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Abstract— In many situations, users walk on typical paths
between specific destinations at which the service of a mobile
robot is needed. Depending on the environment and the paths,
step-by-step following of the human might not be the optimal
solution since better paths for the robot exist. We propose to
perform a prediction about the human’s future movements and
use this information in a reinforcement learning framework
to generate foresighted navigation actions for the robot. Since
frequent occlusions of the human will occur due to obstacles
and the robot’s constrained field of view, the estimate about the
humans’s position and the prediction of the next destination
are affected by uncertainty. Our approach deals with such
situations by explicitly considering occlusions in the reward
function such that the robot automatically considers to execute
actions to get the human in its field of view. We show in
simulated and real-world experiments that our technique leads
to significantly shorter paths compared to an approach in
which the robot always tries to closely follow the user and,
additionally, can handle occlusions.

I. INTRODUCTION

In this work, we consider scenarios in which a service
robot needs to encounter a user at designated locations, be-
tween which the human moves along commonly used paths.
One example application are transportation tasks where the
robot has to provide items to the human at predefined places.
Following the human at a certain distance might enable
the robot to solve this task and various techniques exist to
closely follow people [1]–[6]. However, since humans may
not always take the shortest path to their next destination
these methods might lead to an inefficient robot navigation
behavior in the considered scenarios where the robot has to
encounter the human only at designated places. Furthermore,
the user might occasionally move through passages that are
impassable to the robot such that the robot is forced to
find an alternative route. In such cases the problem arises
that the human will eventually be out of the robot’s field
of view, which will lead to an uncertain estimate about the
human’s position and a wrongly predicted destination. Thus,
the robot will need to consider active re-localization of the
human to improve the estimate and to be able to infer the
next navigation goal.

In this paper, we apply an approach to constantly predict
the human’s position at future time steps based on the
robot’s previous observations of the human’s position. This
prediction is used as an input to a reinforcement learning
framework to generate foresighted robot navigation actions.
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Fig. 1. Example of foresighted people following: In a scenario
where a human commonly walks on different known paths, our
approach enables the robot to act efficiently. a) When the human
starts walking the robot does not yet know which of the two paths
the human will take and simply follows. b) The robot predicts the
path of the human and remains at a spot, where possible deviations
from the prediction are well visible. c) The robot sees the human
return and immediately drives back to the initial spot.

The resulting navigation strategy leads to efficient robot paths
and observation actions that improve the prediction of future
human movements.

Fig. 1 highlights the strengths of our approach. The human
initially moves along a trajectory that might correspond
to two different paths, while the robot is only needed if
the human moved along path 2. Our approach leads to an
efficient strategy where the robot follows the human to the
place where the paths diverge and observes the future be-
havior of the human, hence, reducing unnecessary movement
actions. Following the human at close distance would also
be a solution to reduce uncertainty, but this often results in
unnecessary detours and interferences with the human.

An overview of our proposed system is shown in Fig. 2.
Initially, we use the motion prediction model to learn nav-
igation strategies via reinforcement learning. The output is
a Q-table that provides the robot with the best navigation
action for the current situation.

As we show in simulated and real-world experiments, our
framework generates foresighted navigation actions that can
also deal with cases in which the human is not in the robot’s
field of view. The trajectories generated by our approach are
significantly shorter compared to a direct-following approach
and we achieve a higher number of successful runs. We
extended our previous work [7] by using a more compact
representation of the movement possibilities, implementing
a particle filter based prediction, modifying the state space,
enhancing the reward function to deal with occlusions, and
allowing the robot to explicitly perform observation actions
to update the belief about the human’s location.



Fig. 2. Based on the robot’s current position and its observations
about the human, the robot chooses a navigation action using the
foresighted navigation strategy that was learned off-line from a
training set of observed human trajectories.

