

the transition probabilities to the neighboring nodes based on the set of paths

that lead through that node. Moreover, this transition probability distribution
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Figure 2: Three simulation environments with overlaid topometric graphs. We use a grid map

representation of the environment with an overlaid graph. Each cell in the grid is mapped to

the closest graph node (green dots) within the same room. The impassible paths to the robot

are represented as orange dots and the bold green dots represent the predefined destinations

between which the user moves.

takes into account the average velocity of the user as well as the typical time

the user spends at the destinations.
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Figure 3: A real indoor environment, representing the Humanoid Robots Lab at the University

of Bonn, with an overlaid topometric graph. The bold green dots represent the predefined

destinations between which the user moves.

Computing the initial belief of each node and the state transition probability

distribution corresponds to the training phase of the HMM. The training process

relies on the assumption that a set of sample user paths are given. Depending

on the transition probabilities of the destinations, which can be derived from

those paths, we compute the initial probabilities of the nodes on the paths as

well as their transition probabilities.

At each time step, we update the belief based on the transition probabilities

and the belief at the previous time step as follows:

Belt(i) =
∑
j

p(i | j ) Belt−1 (j ), ∀i ∈ N , (1)

where Belt(i) is the belief of being at node i at the time step t and p(i | j) is

the transition probability from node j to node i. Additionally, N is the set of

graph nodes.

After that, we update the belief of the graph nodes proportional to the

observation likelihood. According to our problem, positive observation of the

user leads to a successful termination of the search process. Therefore, we only

consider negative observations in the observation model to update the belief.

For the graph nodes that fall within the robot’s field of view while the user is
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not currently detected, the probability is reduced, as follows:

Belt(i) =

γBelt(i), if (i ∈ FOV) ∧ user not detected

Belt(i) otherwise

, (2)

where FOV is the area covered by the robot’s visual sensors and γ ∈ [0, 1) is

a reduction factor. Since the likelihood of false negative observations increases

with the distance of the user to the robot, γ decreases with this distance. As

we assume a proper identification system, we do not model false positive obser-

vations. Note, however, that we can deal with false positive observations for a

short time by requiring a minimum number of subsequent time steps where the

human is detected before the search is assumed to be successful.

5. Selecting Search Locations

In this section, we describe our approach to select effective search locations

for the robot to find the human. Relying only on the estimated most likely

location of the user at each time step, following the approach of Goldhoorn

et al. [19], leads to an oscillating navigation behavior as the estimation often

jumps across the map as we noticed in our experiments. We, therefore, propose

a method that performs HMM-based simulations and takes into account the

time needed by the robot to reach the possible search locations to find the node

that provides the highest likelihood of observing the user.

5.1. Motion Prediction

We first perform HMM-based simulations to compute the likelihood of the

user’s presence for each graph node at future time steps. Thus, we use the

HMM presented in the previous section in order to compute this likelihood. We

predict the human’s motion along the graph by simulating the state transition

for future time steps and compute the probabilities of the graph nodes according

to Equation 1. The belief at any time step represents the likelihood of the user’s

presence at the corresponding graph node at that time step.
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5.2. Observability Likelihood

After that, we use the predicted belief distributions to compute the likelihood

of observing the user from each graph node, i.e., the likelihood of the user’s

observability at that node, while considering the time needed to reach this node.

For example, if a node lies ten time steps away, we consider the computed belief

resulting from simulating the state transitions ten time steps into the future

when computing the likelihood of the user’s observability at this node.

One approach is to compute the observability likelihood lk of the user at

each node k as follows:

lk =
∑
i∈OT

k

Bel t+T (i), ∀k ∈ RT , 1 ≤ T ≤ T , (3)

where RT is the set of graph nodes that can be reached from the robot’s current

node nr within exactly T future time steps, T is the number of future time

steps needed by the robot to reach the furthest graph node from nr, and OTk
is the group of graph nodes that can be observed from node k by performing

an observation action, i.e., a full rotation. Moreover, Bel t+T (i) is the predicted

belief about the user’s presence at node i and time t+ T .