II. RELATED WORK

Various related approaches have been presented. For ex-
ample, Tipaldi and Arras [8] learned spatio-temporal models
of human activities in order to increase the probability for
the robot to encounter specific humans. Krajnı́k et al. [9]
presented a method based on spatio-temporal models to
help the robot finding non-stationary objects in an office
environment. The authors represent the environment as a
topological map and combine it with periodic functions in
order to compute the likelihood of existence of these objects
at any node of the map with respect to the time. The focus of
these works is different than ours since they aim at quickly
finding a specific person/object in the environment whereas
we aim at foresighted, efficient people following in both
cases whether the human is in the field of view or not.

Goldhoorn et al. [10] introduced a two-stage approach to
find a moving person first and then following them. The
authors presented continuous real-time partially observable
Monte-Carlo planning (CR-POMCP) to generate a policy
tree through simulations. Afterwards, the authors extended
the CR-POMCP by combining it with a standard direct
following approach. Thus, the robot moves directly to the
human as long as it is in the field of view. If the human
is not visible, the authors use the human position with
the highest probability according to the CR-POMCP as the
next navigation goal of the robot. In contrast, our approach
reasons about the next destination of the human and uses the
learned policy to decide on the best action, thereby explicitly
taking into account observation actions. Our system does the
reasoning in both cases whether the human is in the field of
view or not to generate efficient robot behavior.

Kretzschmar et al. [11] learned a probabilistic model of
pedestrians from observing their trajectories. Kuderer and
Burgard [1] applied that approach to predict a human’s tra-
jectory and plan an intelligent path for a robot following the

human. The proposed method takes into account information
about obstacles in the environment and computes the robot’s
trajectory so that the distance to the desired relative position
along the predicted human path is minimized. In our work,
we go beyond such an idea and take into account long-
term prediction of the humans motions and compute efficient
robot actions, instead of staying always in the vicinity of the
human.

The contribution of our work is the generation of fore-
sighted robot behavior based on learned navigation strategies
and the prediction of human motion. The prediction of
human motions itself is not the focus. Nevertheless, we
present some recent work in this area in the following. Best
and Fitch [12] presented a Bayesian trajectory prediction
model for moving people. The authors assume that there is
a set of predefined destinations between which the person
moves on the shortest path and, therefore, the likelihood
of a movement is inversely proportional to how far is the
corresponding future position from the shortest path to a
given destination. Ziebart et al. [13] introduced an approach
based on a softened Markov decision process (MDP) that is
trained on a set of observed human trajectories and uses a
Q-table to encode the human’s movements in a grid map at
any point at any time. The authors proposed to make use of
this modeling for planning collision-free paths. Vasquez [14]
extended the work of Ziebart et al. [13] in order to decrease
the computational complexity. The authors here assume that
the cost function based on which the human plans its motion
is given a priori. We previously implemented the technique
of Ziebart et al. [13] but noticed in our experiments that we
could not achieve good prediction results in case the human
deviates from learned trajectories. Therefore, for this work
we apply a particle filter based motion prediction.

In contrast to our previous work [7], the new framework
relies only on the robot’s on-board sensors and can deal with
occlusions. Moreover, with the modified state space we are
able to handle also large environments without overloading
the learning process.

III. PROBLEM FORMULATION

We consider a scenario where the robot knows the struc-
ture and static obstacles in the environment. We assume
that the human commonly walks on typical paths between
different points of interest (destinations) where a robot is
needed to assist the human. Our aim here is to exploit the
given information in order to generate more efficient navi-
gation actions for the robot compared to a direct-following
method and additionally deal with situations where such a
method would fail. An example of the former is discussed
in Fig. 1. Furthermore, since it sometimes happens that the
human moves along paths which are impassable for the
robot, the robot should learn in these cases how to move to
the predicted destination of the human, thereby performing
explicit observation actions to update the prediction of the
human position if useful. All in all, the aim of our approach is
to reach the correct destination of the human while reducing
the overall path length.



IV. MOTION PREDICTION

To track the user while moving along paths between a set
of predefined destinations, we use a particle filter following
ideas of the work by Liao et al. [15]. The particles are prop-
agated, over the nodes of a topo-metric graph that represents
the environment (see Fig. 3), according to the user’s velocity.
The poses of the particles are initialized at the graph node
that corresponds to the user’s known starting location. Each
particle moves on the graph toward one of the destinations,
reachable from the previous destination (the user’s starting
location). In particular, at every time step, each particle
either moves to the neighboring node along the shortest
path to its intended destination, stays at the current node,
or moves to another neighboring node. The choice between
these alternatives follows a certain probability distribution
that we determined experimentally.

The weights of the particles correspond to the observation
likelihood. High weights are assigned to the particles that
are close to the user’s observed position. In case the user is
not observed, the weights of the particles in the field of view
are reduced.

To predict the user’s future location, we simulate the
propagation of the particles according to the motion model
described above a few time steps into the future and then
determine the predicted graph node based on the cluster of
particles that has the highest weight.

V. LEARNING NAVIGATION ACTIONS

In order to generate actions for the robot while observing
and following the human, we use reinforcement learning
and combine it with the human motion prediction (see
Section IV). For every possible starting location of the
human (corresponding to the points of interest/destinations),
we learn a separate Q-table that represents the navigation
policy of the robot. The remainder of this section explains
in detail all aspects of our learning approach.

A. Reinforcement Learning

In reinforcement learning, the state of the robot st from the
state space S is transformed to st+1 by executing action at
from the action space A at time t. This transformation takes
place according to the transition function T : S × A → S
and the robot gets an immediate reward rt ∈ R based on the
reward function.

The learning process is iterative, where each iteration is
called a learning episode. Qπ(st, at) refers to the expected
reward that can be achieved if action at is executed at
state st. In each learning episode, the Q-value of each state-
action pair belonging to this episode is updated based on the
obtained reward Rt following the basic Sarsa rule:

Rt =

T∑
i=t+1

ri (1)

Qπ(st, at) = Eπ{Rt|st, at} (2)
Qπ(st, at)← Qπ(st, at)

+ α[rt+1 + γQπ(st+1, at+1)−Qπ(st, at)], (3)

Fig. 3. Simulation environment with topo-metric graph. The
environment is represented as a grid map with an overlaid topo-
metric graph, such that each grid cell corresponds to the nearest
graph node (green dots) within the same room. At the same time,
each graph node is mapped onto the grid cell, which lies at the same
position. The red dots correspond to nodes that are only passable
by the human but not by the robot.

where α and γ refer to the step size and discounting factor,
respectively. Instead of Sarsa, which only considers the next
time step, we used the advanced Sarsa(λ) that considers
several steps forward when updating the Q-value, which
leads to a more accurate estimate of Rt [16].

The action policy π should aim at maximizing the return
of each state, which corresponds to choosing the action
with the maximum Q-value. However, since the robot may
get stuck in a local-minima at a certain graph node, we
apply ε-greedy action selection to allow more exploration of
the state-action search space. This policy selects the action
with the maximum Q-value with probability 1− ε or any of
the other non-greedy actions randomly with probability ε.

B. State Space S
As mentioned above, for the prediction of the human’s

motion, we represent the environment as a discretized grid
map with an overlaid topo-metric graph. For the state space
and the action generation we use the same representation,
such that every grid cell is mapped onto the closest graph
node within the same room. Additionally, every graph node
is mapped onto the grid cell, which lies at the same position
as the node. The topo-metric representation is a compact
representation of the movement possibilities in the environ-
ment and better scales with larger maps. The corresponding
map representation as topo-metric graph for our quantitative
simulation experiments is depicted in Fig. 3. Note that the
environment contains a passage that is not passable by the
robot (red nodes) and, thus, the corresponding navigation
actions are excluded.

The state space includes the current graph node position
of the robot xrt at time t and the predicted position of the
human, also mapped onto the graph, xht+i after i future time
steps:

st =

[
xrt

xht+i

]
. (4)

This state space is much more concise compared to our
previous work [7] and leads to a faster learning process.



We do not include the human’s current position here since
it does not give more information and, apart from that,
might not be observable. In contrast to our previous state
representation, the new formulation can scale for reasonably
large environments.