5.3. Adding Observability Along the Path

Furthermore, we considered an extension of the computation of the user’s

observability likelihood in Equation 3 such that we additionally take into ac-

count the user’s observability likelihood at each of the intermediate nodes along

the robot’s path, i.e., starting from its current location on the shortest path

to the possible search goal, instead of only considering this likelihood at the

selected node itself. However, this leads the robot to favor far search locations

in order to maximize the observability likelihood accumulated along the path.

To overcome this issue, we evaluate the average observability likelihood for the

intermediate nodes instead of their summed individual likelihoods.

Additionally, computing the observability likelihoods along the robot’s path

based on the simulated HMM belief will suffer from some inaccuracy due to
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observing the same nodes for multiple successive time steps when simulating the

robot’s journey. In order to alleviate this issue we apply a reduction factor to

the computed average observability likelihoods of the intermediate nodes. This

reduction factor, which is computed independently for each path, corresponds

to the ratio between the number of the observed intermediate nodes without

repetition to that with repetition. For example, this ratio takes the value of 1

only if each observed intermediate node is only observed once during the robot

path to its search location. Accordingly, we compute the observability likelihood

so that it takes into account observability along the robot’s path:

l′k = lk +
α

T − 1

T −1∑
δ=1

∑
i∈Qt+δk

Bel t+δ(i)

=
∑
i∈OT

k

Bel t+T (i) +
α

T − 1

T −1∑
δ=1

∑
i∈Qt+δk

Bel t+δ(i),

∀k ∈ RT , 1 ≤ T ≤ T,

(4)

where

α =

∑T −1
δ=1

∑
i∈Qt+δk

βi∑T −1
δ=1 |Q

t+δ
k |

, (5)

and

βi =

1 if first time to observe i

0 otherwise

. (6)

Here, OTk is the group of graph nodes that can be observed from node k by

performing an observation action and Qt+δk is the list of nodes that are observed

by the robot at the intermediate time step t+ δ along its path from its current

graph node nr to node k. The reduction factor α is computed independently

for each possible path.

We define Qt+δk such that it mainly considers the set of nodes that can be ob-

served at that node without executing an observation action, i.e., a full rotation,

by the robot. However, we additionally consider the possibility of performing

observation actions at important locations which may lead to more information

gain. During the HMM-based simulations we consider the intersection nodes at
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which performing an observation action might lead to a high information gain.

We select such intersection nodes during the simulations based on the predicted

belief of the user’s presence at the graph nodes that can be observed only if an

observation action is performed by the robot as follows:

Qt+δk ←

O
t+δ
k if

∑
i∈Ot+δk

Bel t+δ(i) > c
∑
i∈Ft+δk

Bel t+δ(i)

F t+δk otherwise

, (7)

where F t+δk is the set of nodes that can be observed without a rotation at the

intermediate time step t + δ along the robot’s path to current graph node to

node k. Additionally, c is a constant factor that controls the selection threshold

of these intersection nodes. This constant factor takes into account the addi-

tional time needed by the robot to perform a full rotation, such that a rotation

is performed only when it leads to a net information gain.

The intersection nodes along the robot’s path at which observation actions

are useful are determined for each reachable node, i.e., while computing the

observability likelihood of the user at each of them, according to Equation 7.

5.4. Selecting the Search Goal

After computing the observation likelihood l′k for every node k, we select the

node with the highest observability likelihood s as the next search location 1,

i.e.,

s = argmax
k

l ′k . (8)

The robot follows the shortest path in the graph to that search location and

performs an observation action, i.e., a full rotation, when it is reached. If the

robot cannot find the user along its way nor after performing the observation

action, the search process is repeated by selecting a new search location as

previously.

1Note that there is no need to append a time index to s since the time is implicitly

considered in the computation of the observability likelihood.
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As an example, Figure 4 shows the selection the next search goal as the

location that is expected to provide highest observability along the robot’s way

to that location as well as at the time at which the robot reaches it.

Figure 4: This figure shows the selected search location according to our approach. The graph

nodes are drawn with a color intensity corresponding to the observability likelihood of the user

at the time the robot reaches this search location. The robot selects the node that provides

the highest observability likelihood as next search location.

6. Experimental Results

We evaluated our approach both in simulated and real-world experiments.

We carried out extensive experiments to evaluate our proposed framework,

both in simulation and with a real robot, and compare it to alternative methods.

6.1. Experimental Setup

We performed the experiments in three different simulation environments (see

Figure 2), each of size 41 m× 20.5 m with a grid map resolution of 0.25 m and

a node distance of 1.5 m. Additionally, we performed simulated experiments on

a real indoor environment (as shown in Figure 3) of size 28.5 m× 9.7 m with a

grid map resolution of 0.05 m and a node distance of 1.5 m.

In the first two environments, multiple paths exist between the destinations,

among which the user chooses one based on a certain known probability dis-

tribution and the transition probabilities between the destinations are assumed
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to be equally likely. Note, however, that some passages are impassible to the

robot, i.e., the dotted line with orange nodes for the first two environments to

make the search problem even more challenging. As can be seen, the visibil-

ity characteristics of the second environment are very difficult. In the third

environment there exists only one path between any two nodes, for both the

robot and the user. The fourth environment represents a real indoor environ-

ment with furniture and doors that increase the level of visual constraints. We

manually generated path samples between all the possible destinations, where

some of them were used for training the HMM and the rest was used for testing.

Figure 5 and Figure 6 show the set of training paths.

Furthermore, we randomly generated the sequences of the destinations that

the user visits during testing. Additionally, the sample paths used for test-

ing include segments that deviate from the common paths that were used for

training.

In each experiment, the position of the user is initialized according to the

user’s average occupation time for each graph node (see Section 4) and the

user moves between the predefined destinations. The user does not necessarily

move on the shortest path but might take detours. When the user reaches their

destination, they wait there for a period of time sampled from a certain waiting

interval. The user repeats this behavior until they reach their fourth destination

and remains there. The velocity of the user is sampled from a certain interval.

At each time step, the position of the user is mapped onto the closest graph

node given its grid map position. The initial location of the user is unknown to

the robot and is outside its field of view.

The number of dynamic obstacles that constrain the robot’s field of view

ranges from three to five and their velocities are sampled from the same inter-

val as the velocity of the user. Furthermore, we set the constant factor c in

Equation 7, which controls the selection of the intersection nodes, to 2.

The search task is considered successful when the robot observes the user.

The robot’s field of view has a horizontal opening angle of 58◦, which corre-

sponds to that of an ASUS Xtion Pro Live, and a 10 m view distance. We set
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Figure 5: The randomly generated user’s paths that are used for training overlaid on the three

simulation environments.

the probability of false negatives between 0.05 and 0.15 linearly increasing with

the distance between the robot and the user.
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Figure 6: The randomly generated user’s paths that are used for training overlaid on the

real-world environment.

6.2. Results and Evaluation

We evaluated all three versions of our approach: The first version computes

the user’s observability likelihood relying only on the final node without consid-

ering observability at the intermediate nodes along the path (see Subsection 5.2)

and we refer to this version as HMM basic prediction. The second version, which

considers all extensions described in Subsection 5.3 is referred to it as HMM with

observability along the path. The third version is the same as the second one

except that it does not consider performing observation actions at important

locations along the path and we refer to it as HMM with observability along

the path without rotations. Furthermore, we compared the new HMM-based

approaches to our previous work that relied on a particle filter [1] and we refer

to it as particle filter basic prediction.

We performed 5, 000 experiments in each of the four environments where

the robot’s start location is randomly chosen at each experiment with the con-

straint that it does not observe the user from that initial location. We first

compared our approach to a greedy maximum coverage approach that selects

search locations which maximizes covering the so-far unexplored areas, i.e., it

keeps selecting search locations that leads to covering the largest unexplored

area considering both the areas that can be covered from that search location

as well as the areas that can be covered along the path to such location from
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the robot’s current location. After the search environment is totally covered,

the strategy starts the search process all over again. We refer to this strategy

as greedy maximum coverage.

Second, we compared the needed search time of all versions of our approach

to the time needed by a greedy strategy that is fed with background information

about the destinations of the user. The greedy strategy visits all destinations

given information about the possible destinations of the user without consid-

ering any prediction about the user’s location. It keeps selecting the closest

unvisited destination as a search location until the user is found. After visiting

all destinations it starts the search process all over again as in the case of the

greedy maximum coverage strategy. We refer to this as greedy with background

information.