The topo-metric graph does naturally not cover the whole
grid map and the real robot might not perfectly drive along
the graph. Therefore, the graph node position of the robot is
always determined according to the robot’s current grid cell
mapped onto the graph, similarly as for the human.

C. Action Set A and Q-tables

The action space consists of movement actions, a waiting
action, and an observation action. Movement actions are
defined along the graph and consist of movements to all
neighboring nodes. Therefore, the amount of movement
actions depends on the current node position of the robot, as
certain nodes have more neighbors compared to others, e.g.,
intersections. An observation action consists of a full 360◦

rotation or a rotation until the human is observed.
In order to execute actions in the real world we need to

map the action space, i.e., movements between neighboring
graph nodes, onto real actions of the robot. We accomplish
this by determining the corresponding grid cell position of
the graph node after performing an action and sending the
real 2D coordinate as a new local goal to the robot.

D. Reward Function R
During the training phase, we define the immediate re-

ward rt at time t as follows:

rt =

{
10, 000 if t = T

−A∗(xr
t , xhD)− v ·A∗(xrt , xht+i)− C otherwise

,

(5)
where T is the final time step in the case of a successful
learning episode. A learning episode is considered as suc-
cessful if the robot reaches the human’s destination through
a shorter path compared to an approach that uses the concept
of directly following, which also moves along the graph,
however, at every time step simply moves one node toward
the human’s current position.

The function A∗(xr
t , xhD) in Eq. (5) denotes the distance

resulting from applying the A* algorithm to get the shortest
path from the robot’s current position xrt to the human’s
intended destination xh

D, which is known from the training
data. The term A∗(xr

t , xht+i) represents the A* distance
between the robot’s current position and the position of the
human after i time steps, while v is 0 in case the human
is currently visible and 1 otherwise. Finally, C represents
the cost for performing an action, which is 0 in case of a
waiting and observation action and the distance between two
neighboring nodes in case of a movement action.

The first term of Eq. (5) guides the robot toward the goal
while the second term helps to keep the human in the robot’s
field of view. The last term minimizes the total amount of
movement actions, which is desirable if the human takes
detours or moves to areas where the robot is not required.

Fig. 4. Left: The real-world environment with an overlaid topo-
metric graph. The red dots correspond to nodes that are only
passable by the human but not by the robot. Right: Common human
trajectories used in the real-world environment.

VI. EXPERIMENTS

A. Experimental Setup

We evaluated our approach, both in simulated and real-
world experiments. The size of the simulation environment
is 41m×20.5m with a map resolution of 0.25m and a map
of size 4.8m×7.6m with a resolution of 0.05m for the real-
world experiment (see Fig. 3 and Fig. 4, respectively). The
distances between the graph nodes in the simulated and real-
world environments are 1.5m and 0.5m, respectively. To
show one strength of our approach, each of the environments
contains a narrow passage that is not passable by the robot.
Thus, directly following the human along these passages
is not possible and will not succeed, while our approach
tries to predict the destination of the human and learns
how to best move in order to encounter the human at
the destination, thereby considering also observation actions
along the way. Note that the heuristic strategy of just moving
to the predicted destination on the shortest path does not
consider observation actions and will sometimes be affected
by wrong predictions.

In case the human is outside the robot’s field of view, we
propagate the particles and update their weights, i.e., reduce
their weights if they are within the robot’s field of view, and
then determine the predicted graph node based on the cluster
of particles that has the highest weight.

During the reinforcement learning phase, we initialize ε
of the greedy action selection policy with 0.35 to allow for
a wider exploration of the state and action space. During
the execution phase, the robot follows the learned policy
represented by the Q-table, i.e, ε = 0. Each Q-table is learned
in simulation from a maximum of 4000 learning episodes
with a maximum of 100 time steps. We experimentally
determined that a three-step prediction ahead, i.e., i = 3
in Eq. (4) works best.



Fig. 5. Common human trajectories used in the simulation
environment. Note that path 1 in this figure corresponds to the
example shown in Fig. 1.

Fig. 6. The robot and the user with a board of ArUco markers to
simplify pose estimation in the real-world experiment.

B. Experiments in Simulation

For the simulation experiments we simulated 105 human
trajectories, 15 for each possible route (see Fig. 5). 60% of
the trajectories were used for the training and the rest for the
evaluation of the learned robot behavior.

As a performance measure, we computed the reduction
in path length to evaluate the efficiency of the generated
motion actions, e.g., to assess battery saving. We compare
the path resulting from applying our framework to the path
generated from the direct-following strategy, in which the
robot moves at each time step toward the node of the human’s
position. This presents the best heuristic behavior the robot
can execute as the actual destination can only be predicted
and might be wrong. We evaluated the statistical significance
using a two-tailed paired z-test.

The experimental results show that our learned policy
significantly outperforms the direct-following approach in
terms of path length (statistical significance of 95%), which
was reduced by 7.33%. Additionally, the percentage of runs
in which the robot failed to reach the final destination of the
user, is reduced to only 1% compared to 14% in the case of
the direct-following approach.

C. Real-World Experiment

In addition to the experiments in simulation, we performed
an experiment with a real robot. We used a Robotino robot
from Festo and used the on-board laser sensor for particle
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Fig. 7. Real-robot experiment: (a) The human gets outside the
robot’s camera field of view while walking along his path (green
trajectory) toward his destination. The robot keeps updating the
prediction until it reaches the correct destination. (b) The robot
executes the learned actions to reach the destination successfully
through an alternative path (blue trajectory) that avoids the narrow
entrance that does not fit the robot size.

filter based localization on the given grid map. To estimate
the human’s position, the user holds a board of ArUco
markers [17] as shown in Fig. 6. We focused on showing the
ability of our framework to handle situations in which the
human’s trajectory also contains passages that are impassable
for the robot so that simply following the human at close
distance will fail.

The environment of the real-world experiment with the
topo-metric graph is shown in the left image of Fig. 4. The
Q-table of the learned navigation actions for this environment
was also learned in simulation.

For the experiment shown in Fig. 7, the human moved
toward his intended destination (which is unknown for the
robot) through a path that involved passing through two
narrow walls, which does not fit the size of the Robotino
robot. Moreover, the human left the robot’s field of view (due
to the robot’s orientation). The prediction, however, kept
being updated until it reached a final destination. Meanwhile,
the robot executed the learned Q-table actions based on the
current robot position and the current prediction at each
time step. As can be seen, the robot could successfully
encounter the human at the intended destination. The robot
took an efficient path that fits the robot size and at the same
time considers potential prediction errors, i.e., it executed an
observation action by rotating 360◦ that put destination 2 into
its field of view (see Fig. 7 (a)). After that, the learned actions
led to a path that put destination 3 in the field of view of the
robot as it moved on its path (see Fig. 7 (b)). Therefore, if the
prediction about the human pose was wrong and the human
was waiting in any of these destinations, there would be a
high probability of observing the human again and, thus, the
prediction would have been updated accordingly. Note that in
this scenario, if the robot navigates according to the strategy



of closely following the human it would get stuck in front
of the narrow passage.

VII. CONCLUSIONS

In this paper, we presented a reinforcement learning ap-
proach to generate efficient navigation actions for a service
robot that needs to encounter a user at designated locations,
between which a human moves on typical paths. We hereby
apply a particle filter based prediction about the human’s mo-
tion to deal with possible occlusions and generate effective
navigation and observation actions.

In simulated as well as in real-world experiments, we
showed that our method enables the robot to navigate ef-
ficiently to predicted destinations and also deal with cases
in which the human is not within the robot’s sensor range.
In these situations, the robot explicitly considers to execute
observation actions to re-observe the human and update the
prediction about the destination. Additionally, the experimen-
tal results demonstrate that our framework generates signif-
icantly shorter paths and performs with a higher percentage
of successful runs compared to a baseline approach in which
the robot tries to follow the human at close distance.
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