Third, we compared our approach to a heuristic method that infers the user’s

most likely location in a step-by-step fashion using the hidden Markov model

representation. Here, the robot moves toward that location for one time step,

then it updates the estimation and so on. This method is similar to the approach

of Goldhoorn et al. [19], although they use a particle filter instead of a HMM.

We refer to this method as the one-step to estimation method.

We applied a two-tailed paired t-test to evaluate the statistical significance

of our comparative experiments. The experimental results show that the three

variants of our method performing HMM-based simulations significantly outper-

forms each of the two greedy approaches and the one-step to estimation strategy

with a statistical significance of 99%.

Additionally, our approach HMM with observability along the path outper-

forms the HMM basic prediction and particle filter basic prediction approaches

for all the environments with a statistical significance of 99%. Furthermore,

our approach HMM with observability along the path outperforms its limited

version HMM with observability along the path without rotations in the environ-

ments. This outperformance is achieved in the three simulation environments

with a statistical significance of 99%. The HMM with observability along the

path is slightly better than its limited version HMM with observability along
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the path without rotations, in the case of the real-world environment due to

the limited points of intersection in such environment. This comparison high-

lights the importance of performing observation actions, i.e., rotations, at the

important locations. Ignoring such rotations may lead to missing the user in

some situations. Figure 7 shows the average relative search times achieved by all

approaches normalized with respect to the greedy maximum coverage approach.

It can be clearly shown that the significance of our HMM with observability

along the path approach is much higher in the case of the third environment,

where a big number of isolated rooms exist. In such an environment, greedy

maximum coverage suffers a lot by visiting all such rooms even if the user is not

expected to visit all of them. The greedy with background information approach

tends also to suffer due to the large number of scattered destinations. Fur-

thermore, concerning the first two environments HMM with observability along

the path approach could successfully deal with the multiple paths structure of

this environment and this is highlighted especially in the second environment

due to the massive number of intersections, where performing rotations at im-

portant intersections as determined by our approach leads to finding the user

much faster. Concerning the fourth environment, which corresponds to a real

world indoor environment, the search time of all the approaches is significantly

lower due to the limited number of possible paths and according the limited

number of intersections. Our HMM with observability along the path approach

outperforms all other methods and achieves a lower search time.

Additionally, Figure 8 compares the distribution of the search times of the

considered approaches. Note that this plot uses a log-scale at the y-axis. Thus,

it can be shown clearly that the distributions of the different versions of our

approach, especially our HMM with observability along the path approach, have

a compact distribution which gives a more confidence about our results.

As all versions of our approach do not guarantee to completely cover the

whole environment and, thus, might miss the user. On the other hand, the

two greedy strategies, i.e., greedy with background information and greedy max-

imum coverage, are guaranteed to find the user because they keep starting their

19



Figure 7: Average relative search time achieved by all versions of our HMM-based simula-

tions approach compared to the other four approaches mentioned. The times are normalized

so that the greedy maximum coverage approach equals 100%. The first three environments

correspond to the environments shown in Figure 2, respectively, and the last one corresponds

to the real-world environment shown in Figure 3. The three variants of our approach signifi-

cantly outperform the greedy maximum coverage strategy, greedy with background information

strategy and the one-step to estimation approach with a statistical significance of 99%.

process all over again when all the destinations are visited, or when the envi-

ronment area is explored, respectively. Therefore, we switch to the greedy with

background information approach after a given maximum time limit to avoid

missing the user. This maximum time limit was determined experimentally such

as to minimize the overall search time. We relied on the number of topometric

graph nodes of each environment as a heuristic to determine this limit, since

it gives insight about how many time steps is needed by the robot to visit the

furthest graph node from its starting location. We started with this heuristic

and kept tuning until we found the best values, which are 147, 175, 118 and

118 time steps for the four environments, respectively. Note that the chosen

maximum time limit is the same for the compared strategies when performing

the experiments.
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Figure 8: Whisker-box plot comparing the distribution of the search times (using log-scale) of

each approach during the experimental runs on the three simulation environments and the real

world environment. The first three environments correspond to the simulation environments

shown in Figure 2, respectively, and the last one corresponds to the real-world environment

shown in Figure 3.

Table 1 shows the percentage of experimental runs using our approaches

exceeded this time limit and switched to the greedy method. We compare them

to the one-step to estimation and the particle filter basic prediction approaches.

Note that we included these additional search times resulting from switching to

the greedy approach in all of the previously presented results.

As shown, our techniques based on HMM simulations outperform the one-

step to estimation method for all the environments. Furthermore, our HMM

with observability along the path approach outperforms all the other techniques

on average. Although, the failure rate of the particle filter basic prediction

approach is on average less than that of the HMM basic prediction approach, the

HMM basic prediction approach is considered more robust because it does not

depend on the random initialization and propagation of particles, i.e., re-running

the experiments of the particle filter basic prediction multiple times leads to a

varying performance due to the effect of the randomness. This variance in the
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Table 1: Percentage of switching to the greedy with background information approach.

Simulations-based Approaches
One-Step

to

Estimation

HMM With Observability

Along the Path
Basic Prediction

with Rotations w/o Rotations HMM Particle Filter

Env. 1 0.65% 2.29% 2% 1.87% 4.2%

Env. 2 1.35% 1.22% 1.4% 3% 4.3%

Env. 3 3.62% 7.39% 7.71% 5.7% 11.5%

Env. 4 2.64% 2.15% 2.54% 2.36% 17%

Over all Environments 2.07% 3.34% 3.5% 3.31% 9.02%

performance decreases as the number of particles increase. Accordingly, using a

HMM which corresponds to a particle filter with an infinite number of particles

will rule out this variance. This can be clearly figured out from the results in

Table 1 and Figure 7 where the performance of particle filter basic prediction

approach oscillates around that of the HMM basic prediction approach.

Two video showing the advantages of our approach can be downloaded from

https://www.hrl.uni-bonn.de/ras18bayoumi_sim_1.mp4 (simulation environ-

ments) and from https://www.hrl.uni-bonn.de/ras18bayoumi_sim_2.mp4

(real-world environment).

6.3. Real-World Experiment

We also tested the practical applicability of our approach using a real robot.

We deployed the Robotino robot from Festo equipped with an ASUS Xtion Pro Live

camera and applied a particle filter for localization using laser range data. For

user detection, we used an ArUco marker [20] as shown in Figure 9 (bot-

tom left). The user spends most of his time at his office, i.e., destination 1,

and he may move between the offices of his colleagues, i.e., destination 2 and

destination 3. Alternatively, he may grab a cup of coffee and drink it in the

lobby, i.e, destination 5, or pick some printed documents from the printing room,

i.e, destination 4.

For the experiment shown in Figure 9, the user is initially at his office,

when the robot starts to search for it. Then, the user moves to destination 2.
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Figure 9: Top: Overview of our real-world environment showing both the robot’s and the

user’s paths (in red and blue, respectively), the initially selected search location, as well as

their final locations. The user’s possible destinations are shown in maroon. The robot drives

along the shortest path to the selected search location, additionally, it performs intermediate

observation actions at the highlighted cyan locations along its path. Bottom: The robot has

found the user after performing an observation action.

The robot selects a search location near to the user’s office while considering

performing observation actions at important locations along the robot’s path.

The robot successfully finds the user while performing one of those intermediate

observation actions. A video showing this experiment can be downloaded from

https://www.hrl.uni-bonn.de/ras18bayoumi_real_world.mp4.

7. Conclusions

In this article, we presented an approach that enables a mobile robot to

efficiently find a non-stationary user in complex environments. Our method
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selects the best next search goal by simulating future paths of the user. To

compute the likelihood of observing of the user, we perform simulations using a

hidden Markov model given a graph representation of their known, typical paths

in the environment. To select a good search location and observation actions,

we consider the travel time needed by the robot to reach the search locations

and visibility constraints.

As our simulation and real-world experiments demonstrate, our approach

enables the robot to find the user within a short amount of time by selecting

effective search locations. We showed in extensive experiments that our frame-

work outperforms two other common search methods.
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